| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldm1cossres | Structured version Visualization version GIF version | ||
| Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
| Ref | Expression |
|---|---|
| eldm1cossres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑢𝑅𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmcoss 38474 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 𝑢(𝑅 ↾ 𝐴)𝐵)) | |
| 2 | brres 5932 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑢(𝑅 ↾ 𝐴)𝐵 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) | |
| 3 | 2 | exbidv 1922 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑢 𝑢(𝑅 ↾ 𝐴)𝐵 ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) |
| 4 | 1, 3 | bitrd 279 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) |
| 5 | df-rex 3055 | . 2 ⊢ (∃𝑢 ∈ 𝐴 𝑢𝑅𝐵 ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵)) | |
| 6 | 4, 5 | bitr4di 289 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑢𝑅𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2110 ∃wrex 3054 class class class wbr 5089 dom cdm 5614 ↾ cres 5616 ≀ ccoss 38194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-coss 38427 |
| This theorem is referenced by: eldm1cossres2 38477 |
| Copyright terms: Public domain | W3C validator |