| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldm1cossres | Structured version Visualization version GIF version | ||
| Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
| Ref | Expression |
|---|---|
| eldm1cossres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑢𝑅𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmcoss 38418 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 𝑢(𝑅 ↾ 𝐴)𝐵)) | |
| 2 | brres 5984 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑢(𝑅 ↾ 𝐴)𝐵 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) | |
| 3 | 2 | exbidv 1920 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑢 𝑢(𝑅 ↾ 𝐴)𝐵 ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) |
| 4 | 1, 3 | bitrd 279 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵))) |
| 5 | df-rex 3060 | . 2 ⊢ (∃𝑢 ∈ 𝐴 𝑢𝑅𝐵 ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝐵)) | |
| 6 | 4, 5 | bitr4di 289 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑢𝑅𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 ∃wrex 3059 class class class wbr 5123 dom cdm 5665 ↾ cres 5667 ≀ ccoss 38141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-coss 38371 |
| This theorem is referenced by: eldm1cossres2 38421 |
| Copyright terms: Public domain | W3C validator |