![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldm1cossres | Structured version Visualization version GIF version |
Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
Ref | Expression |
---|---|
eldm1cossres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑢𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmcoss 37632 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 𝑢(𝑅 ↾ 𝐴)𝐵)) | |
2 | brres 5989 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑢(𝑅 ↾ 𝐴)𝐵 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) | |
3 | 2 | exbidv 1923 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑢 𝑢(𝑅 ↾ 𝐴)𝐵 ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) |
4 | 1, 3 | bitrd 278 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) |
5 | df-rex 3070 | . 2 ⊢ (∃𝑢 ∈ 𝐴 𝑢𝑅𝐵 ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵)) | |
6 | 4, 5 | bitr4di 288 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑢𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1780 ∈ wcel 2105 ∃wrex 3069 class class class wbr 5149 dom cdm 5677 ↾ cres 5679 ≀ ccoss 37347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-coss 37585 |
This theorem is referenced by: eldm1cossres2 37635 |
Copyright terms: Public domain | W3C validator |