| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-br 5144 | . . . 4
⊢ (𝐹 ⇝ 𝑦 ↔ 〈𝐹, 𝑦〉 ∈ ⇝ ) | 
| 2 |  | climcau.1 | . . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 3 |  | simpll 767 | . . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈
ℤ) | 
| 4 |  | rphalfcl 13062 | . . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) ∈
ℝ+) | 
| 5 | 4 | adantl 481 | . . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈
ℝ+) | 
| 6 |  | eqidd 2738 | . . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) | 
| 7 |  | simplr 769 | . . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) → 𝐹 ⇝ 𝑦) | 
| 8 | 2, 3, 5, 6, 7 | climi 15546 | . . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) | 
| 9 |  | eluzelz 12888 | . . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | 
| 10 |  | uzid 12893 | . . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) | 
| 11 | 9, 10 | syl 17 | . . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ (ℤ≥‘𝑗)) | 
| 12 | 11, 2 | eleq2s 2859 | . . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑗)) | 
| 13 | 12 | adantl 481 | . . . . . . . . . 10
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑗)) | 
| 14 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | 
| 15 | 14 | eleq1d 2826 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) | 
| 16 | 14 | fvoveq1d 7453 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (abs‘((𝐹‘𝑘) − 𝑦)) = (abs‘((𝐹‘𝑗) − 𝑦))) | 
| 17 | 16 | breq1d 5153 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2) ↔ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) | 
| 18 | 15, 17 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) ↔ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)))) | 
| 19 | 18 | rspcv 3618 | . . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)))) | 
| 20 | 13, 19 | syl 17 | . . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)))) | 
| 21 |  | rpre 13043 | . . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) | 
| 22 | 21 | ad2antlr 727 | . . . . . . . . . 10
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑥 ∈ ℝ) | 
| 23 |  | simpllr 776 | . . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝐹 ⇝ 𝑦) | 
| 24 |  | climcl 15535 | . . . . . . . . . . 11
⊢ (𝐹 ⇝ 𝑦 → 𝑦 ∈ ℂ) | 
| 25 | 23, 24 | syl 17 | . . . . . . . . . 10
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑦 ∈ ℂ) | 
| 26 |  | simprl 771 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹‘𝑘) ∈ ℂ) | 
| 27 |  | simplrl 777 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹‘𝑗) ∈ ℂ) | 
| 28 |  | simpllr 776 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑦 ∈ ℂ) | 
| 29 |  | simplll 775 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑥 ∈ ℝ) | 
| 30 |  | simprr 773 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) | 
| 31 | 28, 27 | abssubd 15492 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑗) − 𝑦))) | 
| 32 |  | simplrr 778 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)) | 
| 33 | 31, 32 | eqbrtrd 5165 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹‘𝑗))) < (𝑥 / 2)) | 
| 34 | 26, 27, 28, 29, 30, 33 | abs3lemd 15500 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) | 
| 35 | 34 | ex 412 | . . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 36 | 35 | ralimdv 3169 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2))) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 37 | 36 | ex 412 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) → (((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) | 
| 38 | 37 | com23 86 | . . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) | 
| 39 | 22, 25, 38 | syl2anc 584 | . . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) | 
| 40 | 20, 39 | mpdd 43 | . . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 41 | 40 | reximdva 3168 | . . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑦)) < (𝑥 / 2)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 42 | 8, 41 | mpd 15 | . . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) | 
| 43 | 42 | ralrimiva 3146 | . . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) | 
| 44 | 43 | ex 412 | . . . 4
⊢ (𝑀 ∈ ℤ → (𝐹 ⇝ 𝑦 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 45 | 1, 44 | biimtrrid 243 | . . 3
⊢ (𝑀 ∈ ℤ →
(〈𝐹, 𝑦〉 ∈ ⇝ →
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 46 | 45 | exlimdv 1933 | . 2
⊢ (𝑀 ∈ ℤ →
(∃𝑦〈𝐹, 𝑦〉 ∈ ⇝ → ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | 
| 47 |  | eldm2g 5910 | . . 3
⊢ (𝐹 ∈ dom ⇝ →
(𝐹 ∈ dom ⇝
↔ ∃𝑦〈𝐹, 𝑦〉 ∈ ⇝ )) | 
| 48 | 47 | ibi 267 | . 2
⊢ (𝐹 ∈ dom ⇝ →
∃𝑦〈𝐹, 𝑦〉 ∈ ⇝ ) | 
| 49 | 46, 48 | impel 505 | 1
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) →
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |