| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plycpn | Structured version Visualization version GIF version | ||
| Description: Polynomials are smooth. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| plycpn | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ ∩ ran (𝓑C𝑛‘ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plyf 26101 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → 𝐹:ℂ⟶ℂ) |
| 3 | cnex 11090 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 4 | 3, 3 | fpm 8802 | . . . . . 6 ⊢ (𝐹:ℂ⟶ℂ → 𝐹 ∈ (ℂ ↑pm ℂ)) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈ (ℂ ↑pm ℂ)) |
| 6 | dvnply 26194 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘ℂ)) | |
| 7 | plycn 26164 | . . . . . . 7 ⊢ (((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘ℂ) → ((ℂ D𝑛 𝐹)‘𝑛) ∈ (ℂ–cn→ℂ)) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑛) ∈ (ℂ–cn→ℂ)) |
| 9 | 2 | fdmd 6662 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → dom 𝐹 = ℂ) |
| 10 | 9 | oveq1d 7364 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → (dom 𝐹–cn→ℂ) = (ℂ–cn→ℂ)) |
| 11 | 8, 10 | eleqtrrd 2831 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑛) ∈ (dom 𝐹–cn→ℂ)) |
| 12 | ssidd 3959 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → ℂ ⊆ ℂ) | |
| 13 | elcpn 25834 | . . . . . 6 ⊢ ((ℂ ⊆ ℂ ∧ 𝑛 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑛) ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ ((ℂ D𝑛 𝐹)‘𝑛) ∈ (dom 𝐹–cn→ℂ)))) | |
| 14 | 12, 13 | sylan 580 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑛) ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ ((ℂ D𝑛 𝐹)‘𝑛) ∈ (dom 𝐹–cn→ℂ)))) |
| 15 | 5, 11, 14 | mpbir2and 713 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑛)) |
| 16 | 15 | ralrimiva 3121 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∀𝑛 ∈ ℕ0 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑛)) |
| 17 | ssid 3958 | . . . 4 ⊢ ℂ ⊆ ℂ | |
| 18 | fncpn 25833 | . . . 4 ⊢ (ℂ ⊆ ℂ → (𝓑C𝑛‘ℂ) Fn ℕ0) | |
| 19 | eleq2 2817 | . . . . 5 ⊢ (𝑥 = ((𝓑C𝑛‘ℂ)‘𝑛) → (𝐹 ∈ 𝑥 ↔ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑛))) | |
| 20 | 19 | ralrn 7022 | . . . 4 ⊢ ((𝓑C𝑛‘ℂ) Fn ℕ0 → (∀𝑥 ∈ ran (𝓑C𝑛‘ℂ)𝐹 ∈ 𝑥 ↔ ∀𝑛 ∈ ℕ0 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑛))) |
| 21 | 17, 18, 20 | mp2b 10 | . . 3 ⊢ (∀𝑥 ∈ ran (𝓑C𝑛‘ℂ)𝐹 ∈ 𝑥 ↔ ∀𝑛 ∈ ℕ0 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑛)) |
| 22 | 16, 21 | sylibr 234 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∀𝑥 ∈ ran (𝓑C𝑛‘ℂ)𝐹 ∈ 𝑥) |
| 23 | elintg 4904 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 ∈ ∩ ran (𝓑C𝑛‘ℂ) ↔ ∀𝑥 ∈ ran (𝓑C𝑛‘ℂ)𝐹 ∈ 𝑥)) | |
| 24 | 22, 23 | mpbird 257 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ ∩ ran (𝓑C𝑛‘ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 ∩ cint 4896 dom cdm 5619 ran crn 5620 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ↑pm cpm 8754 ℂcc 11007 ℕ0cn0 12384 –cn→ccncf 24767 D𝑛 cdvn 25763 𝓑C𝑛ccpn 25764 Polycply 26087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-mulg 18947 df-subg 19002 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-subrng 20431 df-subrg 20455 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-0p 25569 df-limc 25765 df-dv 25766 df-dvn 25767 df-cpn 25768 df-ply 26091 df-coe 26093 df-dgr 26094 |
| This theorem is referenced by: aalioulem3 26240 |
| Copyright terms: Public domain | W3C validator |