Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldm4 Structured version   Visualization version   GIF version

Theorem eldm4 36409
Description: Elementhood in a domain. (Contributed by Peter Mazsa, 24-Oct-2018.)
Assertion
Ref Expression
eldm4 (𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝑦 ∈ [𝐴]𝑅))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑉

Proof of Theorem eldm4
StepHypRef Expression
1 eldmg 5807 . 2 (𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝐴𝑅𝑦))
2 elecALTV 36405 . . . 4 ((𝐴𝑉𝑦 ∈ V) → (𝑦 ∈ [𝐴]𝑅𝐴𝑅𝑦))
32elvd 3439 . . 3 (𝐴𝑉 → (𝑦 ∈ [𝐴]𝑅𝐴𝑅𝑦))
43exbidv 1924 . 2 (𝐴𝑉 → (∃𝑦 𝑦 ∈ [𝐴]𝑅 ↔ ∃𝑦 𝐴𝑅𝑦))
51, 4bitr4d 281 1 (𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑦 𝑦 ∈ [𝐴]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1782  wcel 2106  Vcvv 3432   class class class wbr 5074  dom cdm 5589  [cec 8496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500
This theorem is referenced by:  eldmres2  36410
  Copyright terms: Public domain W3C validator