Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldm4 | Structured version Visualization version GIF version |
Description: Elementhood in a domain. (Contributed by Peter Mazsa, 24-Oct-2018.) |
Ref | Expression |
---|---|
eldm4 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝑦 ∈ [𝐴]𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 5739 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝐴𝑅𝑦)) | |
2 | elecALTV 35960 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V) → (𝑦 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑦)) | |
3 | 2 | elvd 3417 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑦)) |
4 | 3 | exbidv 1923 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑦 𝑦 ∈ [𝐴]𝑅 ↔ ∃𝑦 𝐴𝑅𝑦)) |
5 | 1, 4 | bitr4d 285 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝑦 ∈ [𝐴]𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∃wex 1782 ∈ wcel 2112 Vcvv 3410 class class class wbr 5033 dom cdm 5525 [cec 8298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-opab 5096 df-xp 5531 df-cnv 5533 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ec 8302 |
This theorem is referenced by: eldmres2 35965 |
Copyright terms: Public domain | W3C validator |