![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmcoels | Structured version Visualization version GIF version |
Description: The domain of coelements in 𝐴 is the union of 𝐴. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Peter Mazsa, 5-Apr-2018.) (Revised by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
dmcoels | ⊢ dom ∼ 𝐴 = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coels 34713 | . . 3 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
2 | 1 | dmeqi 5561 | . 2 ⊢ dom ∼ 𝐴 = dom ≀ (◡ E ↾ 𝐴) |
3 | dm1cosscnvepres 34749 | . 2 ⊢ dom ≀ (◡ E ↾ 𝐴) = ∪ 𝐴 | |
4 | 2, 3 | eqtri 2849 | 1 ⊢ dom ∼ 𝐴 = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ∪ cuni 4660 E cep 5256 ◡ccnv 5345 dom cdm 5346 ↾ cres 5348 ≀ ccoss 34519 ∼ ccoels 34520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-eprel 5257 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-coss 34712 df-coels 34713 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |