| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldm4 | Structured version Visualization version GIF version | ||
| Description: Elementhood in a domain. (Contributed by Peter Mazsa, 24-Oct-2018.) |
| Ref | Expression |
|---|---|
| eldm4 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝑦 ∈ [𝐴]𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmg 5862 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝐴𝑅𝑦)) | |
| 2 | elecALTV 38255 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V) → (𝑦 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑦)) | |
| 3 | 2 | elvd 3453 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑦)) |
| 4 | 3 | exbidv 1921 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑦 𝑦 ∈ [𝐴]𝑅 ↔ ∃𝑦 𝐴𝑅𝑦)) |
| 5 | 1, 4 | bitr4d 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝑦 ∈ [𝐴]𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 dom cdm 5638 [cec 8669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 |
| This theorem is referenced by: eldmres2 38264 |
| Copyright terms: Public domain | W3C validator |