| Step | Hyp | Ref
| Expression |
| 1 | | eldm2g 5884 |
. . . 4
⊢ (𝐹 ∈ dom ⇝ →
(𝐹 ∈ dom ⇝
↔ ∃𝑚〈𝐹, 𝑚〉 ∈ ⇝ )) |
| 2 | 1 | ibi 267 |
. . 3
⊢ (𝐹 ∈ dom ⇝ →
∃𝑚〈𝐹, 𝑚〉 ∈ ⇝ ) |
| 3 | | df-br 5125 |
. . . . 5
⊢ (𝐹 ⇝ 𝑚 ↔ 〈𝐹, 𝑚〉 ∈ ⇝ ) |
| 4 | | caucvgb.1 |
. . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 5 | | simpll 766 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝐹 ⇝ 𝑚) → 𝑀 ∈ ℤ) |
| 6 | | 1rp 13017 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
| 7 | 6 | a1i 11 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝐹 ⇝ 𝑚) → 1 ∈
ℝ+) |
| 8 | | eqidd 2737 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝐹 ⇝ 𝑚) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
| 9 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝐹 ⇝ 𝑚) → 𝐹 ⇝ 𝑚) |
| 10 | 4, 5, 7, 8, 9 | climi 15531 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝐹 ⇝ 𝑚) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑚)) < 1)) |
| 11 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑚)) < 1) → (𝐹‘𝑘) ∈ ℂ) |
| 12 | 11 | ralimi 3074 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑚)) < 1) → ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ) |
| 13 | 12 | reximi 3075 |
. . . . . . 7
⊢
(∃𝑛 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝑚)) < 1) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ) |
| 14 | 10, 13 | syl 17 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝐹 ⇝ 𝑚) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ) |
| 15 | 14 | ex 412 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝑚 → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) |
| 16 | 3, 15 | biimtrrid 243 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (〈𝐹, 𝑚〉 ∈ ⇝ → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) |
| 17 | 16 | exlimdv 1933 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (∃𝑚〈𝐹, 𝑚〉 ∈ ⇝ → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) |
| 18 | 2, 17 | syl5 34 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ dom ⇝ → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) |
| 19 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑗 = 𝑛 → (ℤ≥‘𝑗) =
(ℤ≥‘𝑛)) |
| 20 | 19 | raleqdv 3309 |
. . . . . 6
⊢ (𝑗 = 𝑛 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℂ ↔ ∀𝑘 ∈
(ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) |
| 21 | 20 | cbvrexvw 3225 |
. . . . 5
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℂ ↔ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ) |
| 22 | 21 | a1i 11 |
. . . 4
⊢ (𝑥 = 1 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℂ ↔ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) |
| 23 | | simpl 482 |
. . . . . . 7
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → (𝐹‘𝑘) ∈ ℂ) |
| 24 | 23 | ralimi 3074 |
. . . . . 6
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℂ) |
| 25 | 24 | reximi 3075 |
. . . . 5
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℂ) |
| 26 | 25 | ralimi 3074 |
. . . 4
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℂ) |
| 27 | 6 | a1i 11 |
. . . 4
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → 1 ∈
ℝ+) |
| 28 | 22, 26, 27 | rspcdva 3607 |
. . 3
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ) |
| 29 | 28 | a1i 11 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) |
| 30 | | eluzelz 12867 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑛 ∈ ℤ) |
| 31 | 30, 4 | eleq2s 2853 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
| 32 | | eqid 2736 |
. . . . . . . . . 10
⊢
(ℤ≥‘𝑛) = (ℤ≥‘𝑛) |
| 33 | 32 | climcau 15692 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) →
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |
| 34 | 31, 33 | sylan 580 |
. . . . . . . 8
⊢ ((𝑛 ∈ 𝑍 ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |
| 35 | 32 | r19.29uz 15374 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
(ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ ∧ ∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
| 36 | 35 | ex 412 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ → (∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
| 37 | 36 | ralimdv 3155 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
| 38 | 34, 37 | mpan9 506 |
. . . . . . 7
⊢ (((𝑛 ∈ 𝑍 ∧ 𝐹 ∈ dom ⇝ ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ) → ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
| 39 | 38 | an32s 652 |
. . . . . 6
