MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgb Structured version   Visualization version   GIF version

Theorem caucvgb 15662
Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
caucvgb.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caucvgb ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥   𝑘,𝑉
Allowed substitution hints:   𝑉(𝑥,𝑗)

Proof of Theorem caucvgb
Dummy variables 𝑖 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldm2g 5902 . . . 4 (𝐹 ∈ dom ⇝ → (𝐹 ∈ dom ⇝ ↔ ∃𝑚𝐹, 𝑚⟩ ∈ ⇝ ))
21ibi 266 . . 3 (𝐹 ∈ dom ⇝ → ∃𝑚𝐹, 𝑚⟩ ∈ ⇝ )
3 df-br 5150 . . . . 5 (𝐹𝑚 ↔ ⟨𝐹, 𝑚⟩ ∈ ⇝ )
4 caucvgb.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
5 simpll 765 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 𝑀 ∈ ℤ)
6 1rp 13013 . . . . . . . . 9 1 ∈ ℝ+
76a1i 11 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 1 ∈ ℝ+)
8 eqidd 2726 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
9 simpr 483 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 𝐹𝑚)
104, 5, 7, 8, 9climi 15490 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1))
11 simpl 481 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → (𝐹𝑘) ∈ ℂ)
1211ralimi 3072 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1312reximi 3073 . . . . . . 7 (∃𝑛𝑍𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1410, 13syl 17 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1514ex 411 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝑚 → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
163, 15biimtrrid 242 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (⟨𝐹, 𝑚⟩ ∈ ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
1716exlimdv 1928 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∃𝑚𝐹, 𝑚⟩ ∈ ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
182, 17syl5 34 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
19 fveq2 6896 . . . . . . 7 (𝑗 = 𝑛 → (ℤ𝑗) = (ℤ𝑛))
2019raleqdv 3314 . . . . . 6 (𝑗 = 𝑛 → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
2120cbvrexvw 3225 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
2221a1i 11 . . . 4 (𝑥 = 1 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
23 simpl 481 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝐹𝑘) ∈ ℂ)
2423ralimi 3072 . . . . . 6 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
2524reximi 3073 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
2625ralimi 3072 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
276a1i 11 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 1 ∈ ℝ+)
2822, 26, 27rspcdva 3607 . . 3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
2928a1i 11 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
30 eluzelz 12865 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
3130, 4eleq2s 2843 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ ℤ)
32 eqid 2725 . . . . . . . . . 10 (ℤ𝑛) = (ℤ𝑛)
3332climcau 15653 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3431, 33sylan 578 . . . . . . . 8 ((𝑛𝑍𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3532r19.29uz 15333 . . . . . . . . . 10 ((∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ ∧ ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3635ex 411 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3736ralimdv 3158 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3834, 37mpan9 505 . . . . . . 7 (((𝑛𝑍𝐹 ∈ dom ⇝ ) ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3938an32s 650 . . . . . 6 (((𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ) ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4039adantll 712 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
41 simplrr 776 . . . . . . . 8 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
42 fveq2 6896 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
4342eleq1d 2810 . . . . . . . . 9 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
4443rspccva 3605 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℂ)
4541, 44sylan 578 . . . . . . 7 ((((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℂ)
46 simpr 483 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4746ralimi 3072 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4842fvoveq1d 7441 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑚) − (𝐹𝑗))))
4948breq1d 5159 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥))
5049cbvralvw 3224 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5147, 50sylib 217 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5251reximi 3073 . . . . . . . . . 10 (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5352ralimi 3072 . . . . . . . . 9 (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5453adantl 480 . . . . . . . 8 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
55 fveq2 6896 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (ℤ𝑗) = (ℤ𝑖))
56 fveq2 6896 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
5756oveq2d 7435 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → ((𝐹𝑚) − (𝐹𝑗)) = ((𝐹𝑚) − (𝐹𝑖)))
5857fveq2d 6900 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (abs‘((𝐹𝑚) − (𝐹𝑗))) = (abs‘((𝐹𝑚) − (𝐹𝑖))))
5958breq1d 5159 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥))
6055, 59raleqbidv 3329 . . . . . . . . . . 11 (𝑗 = 𝑖 → (∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥))
6160cbvrexvw 3225 . . . . . . . . . 10 (∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥)
62 breq2 5153 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6362rexralbidv 3210 . . . . . . . . . 10 (𝑥 = 𝑦 → (∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6461, 63bitrid 282 . . . . . . . . 9 (𝑥 = 𝑦 → (∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6564cbvralvw 3224 . . . . . . . 8 (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑦 ∈ ℝ+𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦)
6654, 65sylib 217 . . . . . . 7 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑦 ∈ ℝ+𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦)
67 simpll 765 . . . . . . 7 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹𝑉)
6832, 45, 66, 67caucvg 15661 . . . . . 6 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹 ∈ dom ⇝ )
6968adantlll 716 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹 ∈ dom ⇝ )
7040, 69impbida 799 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
714, 32cau4 15339 . . . . 5 (𝑛𝑍 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7271ad2antrl 726 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7370, 72bitr4d 281 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7473rexlimdvaa 3145 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))))
7518, 29, 74pm5.21ndd 378 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wral 3050  wrex 3059  cop 4636   class class class wbr 5149  dom cdm 5678  cfv 6549  (class class class)co 7419  cc 11138  1c1 11141   < clt 11280  cmin 11476  cz 12591  cuz 12855  +crp 13009  abscabs 15217  cli 15464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-ico 13365  df-fl 13793  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469
This theorem is referenced by:  serf0  15663  caucvgbf  45010
  Copyright terms: Public domain W3C validator