MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgb Structured version   Visualization version   GIF version

Theorem caucvgb 15713
Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
caucvgb.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caucvgb ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥   𝑘,𝑉
Allowed substitution hints:   𝑉(𝑥,𝑗)

Proof of Theorem caucvgb
Dummy variables 𝑖 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldm2g 5913 . . . 4 (𝐹 ∈ dom ⇝ → (𝐹 ∈ dom ⇝ ↔ ∃𝑚𝐹, 𝑚⟩ ∈ ⇝ ))
21ibi 267 . . 3 (𝐹 ∈ dom ⇝ → ∃𝑚𝐹, 𝑚⟩ ∈ ⇝ )
3 df-br 5149 . . . . 5 (𝐹𝑚 ↔ ⟨𝐹, 𝑚⟩ ∈ ⇝ )
4 caucvgb.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
5 simpll 767 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 𝑀 ∈ ℤ)
6 1rp 13036 . . . . . . . . 9 1 ∈ ℝ+
76a1i 11 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 1 ∈ ℝ+)
8 eqidd 2736 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
9 simpr 484 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 𝐹𝑚)
104, 5, 7, 8, 9climi 15543 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1))
11 simpl 482 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → (𝐹𝑘) ∈ ℂ)
1211ralimi 3081 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1312reximi 3082 . . . . . . 7 (∃𝑛𝑍𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1410, 13syl 17 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1514ex 412 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝑚 → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
163, 15biimtrrid 243 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (⟨𝐹, 𝑚⟩ ∈ ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
1716exlimdv 1931 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∃𝑚𝐹, 𝑚⟩ ∈ ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
182, 17syl5 34 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
19 fveq2 6907 . . . . . . 7 (𝑗 = 𝑛 → (ℤ𝑗) = (ℤ𝑛))
2019raleqdv 3324 . . . . . 6 (𝑗 = 𝑛 → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
2120cbvrexvw 3236 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
2221a1i 11 . . . 4 (𝑥 = 1 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
23 simpl 482 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝐹𝑘) ∈ ℂ)
2423ralimi 3081 . . . . . 6 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
2524reximi 3082 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
2625ralimi 3081 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
276a1i 11 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 1 ∈ ℝ+)
2822, 26, 27rspcdva 3623 . . 3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
2928a1i 11 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
30 eluzelz 12886 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
3130, 4eleq2s 2857 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ ℤ)
32 eqid 2735 . . . . . . . . . 10 (ℤ𝑛) = (ℤ𝑛)
3332climcau 15704 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3431, 33sylan 580 . . . . . . . 8 ((𝑛𝑍𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3532r19.29uz 15386 . . . . . . . . . 10 ((∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ ∧ ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3635ex 412 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3736ralimdv 3167 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3834, 37mpan9 506 . . . . . . 7 (((𝑛𝑍𝐹 ∈ dom ⇝ ) ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3938an32s 652 . . . . . 6 (((𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ) ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4039adantll 714 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
41 simplrr 778 . . . . . . . 8 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
42 fveq2 6907 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
4342eleq1d 2824 . . . . . . . . 9 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
4443rspccva 3621 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℂ)
4541, 44sylan 580 . . . . . . 7 ((((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℂ)
46 simpr 484 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4746ralimi 3081 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4842fvoveq1d 7453 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑚) − (𝐹𝑗))))
4948breq1d 5158 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥))
5049cbvralvw 3235 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5147, 50sylib 218 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5251reximi 3082 . . . . . . . . . 10 (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5352ralimi 3081 . . . . . . . . 9 (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5453adantl 481 . . . . . . . 8 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
55 fveq2 6907 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (ℤ𝑗) = (ℤ𝑖))
56 fveq2 6907 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
5756oveq2d 7447 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → ((𝐹𝑚) − (𝐹𝑗)) = ((𝐹𝑚) − (𝐹𝑖)))
5857fveq2d 6911 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (abs‘((𝐹𝑚) − (𝐹𝑗))) = (abs‘((𝐹𝑚) − (𝐹𝑖))))
5958breq1d 5158 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥))
6055, 59raleqbidv 3344 . . . . . . . . . . 11 (𝑗 = 𝑖 → (∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥))
6160cbvrexvw 3236 . . . . . . . . . 10 (∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥)
62 breq2 5152 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6362rexralbidv 3221 . . . . . . . . . 10 (𝑥 = 𝑦 → (∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6461, 63bitrid 283 . . . . . . . . 9 (𝑥 = 𝑦 → (∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6564cbvralvw 3235 . . . . . . . 8 (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑦 ∈ ℝ+𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦)
6654, 65sylib 218 . . . . . . 7 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑦 ∈ ℝ+𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦)
67 simpll 767 . . . . . . 7 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹𝑉)
6832, 45, 66, 67caucvg 15712 . . . . . 6 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹 ∈ dom ⇝ )
6968adantlll 718 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹 ∈ dom ⇝ )
7040, 69impbida 801 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
714, 32cau4 15392 . . . . 5 (𝑛𝑍 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7271ad2antrl 728 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7370, 72bitr4d 282 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7473rexlimdvaa 3154 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))))
7518, 29, 74pm5.21ndd 379 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wral 3059  wrex 3068  cop 4637   class class class wbr 5148  dom cdm 5689  cfv 6563  (class class class)co 7431  cc 11151  1c1 11154   < clt 11293  cmin 11490  cz 12611  cuz 12876  +crp 13032  abscabs 15270  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fl 13829  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522
This theorem is referenced by:  serf0  15714  caucvgbf  45440
  Copyright terms: Public domain W3C validator