Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldm1cossres Structured version   Visualization version   GIF version

Theorem eldm1cossres 36224
Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.)
Assertion
Ref Expression
eldm1cossres (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢𝐴 𝑢𝑅𝐵))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝑅   𝑢,𝑉

Proof of Theorem eldm1cossres
StepHypRef Expression
1 eldmcoss 36222 . . 3 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢 𝑢(𝑅𝐴)𝐵))
2 brres 5833 . . . 4 (𝐵𝑉 → (𝑢(𝑅𝐴)𝐵 ↔ (𝑢𝐴𝑢𝑅𝐵)))
32exbidv 1928 . . 3 (𝐵𝑉 → (∃𝑢 𝑢(𝑅𝐴)𝐵 ↔ ∃𝑢(𝑢𝐴𝑢𝑅𝐵)))
41, 3bitrd 282 . 2 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢(𝑢𝐴𝑢𝑅𝐵)))
5 df-rex 3060 . 2 (∃𝑢𝐴 𝑢𝑅𝐵 ↔ ∃𝑢(𝑢𝐴𝑢𝑅𝐵))
64, 5bitr4di 292 1 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢𝐴 𝑢𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wex 1786  wcel 2114  wrex 3055   class class class wbr 5031  dom cdm 5526  cres 5528  ccoss 35979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-ral 3059  df-rex 3060  df-v 3401  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-br 5032  df-opab 5094  df-xp 5532  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-coss 36183
This theorem is referenced by:  eldm1cossres2  36225
  Copyright terms: Public domain W3C validator