MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgb Structured version   Visualization version   GIF version

Theorem caucvgb 15587
Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
caucvgb.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caucvgb ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥   𝑘,𝑉
Allowed substitution hints:   𝑉(𝑥,𝑗)

Proof of Theorem caucvgb
Dummy variables 𝑖 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldm2g 5838 . . . 4 (𝐹 ∈ dom ⇝ → (𝐹 ∈ dom ⇝ ↔ ∃𝑚𝐹, 𝑚⟩ ∈ ⇝ ))
21ibi 267 . . 3 (𝐹 ∈ dom ⇝ → ∃𝑚𝐹, 𝑚⟩ ∈ ⇝ )
3 df-br 5090 . . . . 5 (𝐹𝑚 ↔ ⟨𝐹, 𝑚⟩ ∈ ⇝ )
4 caucvgb.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
5 simpll 766 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 𝑀 ∈ ℤ)
6 1rp 12894 . . . . . . . . 9 1 ∈ ℝ+
76a1i 11 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 1 ∈ ℝ+)
8 eqidd 2732 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
9 simpr 484 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 𝐹𝑚)
104, 5, 7, 8, 9climi 15417 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1))
11 simpl 482 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → (𝐹𝑘) ∈ ℂ)
1211ralimi 3069 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1312reximi 3070 . . . . . . 7 (∃𝑛𝑍𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1410, 13syl 17 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1514ex 412 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝑚 → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
163, 15biimtrrid 243 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (⟨𝐹, 𝑚⟩ ∈ ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
1716exlimdv 1934 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∃𝑚𝐹, 𝑚⟩ ∈ ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
182, 17syl5 34 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
19 fveq2 6822 . . . . . . 7 (𝑗 = 𝑛 → (ℤ𝑗) = (ℤ𝑛))
2019raleqdv 3292 . . . . . 6 (𝑗 = 𝑛 → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
2120cbvrexvw 3211 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
2221a1i 11 . . . 4 (𝑥 = 1 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
23 simpl 482 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝐹𝑘) ∈ ℂ)
2423ralimi 3069 . . . . . 6 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
2524reximi 3070 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
2625ralimi 3069 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
276a1i 11 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 1 ∈ ℝ+)
2822, 26, 27rspcdva 3573 . . 3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
2928a1i 11 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
30 eluzelz 12742 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
3130, 4eleq2s 2849 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ ℤ)
32 eqid 2731 . . . . . . . . . 10 (ℤ𝑛) = (ℤ𝑛)
3332climcau 15578 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3431, 33sylan 580 . . . . . . . 8 ((𝑛𝑍𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3532r19.29uz 15258 . . . . . . . . . 10 ((∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ ∧ ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3635ex 412 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3736ralimdv 3146 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3834, 37mpan9 506 . . . . . . 7 (((𝑛𝑍𝐹 ∈ dom ⇝ ) ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3938an32s 652 . . . . . 6 (((𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ) ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4039adantll 714 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
41 simplrr 777 . . . . . . . 8 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
42 fveq2 6822 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
4342eleq1d 2816 . . . . . . . . 9 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
4443rspccva 3571 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℂ)
4541, 44sylan 580 . . . . . . 7 ((((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℂ)
46 simpr 484 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4746ralimi 3069 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4842fvoveq1d 7368 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑚) − (𝐹𝑗))))
4948breq1d 5099 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥))
5049cbvralvw 3210 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5147, 50sylib 218 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5251reximi 3070 . . . . . . . . . 10 (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5352ralimi 3069 . . . . . . . . 9 (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5453adantl 481 . . . . . . . 8 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
55 fveq2 6822 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (ℤ𝑗) = (ℤ𝑖))
56 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
5756oveq2d 7362 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → ((𝐹𝑚) − (𝐹𝑗)) = ((𝐹𝑚) − (𝐹𝑖)))
5857fveq2d 6826 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (abs‘((𝐹𝑚) − (𝐹𝑗))) = (abs‘((𝐹𝑚) − (𝐹𝑖))))
5958breq1d 5099 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥))
6055, 59raleqbidv 3312 . . . . . . . . . . 11 (𝑗 = 𝑖 → (∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥))
6160cbvrexvw 3211 . . . . . . . . . 10 (∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥)
62 breq2 5093 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6362rexralbidv 3198 . . . . . . . . . 10 (𝑥 = 𝑦 → (∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6461, 63bitrid 283 . . . . . . . . 9 (𝑥 = 𝑦 → (∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6564cbvralvw 3210 . . . . . . . 8 (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑦 ∈ ℝ+𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦)
6654, 65sylib 218 . . . . . . 7 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑦 ∈ ℝ+𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦)
67 simpll 766 . . . . . . 7 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹𝑉)
6832, 45, 66, 67caucvg 15586 . . . . . 6 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹 ∈ dom ⇝ )
6968adantlll 718 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹 ∈ dom ⇝ )
7040, 69impbida 800 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
714, 32cau4 15264 . . . . 5 (𝑛𝑍 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7271ad2antrl 728 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7370, 72bitr4d 282 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7473rexlimdvaa 3134 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))))
7518, 29, 74pm5.21ndd 379 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  cop 4579   class class class wbr 5089  dom cdm 5614  cfv 6481  (class class class)co 7346  cc 11004  1c1 11007   < clt 11146  cmin 11344  cz 12468  cuz 12732  +crp 12890  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396
This theorem is referenced by:  serf0  15588  caucvgbf  45597
  Copyright terms: Public domain W3C validator