![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldm1cossres | Structured version Visualization version GIF version |
Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
Ref | Expression |
---|---|
eldm1cossres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑢𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmcoss 36966 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 𝑢(𝑅 ↾ 𝐴)𝐵)) | |
2 | brres 5945 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑢(𝑅 ↾ 𝐴)𝐵 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) | |
3 | 2 | exbidv 1925 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑢 𝑢(𝑅 ↾ 𝐴)𝐵 ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) |
4 | 1, 3 | bitrd 279 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) |
5 | df-rex 3071 | . 2 ⊢ (∃𝑢 ∈ 𝐴 𝑢𝑅𝐵 ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵)) | |
6 | 4, 5 | bitr4di 289 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑢𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 ∃wrex 3070 class class class wbr 5106 dom cdm 5634 ↾ cres 5636 ≀ ccoss 36680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-coss 36919 |
This theorem is referenced by: eldm1cossres2 36969 |
Copyright terms: Public domain | W3C validator |