Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldm1cossres Structured version   Visualization version   GIF version

Theorem eldm1cossres 37633
Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.)
Assertion
Ref Expression
eldm1cossres (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢𝐴 𝑢𝑅𝐵))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝑅   𝑢,𝑉

Proof of Theorem eldm1cossres
StepHypRef Expression
1 eldmcoss 37631 . . 3 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢 𝑢(𝑅𝐴)𝐵))
2 brres 5987 . . . 4 (𝐵𝑉 → (𝑢(𝑅𝐴)𝐵 ↔ (𝑢𝐴𝑢𝑅𝐵)))
32exbidv 1922 . . 3 (𝐵𝑉 → (∃𝑢 𝑢(𝑅𝐴)𝐵 ↔ ∃𝑢(𝑢𝐴𝑢𝑅𝐵)))
41, 3bitrd 278 . 2 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢(𝑢𝐴𝑢𝑅𝐵)))
5 df-rex 3069 . 2 (∃𝑢𝐴 𝑢𝑅𝐵 ↔ ∃𝑢(𝑢𝐴𝑢𝑅𝐵))
64, 5bitr4di 288 1 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢𝐴 𝑢𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wex 1779  wcel 2104  wrex 3068   class class class wbr 5147  dom cdm 5675  cres 5677  ccoss 37346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-coss 37584
This theorem is referenced by:  eldm1cossres2  37634
  Copyright terms: Public domain W3C validator