Step | Hyp | Ref
| Expression |
1 | | df-br 5071 |
. . . 4
⊢ (𝐹 ⇝ 𝑦 ↔ 〈𝐹, 𝑦〉 ∈ ⇝ ) |
2 | | climcau.1 |
. . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | | simpll 763 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈
ℤ) |
4 | | rphalfcl 12686 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) ∈
ℝ+) |
5 | 4 | adantl 481 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈
ℝ+) |
6 | | eqidd 2739 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
7 | | simplr 765 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) → 𝐹 ⇝ 𝑦) |
8 | 2, 3, 5, 6, 7 | climi 15147 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) |
9 | | eluzelz 12521 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
10 | | uzid 12526 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
11 | 9, 10 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ (ℤ≥‘𝑗)) |
12 | 11, 2 | eleq2s 2857 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑗)) |
13 | 12 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑗)) |
14 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
15 | 14 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) |
16 | 14 | fvoveq1d 7277 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (abs‘((𝐹‘𝑘) − 𝑦)) = (abs‘((𝐹‘𝑗) − 𝑦))) |
17 | 16 | breq1d 5080 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2) ↔ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) |
18 | 15, 17 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) ↔ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)))) |
19 | 18 | rspcv 3547 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)))) |
20 | 13, 19 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)))) |
21 | | rpre 12667 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
22 | 21 | ad2antlr 723 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑥 ∈ ℝ) |
23 | | simpllr 772 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝐹 ⇝ 𝑦) |
24 | | climcl 15136 |
. . . . . . . . . . 11
⊢ (𝐹 ⇝ 𝑦 → 𝑦 ∈ ℂ) |
25 | 23, 24 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑦 ∈ ℂ) |
26 | | simprl 767 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹‘𝑘) ∈ ℂ) |
27 | | simplrl 773 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹‘𝑗) ∈ ℂ) |
28 | | simpllr 772 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑦 ∈ ℂ) |
29 | | simplll 771 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑥 ∈ ℝ) |
30 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) |
31 | 28, 27 | abssubd 15093 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑗) − 𝑦))) |
32 | | simplrr 774 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)) |
33 | 31, 32 | eqbrtrd 5092 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹‘𝑗))) < (𝑥 / 2)) |
34 | 26, 27, 28, 29, 30, 33 | abs3lemd 15101 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |
35 | 34 | ex 412 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
36 | 35 | ralimdv 3103 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
37 | 36 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) → (((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
38 | 37 | com23 86 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
39 | 22, 25, 38 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
40 | 20, 39 | mpdd 43 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
41 | 40 | reximdva 3202 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
42 | 8, 41 | mpd 15 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |
43 | 42 | ralrimiva 3107 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |
44 | 43 | ex 412 |
. . . 4
⊢ (𝑀 ∈ ℤ → (𝐹 ⇝ 𝑦 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
45 | 1, 44 | syl5bir 242 |
. . 3
⊢ (𝑀 ∈ ℤ →
(〈𝐹, 𝑦〉 ∈ ⇝ →
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
46 | 45 | exlimdv 1937 |
. 2
⊢ (𝑀 ∈ ℤ →
(∃𝑦〈𝐹, 𝑦〉 ∈ ⇝ → ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
47 | | eldm2g 5797 |
. . 3
⊢ (𝐹 ∈ dom ⇝ →
(𝐹 ∈ dom ⇝
↔ ∃𝑦〈𝐹, 𝑦〉 ∈ ⇝ )) |
48 | 47 | ibi 266 |
. 2
⊢ (𝐹 ∈ dom ⇝ →
∃𝑦〈𝐹, 𝑦〉 ∈ ⇝ ) |
49 | 46, 48 | impel 505 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) →
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |