MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmindif2 Structured version   Visualization version   GIF version

Theorem onmindif2 7699
Description: The minimum of a class of ordinal numbers is less than the minimum of that class with its minimum removed. (Contributed by NM, 20-Nov-2003.)
Assertion
Ref Expression
onmindif2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 (𝐴 ∖ { 𝐴}))

Proof of Theorem onmindif2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsn 4732 . . . 4 (𝑥 ∈ (𝐴 ∖ { 𝐴}) ↔ (𝑥𝐴𝑥 𝐴))
2 onnmin 7690 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ 𝑥𝐴) → ¬ 𝑥 𝐴)
32adantlr 712 . . . . . . . . 9 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ 𝑥 𝐴)
4 oninton 7687 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5 ssel2 3926 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
65adantlr 712 . . . . . . . . . 10 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ On)
7 ontri1 6323 . . . . . . . . . . 11 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → ( 𝐴𝑥 ↔ ¬ 𝑥 𝐴))
8 onsseleq 6330 . . . . . . . . . . 11 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → ( 𝐴𝑥 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
97, 8bitr3d 280 . . . . . . . . . 10 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 𝐴 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
104, 6, 9syl2an2r 682 . . . . . . . . 9 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝑥 𝐴 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
113, 10mpbid 231 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ( 𝐴𝑥 𝐴 = 𝑥))
1211ord 861 . . . . . . 7 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝐴𝑥 𝐴 = 𝑥))
13 eqcom 2744 . . . . . . 7 ( 𝐴 = 𝑥𝑥 = 𝐴)
1412, 13syl6ib 250 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝐴𝑥𝑥 = 𝐴))
1514necon1ad 2958 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 𝐴 𝐴𝑥))
1615expimpd 454 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ((𝑥𝐴𝑥 𝐴) → 𝐴𝑥))
171, 16biimtrid 241 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → (𝑥 ∈ (𝐴 ∖ { 𝐴}) → 𝐴𝑥))
1817ralrimiv 3139 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥)
19 intex 5276 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
20 elintg 4900 . . . 4 ( 𝐴 ∈ V → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2119, 20sylbi 216 . . 3 (𝐴 ≠ ∅ → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2221adantl 482 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2318, 22mpbird 256 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 (𝐴 ∖ { 𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1540  wcel 2105  wne 2941  wral 3062  Vcvv 3441  cdif 3894  wss 3897  c0 4267  {csn 4571   cint 4892  Oncon0 6289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-br 5088  df-opab 5150  df-tr 5205  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-ord 6292  df-on 6293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator