MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcau Structured version   Visualization version   GIF version

Theorem climcau 15644
Description: A converging sequence of complex numbers is a Cauchy sequence. Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypothesis
Ref Expression
climcau.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
climcau ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥

Proof of Theorem climcau
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-br 5111 . . . 4 (𝐹𝑦 ↔ ⟨𝐹, 𝑦⟩ ∈ ⇝ )
2 climcau.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
3 simpll 766 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 rphalfcl 12987 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
54adantl 481 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
6 eqidd 2731 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
7 simplr 768 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → 𝐹𝑦)
82, 3, 5, 6, 7climi 15483 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)))
9 eluzelz 12810 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
10 uzid 12815 . . . . . . . . . . . . 13 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
119, 10syl 17 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ (ℤ𝑗))
1211, 2eleq2s 2847 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
1312adantl 481 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ (ℤ𝑗))
14 fveq2 6861 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1514eleq1d 2814 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1614fvoveq1d 7412 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (abs‘((𝐹𝑘) − 𝑦)) = (abs‘((𝐹𝑗) − 𝑦)))
1716breq1d 5120 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2) ↔ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)))
1815, 17anbi12d 632 . . . . . . . . . . 11 (𝑘 = 𝑗 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) ↔ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
1918rspcv 3587 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
2013, 19syl 17 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))))
21 rpre 12967 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2221ad2antlr 727 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑥 ∈ ℝ)
23 simpllr 775 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝐹𝑦)
24 climcl 15472 . . . . . . . . . . 11 (𝐹𝑦𝑦 ∈ ℂ)
2523, 24syl 17 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑦 ∈ ℂ)
26 simprl 770 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹𝑘) ∈ ℂ)
27 simplrl 776 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (𝐹𝑗) ∈ ℂ)
28 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑦 ∈ ℂ)
29 simplll 774 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → 𝑥 ∈ ℝ)
30 simprr 772 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))
3128, 27abssubd 15429 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹𝑗))) = (abs‘((𝐹𝑗) − 𝑦)))
32 simplrr 777 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))
3331, 32eqbrtrd 5132 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘(𝑦 − (𝐹𝑗))) < (𝑥 / 2))
3426, 27, 28, 29, 30, 33abs3lemd 15437 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2))) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3534ex 412 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3635ralimdv 3148 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2))) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3736ex 412 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3837com23 86 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3922, 25, 38syl2anc 584 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → (((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
4020, 39mpdd 43 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4140reximdva 3147 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑦)) < (𝑥 / 2)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
428, 41mpd 15 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹𝑦) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4342ralrimiva 3126 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹𝑦) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4443ex 412 . . . 4 (𝑀 ∈ ℤ → (𝐹𝑦 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
451, 44biimtrrid 243 . . 3 (𝑀 ∈ ℤ → (⟨𝐹, 𝑦⟩ ∈ ⇝ → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4645exlimdv 1933 . 2 (𝑀 ∈ ℤ → (∃𝑦𝐹, 𝑦⟩ ∈ ⇝ → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
47 eldm2g 5866 . . 3 (𝐹 ∈ dom ⇝ → (𝐹 ∈ dom ⇝ ↔ ∃𝑦𝐹, 𝑦⟩ ∈ ⇝ ))
4847ibi 267 . 2 (𝐹 ∈ dom ⇝ → ∃𝑦𝐹, 𝑦⟩ ∈ ⇝ )
4946, 48impel 505 1 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  cop 4598   class class class wbr 5110  dom cdm 5641  cfv 6514  (class class class)co 7390  cc 11073  cr 11074   < clt 11215  cmin 11412   / cdiv 11842  2c2 12248  cz 12536  cuz 12800  +crp 12958  abscabs 15207  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461
This theorem is referenced by:  climbdd  15645  caucvgb  15653  cvgcmp  15789  cvgcmpce  15791  mbflimlem  25575  mtest  26320  climlimsup  45765  ioodvbdlimc1lem1  45936
  Copyright terms: Public domain W3C validator