Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldm4 Structured version   Visualization version   GIF version

Theorem eldm4 38230
Description: Elementhood in a domain. (Contributed by Peter Mazsa, 24-Oct-2018.)
Assertion
Ref Expression
eldm4 (𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝑦 ∈ [𝐴]𝑅))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑉

Proof of Theorem eldm4
StepHypRef Expression
1 eldmg 5923 . 2 (𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝐴𝑅𝑦))
2 elecALTV 38222 . . . 4 ((𝐴𝑉𝑦 ∈ V) → (𝑦 ∈ [𝐴]𝑅𝐴𝑅𝑦))
32elvd 3494 . . 3 (𝐴𝑉 → (𝑦 ∈ [𝐴]𝑅𝐴𝑅𝑦))
43exbidv 1920 . 2 (𝐴𝑉 → (∃𝑦 𝑦 ∈ [𝐴]𝑅 ↔ ∃𝑦 𝐴𝑅𝑦))
51, 4bitr4d 282 1 (𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝑦 ∈ [𝐴]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1777  wcel 2108  Vcvv 3488   class class class wbr 5166  dom cdm 5700  [cec 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765
This theorem is referenced by:  eldmres2  38231
  Copyright terms: Public domain W3C validator