MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcau Structured version   Visualization version   GIF version

Theorem climcau 15707
Description: A converging sequence of complex numbers is a Cauchy sequence. Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypothesis
Ref Expression
climcau.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
climcau ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥

Proof of Theorem climcau
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-br 5144 . . . 4 (𝐹𝑦 ↔ ⟨𝐹, 𝑦⟩ ∈ ⇝ )
2 climcau.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
3 simpll 767 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 rphalfcl 13062 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
54adantl 481 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
6 eqidd 2738 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
7 simplr 769 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → 𝐹𝑦)
82, 3, 5, 6, 7climi 15546 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)))
9 eluzelz 12888 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
10 uzid 12893 . . . . . . . . . . . . 13 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
119, 10syl 17 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ (ℤ𝑗))
1211, 2eleq2s 2859 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
1312adantl 481 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ (ℤ𝑗))
14 fveq2 6906 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1514eleq1d 2826 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1614fvoveq1d 7453 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (abs‘((𝐹𝑘) − 𝑦)) = (abs‘((𝐹𝑗) − 𝑦)))
1716breq1d 5153 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2) ↔ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)))
1815, 17anbi12d 632 . . . . . . . . . . 11 (𝑘 = 𝑗 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) ↔ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
1918rspcv 3618 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
2013, 19syl 17 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
21 rpre 13043 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2221ad2antlr 727 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑥 ∈ ℝ)
23 simpllr 776 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝐹𝑦)
24 climcl 15535 . . . . . . . . . . 11 (𝐹𝑦𝑦 ∈ ℂ)
2523, 24syl 17 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑦 ∈ ℂ)
26 simprl 771 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹𝑘) ∈ ℂ)
27 simplrl 777 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹𝑗) ∈ ℂ)
28 simpllr 776 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑦 ∈ ℂ)
29 simplll 775 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑥 ∈ ℝ)
30 simprr 773 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))
3128, 27abssubd 15492 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹𝑗))) = (abs‘((𝐹𝑗) − 𝑦)))
32 simplrr 778 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))
3331, 32eqbrtrd 5165 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹𝑗))) < (𝑥 / 2))
3426, 27, 28, 29, 30, 33abs3lemd 15500 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3534ex 412 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3635ralimdv 3169 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3736ex 412 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3837com23 86 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3922, 25, 38syl2anc 584 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4020, 39mpdd 43 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4140reximdva 3168 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
428, 41mpd 15 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4342ralrimiva 3146 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹𝑦) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4443ex 412 . . . 4 (𝑀 ∈ ℤ → (𝐹𝑦 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
451, 44biimtrrid 243 . . 3 (𝑀 ∈ ℤ → (⟨𝐹, 𝑦⟩ ∈ ⇝ → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4645exlimdv 1933 . 2 (𝑀 ∈ ℤ → (∃𝑦𝐹, 𝑦⟩ ∈ ⇝ → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
47 eldm2g 5910 . . 3 (𝐹 ∈ dom ⇝ → (𝐹 ∈ dom ⇝ ↔ ∃𝑦𝐹, 𝑦⟩ ∈ ⇝ ))
4847ibi 267 . 2 (𝐹 ∈ dom ⇝ → ∃𝑦𝐹, 𝑦⟩ ∈ ⇝ )
4946, 48impel 505 1 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3061  wrex 3070  cop 4632   class class class wbr 5143  dom cdm 5685  cfv 6561  (class class class)co 7431  cc 11153  cr 11154   < clt 11295  cmin 11492   / cdiv 11920  2c2 12321  cz 12613  cuz 12878  +crp 13034  abscabs 15273  cli 15520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524
This theorem is referenced by:  climbdd  15708  caucvgb  15716  cvgcmp  15852  cvgcmpce  15854  mbflimlem  25702  mtest  26447  climlimsup  45775  ioodvbdlimc1lem1  45946
  Copyright terms: Public domain W3C validator