![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldm4 | Structured version Visualization version GIF version |
Description: Elementhood in a domain. (Contributed by Peter Mazsa, 24-Oct-2018.) |
Ref | Expression |
---|---|
eldm4 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝑦 ∈ [𝐴]𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 5898 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝐴𝑅𝑦)) | |
2 | elecALTV 37601 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V) → (𝑦 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑦)) | |
3 | 2 | elvd 3480 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑦)) |
4 | 3 | exbidv 1923 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑦 𝑦 ∈ [𝐴]𝑅 ↔ ∃𝑦 𝐴𝑅𝑦)) |
5 | 1, 4 | bitr4d 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝑦 ∈ [𝐴]𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1780 ∈ wcel 2105 Vcvv 3473 class class class wbr 5148 dom cdm 5676 [cec 8707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ec 8711 |
This theorem is referenced by: eldmres2 37610 |
Copyright terms: Public domain | W3C validator |