MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcau Structured version   Visualization version   GIF version

Theorem climcau 15382
Description: A converging sequence of complex numbers is a Cauchy sequence. Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypothesis
Ref Expression
climcau.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
climcau ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥

Proof of Theorem climcau
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-br 5075 . . . 4 (𝐹𝑦 ↔ ⟨𝐹, 𝑦⟩ ∈ ⇝ )
2 climcau.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
3 simpll 764 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 rphalfcl 12757 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
54adantl 482 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
6 eqidd 2739 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
7 simplr 766 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → 𝐹𝑦)
82, 3, 5, 6, 7climi 15219 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)))
9 eluzelz 12592 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
10 uzid 12597 . . . . . . . . . . . . 13 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
119, 10syl 17 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ (ℤ𝑗))
1211, 2eleq2s 2857 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
1312adantl 482 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ (ℤ𝑗))
14 fveq2 6774 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1514eleq1d 2823 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1614fvoveq1d 7297 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (abs‘((𝐹𝑘) − 𝑦)) = (abs‘((𝐹𝑗) − 𝑦)))
1716breq1d 5084 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2) ↔ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)))
1815, 17anbi12d 631 . . . . . . . . . . 11 (𝑘 = 𝑗 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) ↔ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
1918rspcv 3557 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
2013, 19syl 17 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
21 rpre 12738 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2221ad2antlr 724 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑥 ∈ ℝ)
23 simpllr 773 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝐹𝑦)
24 climcl 15208 . . . . . . . . . . 11 (𝐹𝑦𝑦 ∈ ℂ)
2523, 24syl 17 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑦 ∈ ℂ)
26 simprl 768 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹𝑘) ∈ ℂ)
27 simplrl 774 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹𝑗) ∈ ℂ)
28 simpllr 773 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑦 ∈ ℂ)
29 simplll 772 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑥 ∈ ℝ)
30 simprr 770 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))
3128, 27abssubd 15165 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹𝑗))) = (abs‘((𝐹𝑗) − 𝑦)))
32 simplrr 775 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))
3331, 32eqbrtrd 5096 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹𝑗))) < (𝑥 / 2))
3426, 27, 28, 29, 30, 33abs3lemd 15173 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3534ex 413 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3635ralimdv 3109 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3736ex 413 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3837com23 86 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3922, 25, 38syl2anc 584 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4020, 39mpdd 43 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4140reximdva 3203 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
428, 41mpd 15 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4342ralrimiva 3103 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹𝑦) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4443ex 413 . . . 4 (𝑀 ∈ ℤ → (𝐹𝑦 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
451, 44syl5bir 242 . . 3 (𝑀 ∈ ℤ → (⟨𝐹, 𝑦⟩ ∈ ⇝ → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4645exlimdv 1936 . 2 (𝑀 ∈ ℤ → (∃𝑦𝐹, 𝑦⟩ ∈ ⇝ → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
47 eldm2g 5808 . . 3 (𝐹 ∈ dom ⇝ → (𝐹 ∈ dom ⇝ ↔ ∃𝑦𝐹, 𝑦⟩ ∈ ⇝ ))
4847ibi 266 . 2 (𝐹 ∈ dom ⇝ → ∃𝑦𝐹, 𝑦⟩ ∈ ⇝ )
4946, 48impel 506 1 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  cop 4567   class class class wbr 5074  dom cdm 5589  cfv 6433  (class class class)co 7275  cc 10869  cr 10870   < clt 11009  cmin 11205   / cdiv 11632  2c2 12028  cz 12319  cuz 12582  +crp 12730  abscabs 14945  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197
This theorem is referenced by:  climbdd  15383  caucvgb  15391  cvgcmp  15528  cvgcmpce  15530  mbflimlem  24831  mtest  25563  climlimsup  43301  ioodvbdlimc1lem1  43472
  Copyright terms: Public domain W3C validator