MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcau Structured version   Visualization version   GIF version

Theorem climcau 15310
Description: A converging sequence of complex numbers is a Cauchy sequence. Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypothesis
Ref Expression
climcau.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
climcau ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥

Proof of Theorem climcau
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-br 5071 . . . 4 (𝐹𝑦 ↔ ⟨𝐹, 𝑦⟩ ∈ ⇝ )
2 climcau.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
3 simpll 763 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 rphalfcl 12686 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
54adantl 481 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
6 eqidd 2739 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
7 simplr 765 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → 𝐹𝑦)
82, 3, 5, 6, 7climi 15147 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)))
9 eluzelz 12521 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
10 uzid 12526 . . . . . . . . . . . . 13 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
119, 10syl 17 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ (ℤ𝑗))
1211, 2eleq2s 2857 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
1312adantl 481 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ (ℤ𝑗))
14 fveq2 6756 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1514eleq1d 2823 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1614fvoveq1d 7277 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (abs‘((𝐹𝑘) − 𝑦)) = (abs‘((𝐹𝑗) − 𝑦)))
1716breq1d 5080 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2) ↔ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)))
1815, 17anbi12d 630 . . . . . . . . . . 11 (𝑘 = 𝑗 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) ↔ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
1918rspcv 3547 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
2013, 19syl 17 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
21 rpre 12667 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2221ad2antlr 723 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑥 ∈ ℝ)
23 simpllr 772 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝐹𝑦)
24 climcl 15136 . . . . . . . . . . 11 (𝐹𝑦𝑦 ∈ ℂ)
2523, 24syl 17 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑦 ∈ ℂ)
26 simprl 767 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹𝑘) ∈ ℂ)
27 simplrl 773 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹𝑗) ∈ ℂ)
28 simpllr 772 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑦 ∈ ℂ)
29 simplll 771 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑥 ∈ ℝ)
30 simprr 769 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))
3128, 27abssubd 15093 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹𝑗))) = (abs‘((𝐹𝑗) − 𝑦)))
32 simplrr 774 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))
3331, 32eqbrtrd 5092 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹𝑗))) < (𝑥 / 2))
3426, 27, 28, 29, 30, 33abs3lemd 15101 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3534ex 412 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3635ralimdv 3103 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3736ex 412 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3837com23 86 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3922, 25, 38syl2anc 583 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4020, 39mpdd 43 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4140reximdva 3202 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
428, 41mpd 15 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4342ralrimiva 3107 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹𝑦) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4443ex 412 . . . 4 (𝑀 ∈ ℤ → (𝐹𝑦 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
451, 44syl5bir 242 . . 3 (𝑀 ∈ ℤ → (⟨𝐹, 𝑦⟩ ∈ ⇝ → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4645exlimdv 1937 . 2 (𝑀 ∈ ℤ → (∃𝑦𝐹, 𝑦⟩ ∈ ⇝ → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
47 eldm2g 5797 . . 3 (𝐹 ∈ dom ⇝ → (𝐹 ∈ dom ⇝ ↔ ∃𝑦𝐹, 𝑦⟩ ∈ ⇝ ))
4847ibi 266 . 2 (𝐹 ∈ dom ⇝ → ∃𝑦𝐹, 𝑦⟩ ∈ ⇝ )
4946, 48impel 505 1 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  cop 4564   class class class wbr 5070  dom cdm 5580  cfv 6418  (class class class)co 7255  cc 10800  cr 10801   < clt 10940  cmin 11135   / cdiv 11562  2c2 11958  cz 12249  cuz 12511  +crp 12659  abscabs 14873  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125
This theorem is referenced by:  climbdd  15311  caucvgb  15319  cvgcmp  15456  cvgcmpce  15458  mbflimlem  24736  mtest  25468  climlimsup  43191  ioodvbdlimc1lem1  43362
  Copyright terms: Public domain W3C validator