| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plycpn | Structured version Visualization version GIF version | ||
| Description: Polynomials are smooth. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| plycpn | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ ∩ ran (𝓑C𝑛‘ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plyf 26160 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → 𝐹:ℂ⟶ℂ) |
| 3 | cnex 11215 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 4 | 3, 3 | fpm 8894 | . . . . . 6 ⊢ (𝐹:ℂ⟶ℂ → 𝐹 ∈ (ℂ ↑pm ℂ)) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈ (ℂ ↑pm ℂ)) |
| 6 | dvnply 26253 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘ℂ)) | |
| 7 | plycn 26223 | . . . . . . 7 ⊢ (((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘ℂ) → ((ℂ D𝑛 𝐹)‘𝑛) ∈ (ℂ–cn→ℂ)) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑛) ∈ (ℂ–cn→ℂ)) |
| 9 | 2 | fdmd 6721 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → dom 𝐹 = ℂ) |
| 10 | 9 | oveq1d 7425 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → (dom 𝐹–cn→ℂ) = (ℂ–cn→ℂ)) |
| 11 | 8, 10 | eleqtrrd 2838 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑛) ∈ (dom 𝐹–cn→ℂ)) |
| 12 | ssidd 3987 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → ℂ ⊆ ℂ) | |
| 13 | elcpn 25893 | . . . . . 6 ⊢ ((ℂ ⊆ ℂ ∧ 𝑛 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑛) ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ ((ℂ D𝑛 𝐹)‘𝑛) ∈ (dom 𝐹–cn→ℂ)))) | |
| 14 | 12, 13 | sylan 580 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑛) ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ ((ℂ D𝑛 𝐹)‘𝑛) ∈ (dom 𝐹–cn→ℂ)))) |
| 15 | 5, 11, 14 | mpbir2and 713 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑛)) |
| 16 | 15 | ralrimiva 3133 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∀𝑛 ∈ ℕ0 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑛)) |
| 17 | ssid 3986 | . . . 4 ⊢ ℂ ⊆ ℂ | |
| 18 | fncpn 25892 | . . . 4 ⊢ (ℂ ⊆ ℂ → (𝓑C𝑛‘ℂ) Fn ℕ0) | |
| 19 | eleq2 2824 | . . . . 5 ⊢ (𝑥 = ((𝓑C𝑛‘ℂ)‘𝑛) → (𝐹 ∈ 𝑥 ↔ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑛))) | |
| 20 | 19 | ralrn 7083 | . . . 4 ⊢ ((𝓑C𝑛‘ℂ) Fn ℕ0 → (∀𝑥 ∈ ran (𝓑C𝑛‘ℂ)𝐹 ∈ 𝑥 ↔ ∀𝑛 ∈ ℕ0 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑛))) |
| 21 | 17, 18, 20 | mp2b 10 | . . 3 ⊢ (∀𝑥 ∈ ran (𝓑C𝑛‘ℂ)𝐹 ∈ 𝑥 ↔ ∀𝑛 ∈ ℕ0 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑛)) |
| 22 | 16, 21 | sylibr 234 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∀𝑥 ∈ ran (𝓑C𝑛‘ℂ)𝐹 ∈ 𝑥) |
| 23 | elintg 4935 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 ∈ ∩ ran (𝓑C𝑛‘ℂ) ↔ ∀𝑥 ∈ ran (𝓑C𝑛‘ℂ)𝐹 ∈ 𝑥)) | |
| 24 | 22, 23 | mpbird 257 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ ∩ ran (𝓑C𝑛‘ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 ⊆ wss 3931 ∩ cint 4927 dom cdm 5659 ran crn 5660 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑pm cpm 8846 ℂcc 11132 ℕ0cn0 12506 –cn→ccncf 24825 D𝑛 cdvn 25822 𝓑C𝑛ccpn 25823 Polycply 26146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-rlim 15510 df-sum 15708 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-mulg 19056 df-subg 19111 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-subrng 20511 df-subrg 20535 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-haus 23258 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-xms 24264 df-ms 24265 df-tms 24266 df-cncf 24827 df-0p 25628 df-limc 25824 df-dv 25825 df-dvn 25826 df-cpn 25827 df-ply 26150 df-coe 26152 df-dgr 26153 |
| This theorem is referenced by: aalioulem3 26299 |
| Copyright terms: Public domain | W3C validator |