⊢ (((𝑛 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ) ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
| 40 | 39 | adantll 714 |
. . . . 5
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
| 41 | | simplrr 777 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝑉 ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) → ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ) |
| 42 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) |
| 43 | 42 | eleq1d 2820 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) |
| 44 | 43 | rspccva 3605 |
. . . . . . . 8
⊢
((∀𝑘 ∈
(ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑚) ∈ ℂ) |
| 45 | 41, 44 | sylan 580 |
. . . . . . 7
⊢ ((((𝐹 ∈ 𝑉 ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑚) ∈ ℂ) |
| 46 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |
| 47 | 46 | ralimi 3074 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |
| 48 | 42 | fvoveq1d 7432 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑚 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑚) − (𝐹‘𝑗)))) |
| 49 | 48 | breq1d 5134 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 ↔ (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑥)) |
| 50 | 49 | cbvralvw 3224 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑥) |
| 51 | 47, 50 | sylib 218 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑥) |
| 52 | 51 | reximi 3075 |
. . . . . . . . . 10
⊢
(∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑥) |
| 53 | 52 | ralimi 3074 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑥) |
| 54 | 53 | adantl 481 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝑉 ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑥) |
| 55 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → (ℤ≥‘𝑗) =
(ℤ≥‘𝑖)) |
| 56 | | fveq2 6881 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → (𝐹‘𝑗) = (𝐹‘𝑖)) |
| 57 | 56 | oveq2d 7426 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → ((𝐹‘𝑚) − (𝐹‘𝑗)) = ((𝐹‘𝑚) − (𝐹‘𝑖))) |
| 58 | 57 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑚) − (𝐹‘𝑖)))) |
| 59 | 58 | breq1d 5134 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑥 ↔ (abs‘((𝐹‘𝑚) − (𝐹‘𝑖))) < 𝑥)) |
| 60 | 55, 59 | raleqbidv 3329 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → (∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ≥‘𝑖)(abs‘((𝐹‘𝑚) − (𝐹‘𝑖))) < 𝑥)) |
| 61 | 60 | cbvrexvw 3225 |
. . . . . . . . . 10
⊢
(∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ≥‘𝑛)∀𝑚 ∈ (ℤ≥‘𝑖)(abs‘((𝐹‘𝑚) − (𝐹‘𝑖))) < 𝑥) |
| 62 | | breq2 5128 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑖))) < 𝑥 ↔ (abs‘((𝐹‘𝑚) − (𝐹‘𝑖))) < 𝑦)) |
| 63 | 62 | rexralbidv 3211 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (∃𝑖 ∈ (ℤ≥‘𝑛)∀𝑚 ∈ (ℤ≥‘𝑖)(abs‘((𝐹‘𝑚) − (𝐹‘𝑖))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ≥‘𝑛)∀𝑚 ∈ (ℤ≥‘𝑖)(abs‘((𝐹‘𝑚) − (𝐹‘𝑖))) < 𝑦)) |
| 64 | 61, 63 | bitrid 283 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ≥‘𝑛)∀𝑚 ∈ (ℤ≥‘𝑖)(abs‘((𝐹‘𝑚) − (𝐹‘𝑖))) < 𝑦)) |
| 65 | 64 | cbvralvw 3224 |
. . . . . . . 8
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑥 ↔ ∀𝑦 ∈ ℝ+ ∃𝑖 ∈
(ℤ≥‘𝑛)∀𝑚 ∈ (ℤ≥‘𝑖)(abs‘((𝐹‘𝑚) − (𝐹‘𝑖))) < 𝑦) |
| 66 | 54, 65 | sylib 218 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝑉 ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) → ∀𝑦 ∈ ℝ+ ∃𝑖 ∈
(ℤ≥‘𝑛)∀𝑚 ∈ (ℤ≥‘𝑖)(abs‘((𝐹‘𝑚) − (𝐹‘𝑖))) < 𝑦) |
| 67 | | simpll 766 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝑉 ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) → 𝐹 ∈ 𝑉) |
| 68 | 32, 45, 66, 67 | caucvg 15700 |
. . . . . 6
⊢ (((𝐹 ∈ 𝑉 ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) → 𝐹 ∈ dom ⇝ ) |
| 69 | 68 | adantlll 718 |
. . . . 5
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) → 𝐹 ∈ dom ⇝ ) |
| 70 | 40, 69 | impbida 800 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
| 71 | 4, 32 | cau4 15380 |
. . . . 5
⊢ (𝑛 ∈ 𝑍 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
| 72 | 71 | ad2antrl 728 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
| 73 | 70, 72 | bitr4d 282 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ)) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
| 74 | 73 | rexlimdvaa 3143 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(𝐹‘𝑘) ∈ ℂ → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)))) |
| 75 | 18, 29, 74 | pm5.21ndd 379 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |