MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcau Structured version   Visualization version   GIF version

Theorem climcau 15616
Description: A converging sequence of complex numbers is a Cauchy sequence. Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypothesis
Ref Expression
climcau.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
climcau ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥

Proof of Theorem climcau
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-br 5149 . . . 4 (𝐹𝑦 ↔ ⟨𝐹, 𝑦⟩ ∈ ⇝ )
2 climcau.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
3 simpll 765 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 rphalfcl 13000 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
54adantl 482 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
6 eqidd 2733 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
7 simplr 767 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → 𝐹𝑦)
82, 3, 5, 6, 7climi 15453 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)))
9 eluzelz 12831 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
10 uzid 12836 . . . . . . . . . . . . 13 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
119, 10syl 17 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ (ℤ𝑗))
1211, 2eleq2s 2851 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
1312adantl 482 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ (ℤ𝑗))
14 fveq2 6891 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1514eleq1d 2818 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1614fvoveq1d 7430 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (abs‘((𝐹𝑘) − 𝑦)) = (abs‘((𝐹𝑗) − 𝑦)))
1716breq1d 5158 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2) ↔ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)))
1815, 17anbi12d 631 . . . . . . . . . . 11 (𝑘 = 𝑗 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) ↔ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
1918rspcv 3608 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
2013, 19syl 17 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
21 rpre 12981 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2221ad2antlr 725 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑥 ∈ ℝ)
23 simpllr 774 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝐹𝑦)
24 climcl 15442 . . . . . . . . . . 11 (𝐹𝑦𝑦 ∈ ℂ)
2523, 24syl 17 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑦 ∈ ℂ)
26 simprl 769 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹𝑘) ∈ ℂ)
27 simplrl 775 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹𝑗) ∈ ℂ)
28 simpllr 774 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑦 ∈ ℂ)
29 simplll 773 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑥 ∈ ℝ)
30 simprr 771 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))
3128, 27abssubd 15399 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹𝑗))) = (abs‘((𝐹𝑗) − 𝑦)))
32 simplrr 776 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))
3331, 32eqbrtrd 5170 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹𝑗))) < (𝑥 / 2))
3426, 27, 28, 29, 30, 33abs3lemd 15407 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3534ex 413 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3635ralimdv 3169 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3736ex 413 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3837com23 86 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3922, 25, 38syl2anc 584 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4020, 39mpdd 43 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4140reximdva 3168 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
428, 41mpd 15 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4342ralrimiva 3146 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹𝑦) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4443ex 413 . . . 4 (𝑀 ∈ ℤ → (𝐹𝑦 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
451, 44biimtrrid 242 . . 3 (𝑀 ∈ ℤ → (⟨𝐹, 𝑦⟩ ∈ ⇝ → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4645exlimdv 1936 . 2 (𝑀 ∈ ℤ → (∃𝑦𝐹, 𝑦⟩ ∈ ⇝ → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
47 eldm2g 5899 . . 3 (𝐹 ∈ dom ⇝ → (𝐹 ∈ dom ⇝ ↔ ∃𝑦𝐹, 𝑦⟩ ∈ ⇝ ))
4847ibi 266 . 2 (𝐹 ∈ dom ⇝ → ∃𝑦𝐹, 𝑦⟩ ∈ ⇝ )
4946, 48impel 506 1 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3061  wrex 3070  cop 4634   class class class wbr 5148  dom cdm 5676  cfv 6543  (class class class)co 7408  cc 11107  cr 11108   < clt 11247  cmin 11443   / cdiv 11870  2c2 12266  cz 12557  cuz 12821  +crp 12973  abscabs 15180  cli 15427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431
This theorem is referenced by:  climbdd  15617  caucvgb  15625  cvgcmp  15761  cvgcmpce  15763  mbflimlem  25183  mtest  25915  climlimsup  44466  ioodvbdlimc1lem1  44637
  Copyright terms: Public domain W3C validator