![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plycpn | Structured version Visualization version GIF version |
Description: Polynomials are smooth. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
plycpn | β’ (πΉ β (Polyβπ) β πΉ β β© ran (πCπββ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyf 26145 | . . . . . . 7 β’ (πΉ β (Polyβπ) β πΉ:ββΆβ) | |
2 | 1 | adantr 480 | . . . . . 6 β’ ((πΉ β (Polyβπ) β§ π β β0) β πΉ:ββΆβ) |
3 | cnex 11220 | . . . . . . 7 β’ β β V | |
4 | 3, 3 | fpm 8894 | . . . . . 6 β’ (πΉ:ββΆβ β πΉ β (β βpm β)) |
5 | 2, 4 | syl 17 | . . . . 5 β’ ((πΉ β (Polyβπ) β§ π β β0) β πΉ β (β βpm β)) |
6 | dvnply 26236 | . . . . . . 7 β’ ((πΉ β (Polyβπ) β§ π β β0) β ((β Dπ πΉ)βπ) β (Polyββ)) | |
7 | plycn 26208 | . . . . . . 7 β’ (((β Dπ πΉ)βπ) β (Polyββ) β ((β Dπ πΉ)βπ) β (ββcnββ)) | |
8 | 6, 7 | syl 17 | . . . . . 6 β’ ((πΉ β (Polyβπ) β§ π β β0) β ((β Dπ πΉ)βπ) β (ββcnββ)) |
9 | 2 | fdmd 6733 | . . . . . . 7 β’ ((πΉ β (Polyβπ) β§ π β β0) β dom πΉ = β) |
10 | 9 | oveq1d 7435 | . . . . . 6 β’ ((πΉ β (Polyβπ) β§ π β β0) β (dom πΉβcnββ) = (ββcnββ)) |
11 | 8, 10 | eleqtrrd 2832 | . . . . 5 β’ ((πΉ β (Polyβπ) β§ π β β0) β ((β Dπ πΉ)βπ) β (dom πΉβcnββ)) |
12 | ssidd 4003 | . . . . . 6 β’ (πΉ β (Polyβπ) β β β β) | |
13 | elcpn 25877 | . . . . . 6 β’ ((β β β β§ π β β0) β (πΉ β ((πCπββ)βπ) β (πΉ β (β βpm β) β§ ((β Dπ πΉ)βπ) β (dom πΉβcnββ)))) | |
14 | 12, 13 | sylan 579 | . . . . 5 β’ ((πΉ β (Polyβπ) β§ π β β0) β (πΉ β ((πCπββ)βπ) β (πΉ β (β βpm β) β§ ((β Dπ πΉ)βπ) β (dom πΉβcnββ)))) |
15 | 5, 11, 14 | mpbir2and 712 | . . . 4 β’ ((πΉ β (Polyβπ) β§ π β β0) β πΉ β ((πCπββ)βπ)) |
16 | 15 | ralrimiva 3143 | . . 3 β’ (πΉ β (Polyβπ) β βπ β β0 πΉ β ((πCπββ)βπ)) |
17 | ssid 4002 | . . . 4 β’ β β β | |
18 | fncpn 25876 | . . . 4 β’ (β β β β (πCπββ) Fn β0) | |
19 | eleq2 2818 | . . . . 5 β’ (π₯ = ((πCπββ)βπ) β (πΉ β π₯ β πΉ β ((πCπββ)βπ))) | |
20 | 19 | ralrn 7098 | . . . 4 β’ ((πCπββ) Fn β0 β (βπ₯ β ran (πCπββ)πΉ β π₯ β βπ β β0 πΉ β ((πCπββ)βπ))) |
21 | 17, 18, 20 | mp2b 10 | . . 3 β’ (βπ₯ β ran (πCπββ)πΉ β π₯ β βπ β β0 πΉ β ((πCπββ)βπ)) |
22 | 16, 21 | sylibr 233 | . 2 β’ (πΉ β (Polyβπ) β βπ₯ β ran (πCπββ)πΉ β π₯) |
23 | elintg 4957 | . 2 β’ (πΉ β (Polyβπ) β (πΉ β β© ran (πCπββ) β βπ₯ β ran (πCπββ)πΉ β π₯)) | |
24 | 22, 23 | mpbird 257 | 1 β’ (πΉ β (Polyβπ) β πΉ β β© ran (πCπββ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β wcel 2099 βwral 3058 β wss 3947 β© cint 4949 dom cdm 5678 ran crn 5679 Fn wfn 6543 βΆwf 6544 βcfv 6548 (class class class)co 7420 βpm cpm 8846 βcc 11137 β0cn0 12503 βcnβccncf 24809 Dπ cdvn 25806 πCπccpn 25807 Polycply 26131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-fi 9435 df-sup 9466 df-inf 9467 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-icc 13364 df-fz 13518 df-fzo 13661 df-fl 13790 df-seq 14000 df-exp 14060 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-clim 15465 df-rlim 15466 df-sum 15666 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-hom 17257 df-cco 17258 df-rest 17404 df-topn 17405 df-0g 17423 df-gsum 17424 df-topgen 17425 df-pt 17426 df-prds 17429 df-xrs 17484 df-qtop 17489 df-imas 17490 df-xps 17492 df-mre 17566 df-mrc 17567 df-acs 17569 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-submnd 18741 df-grp 18893 df-minusg 18894 df-mulg 19024 df-subg 19078 df-cntz 19268 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-cring 20176 df-subrng 20483 df-subrg 20508 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22862 df-cld 22936 df-ntr 22937 df-cls 22938 df-nei 23015 df-lp 23053 df-perf 23054 df-cn 23144 df-cnp 23145 df-haus 23232 df-tx 23479 df-hmeo 23672 df-fil 23763 df-fm 23855 df-flim 23856 df-flf 23857 df-xms 24239 df-ms 24240 df-tms 24241 df-cncf 24811 df-0p 25612 df-limc 25808 df-dv 25809 df-dvn 25810 df-cpn 25811 df-ply 26135 df-coe 26137 df-dgr 26138 |
This theorem is referenced by: aalioulem3 26282 |
Copyright terms: Public domain | W3C validator |