Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldm4 Structured version   Visualization version   GIF version

Theorem eldm4 36336
Description: Elementhood in a domain. (Contributed by Peter Mazsa, 24-Oct-2018.)
Assertion
Ref Expression
eldm4 (𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝑦 ∈ [𝐴]𝑅))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑉

Proof of Theorem eldm4
StepHypRef Expression
1 eldmg 5796 . 2 (𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝐴𝑅𝑦))
2 elecALTV 36332 . . . 4 ((𝐴𝑉𝑦 ∈ V) → (𝑦 ∈ [𝐴]𝑅𝐴𝑅𝑦))
32elvd 3429 . . 3 (𝐴𝑉 → (𝑦 ∈ [𝐴]𝑅𝐴𝑅𝑦))
43exbidv 1925 . 2 (𝐴𝑉 → (∃𝑦 𝑦 ∈ [𝐴]𝑅 ↔ ∃𝑦 𝐴𝑅𝑦))
51, 4bitr4d 281 1 (𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝑦 ∈ [𝐴]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1783  wcel 2108  Vcvv 3422   class class class wbr 5070  dom cdm 5580  [cec 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458
This theorem is referenced by:  eldmres2  36337
  Copyright terms: Public domain W3C validator