MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgb Structured version   Visualization version   GIF version

Theorem caucvgb 15622
Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
caucvgb.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caucvgb ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥   𝑘,𝑉
Allowed substitution hints:   𝑉(𝑥,𝑗)

Proof of Theorem caucvgb
Dummy variables 𝑖 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldm2g 5853 . . . 4 (𝐹 ∈ dom ⇝ → (𝐹 ∈ dom ⇝ ↔ ∃𝑚𝐹, 𝑚⟩ ∈ ⇝ ))
21ibi 267 . . 3 (𝐹 ∈ dom ⇝ → ∃𝑚𝐹, 𝑚⟩ ∈ ⇝ )
3 df-br 5103 . . . . 5 (𝐹𝑚 ↔ ⟨𝐹, 𝑚⟩ ∈ ⇝ )
4 caucvgb.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
5 simpll 766 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 𝑀 ∈ ℤ)
6 1rp 12931 . . . . . . . . 9 1 ∈ ℝ+
76a1i 11 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 1 ∈ ℝ+)
8 eqidd 2730 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
9 simpr 484 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 𝐹𝑚)
104, 5, 7, 8, 9climi 15452 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1))
11 simpl 482 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → (𝐹𝑘) ∈ ℂ)
1211ralimi 3066 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1312reximi 3067 . . . . . . 7 (∃𝑛𝑍𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1410, 13syl 17 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1514ex 412 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝑚 → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
163, 15biimtrrid 243 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (⟨𝐹, 𝑚⟩ ∈ ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
1716exlimdv 1933 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∃𝑚𝐹, 𝑚⟩ ∈ ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
182, 17syl5 34 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
19 fveq2 6840 . . . . . . 7 (𝑗 = 𝑛 → (ℤ𝑗) = (ℤ𝑛))
2019raleqdv 3296 . . . . . 6 (𝑗 = 𝑛 → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
2120cbvrexvw 3214 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
2221a1i 11 . . . 4 (𝑥 = 1 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
23 simpl 482 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝐹𝑘) ∈ ℂ)
2423ralimi 3066 . . . . . 6 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
2524reximi 3067 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
2625ralimi 3066 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
276a1i 11 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 1 ∈ ℝ+)
2822, 26, 27rspcdva 3586 . . 3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
2928a1i 11 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
30 eluzelz 12779 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
3130, 4eleq2s 2846 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ ℤ)
32 eqid 2729 . . . . . . . . . 10 (ℤ𝑛) = (ℤ𝑛)
3332climcau 15613 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3431, 33sylan 580 . . . . . . . 8 ((𝑛𝑍𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3532r19.29uz 15293 . . . . . . . . . 10 ((∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ ∧ ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3635ex 412 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3736ralimdv 3147 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3834, 37mpan9 506 . . . . . . 7 (((𝑛𝑍𝐹 ∈ dom ⇝ ) ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3938an32s 652 . . . . . 6 (((𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ) ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4039adantll 714 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
41 simplrr 777 . . . . . . . 8 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
42 fveq2 6840 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
4342eleq1d 2813 . . . . . . . . 9 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
4443rspccva 3584 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℂ)
4541, 44sylan 580 . . . . . . 7 ((((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℂ)
46 simpr 484 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4746ralimi 3066 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4842fvoveq1d 7391 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑚) − (𝐹𝑗))))
4948breq1d 5112 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥))
5049cbvralvw 3213 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5147, 50sylib 218 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5251reximi 3067 . . . . . . . . . 10 (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5352ralimi 3066 . . . . . . . . 9 (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5453adantl 481 . . . . . . . 8 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
55 fveq2 6840 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (ℤ𝑗) = (ℤ𝑖))
56 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
5756oveq2d 7385 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → ((𝐹𝑚) − (𝐹𝑗)) = ((𝐹𝑚) − (𝐹𝑖)))
5857fveq2d 6844 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (abs‘((𝐹𝑚) − (𝐹𝑗))) = (abs‘((𝐹𝑚) − (𝐹𝑖))))
5958breq1d 5112 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥))
6055, 59raleqbidv 3316 . . . . . . . . . . 11 (𝑗 = 𝑖 → (∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥))
6160cbvrexvw 3214 . . . . . . . . . 10 (∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥)
62 breq2 5106 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6362rexralbidv 3201 . . . . . . . . . 10 (𝑥 = 𝑦 → (∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6461, 63bitrid 283 . . . . . . . . 9 (𝑥 = 𝑦 → (∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6564cbvralvw 3213 . . . . . . . 8 (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑦 ∈ ℝ+𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦)
6654, 65sylib 218 . . . . . . 7 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑦 ∈ ℝ+𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦)
67 simpll 766 . . . . . . 7 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹𝑉)
6832, 45, 66, 67caucvg 15621 . . . . . 6 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹 ∈ dom ⇝ )
6968adantlll 718 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹 ∈ dom ⇝ )
7040, 69impbida 800 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
714, 32cau4 15299 . . . . 5 (𝑛𝑍 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7271ad2antrl 728 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7370, 72bitr4d 282 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7473rexlimdvaa 3135 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))))
7518, 29, 74pm5.21ndd 379 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  cop 4591   class class class wbr 5102  dom cdm 5631  cfv 6499  (class class class)co 7369  cc 11042  1c1 11045   < clt 11184  cmin 11381  cz 12505  cuz 12769  +crp 12927  abscabs 15176  cli 15426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fl 13730  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431
This theorem is referenced by:  serf0  15623  caucvgbf  45458
  Copyright terms: Public domain W3C validator