MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmindif2 Structured version   Visualization version   GIF version

Theorem onmindif2 7794
Description: The minimum of a class of ordinal numbers is less than the minimum of that class with its minimum removed. (Contributed by NM, 20-Nov-2003.)
Assertion
Ref Expression
onmindif2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 (𝐴 ∖ { 𝐴}))

Proof of Theorem onmindif2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsn 4790 . . . 4 (𝑥 ∈ (𝐴 ∖ { 𝐴}) ↔ (𝑥𝐴𝑥 𝐴))
2 onnmin 7785 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ 𝑥𝐴) → ¬ 𝑥 𝐴)
32adantlr 713 . . . . . . . . 9 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ 𝑥 𝐴)
4 oninton 7782 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5 ssel2 3977 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
65adantlr 713 . . . . . . . . . 10 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ On)
7 ontri1 6398 . . . . . . . . . . 11 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → ( 𝐴𝑥 ↔ ¬ 𝑥 𝐴))
8 onsseleq 6405 . . . . . . . . . . 11 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → ( 𝐴𝑥 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
97, 8bitr3d 280 . . . . . . . . . 10 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 𝐴 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
104, 6, 9syl2an2r 683 . . . . . . . . 9 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝑥 𝐴 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
113, 10mpbid 231 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ( 𝐴𝑥 𝐴 = 𝑥))
1211ord 862 . . . . . . 7 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝐴𝑥 𝐴 = 𝑥))
13 eqcom 2739 . . . . . . 7 ( 𝐴 = 𝑥𝑥 = 𝐴)
1412, 13imbitrdi 250 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝐴𝑥𝑥 = 𝐴))
1514necon1ad 2957 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 𝐴 𝐴𝑥))
1615expimpd 454 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ((𝑥𝐴𝑥 𝐴) → 𝐴𝑥))
171, 16biimtrid 241 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → (𝑥 ∈ (𝐴 ∖ { 𝐴}) → 𝐴𝑥))
1817ralrimiv 3145 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥)
19 intex 5337 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
20 elintg 4958 . . . 4 ( 𝐴 ∈ V → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2119, 20sylbi 216 . . 3 (𝐴 ≠ ∅ → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2221adantl 482 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2318, 22mpbird 256 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 (𝐴 ∖ { 𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  wral 3061  Vcvv 3474  cdif 3945  wss 3948  c0 4322  {csn 4628   cint 4950  Oncon0 6364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367  df-on 6368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator