Step | Hyp | Ref
| Expression |
1 | | eldifsn 4720 |
. . . 4
⊢ (𝑥 ∈ (𝐴 ∖ {∩ 𝐴}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∩ 𝐴)) |
2 | | onnmin 7648 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ ∩ 𝐴) |
3 | 2 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ ∩ 𝐴) |
4 | | oninton 7645 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴
∈ On) |
5 | | ssel2 3916 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) |
6 | 5 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) |
7 | | ontri1 6300 |
. . . . . . . . . . 11
⊢ ((∩ 𝐴
∈ On ∧ 𝑥 ∈
On) → (∩ 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ∩ 𝐴)) |
8 | | onsseleq 6307 |
. . . . . . . . . . 11
⊢ ((∩ 𝐴
∈ On ∧ 𝑥 ∈
On) → (∩ 𝐴 ⊆ 𝑥 ↔ (∩ 𝐴 ∈ 𝑥 ∨ ∩ 𝐴 = 𝑥))) |
9 | 7, 8 | bitr3d 280 |
. . . . . . . . . 10
⊢ ((∩ 𝐴
∈ On ∧ 𝑥 ∈
On) → (¬ 𝑥 ∈
∩ 𝐴 ↔ (∩ 𝐴 ∈ 𝑥 ∨ ∩ 𝐴 = 𝑥))) |
10 | 4, 6, 9 | syl2an2r 682 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ ∩ 𝐴 ↔ (∩ 𝐴
∈ 𝑥 ∨ ∩ 𝐴 =
𝑥))) |
11 | 3, 10 | mpbid 231 |
. . . . . . . 8
⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → (∩ 𝐴 ∈ 𝑥 ∨ ∩ 𝐴 = 𝑥)) |
12 | 11 | ord 861 |
. . . . . . 7
⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → (¬ ∩
𝐴 ∈ 𝑥 → ∩ 𝐴 = 𝑥)) |
13 | | eqcom 2745 |
. . . . . . 7
⊢ (∩ 𝐴 =
𝑥 ↔ 𝑥 = ∩ 𝐴) |
14 | 12, 13 | syl6ib 250 |
. . . . . 6
⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → (¬ ∩
𝐴 ∈ 𝑥 → 𝑥 = ∩ 𝐴)) |
15 | 14 | necon1ad 2960 |
. . . . 5
⊢ (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≠ ∩ 𝐴 → ∩ 𝐴
∈ 𝑥)) |
16 | 15 | expimpd 454 |
. . . 4
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∩ 𝐴) → ∩ 𝐴
∈ 𝑥)) |
17 | 1, 16 | syl5bi 241 |
. . 3
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → (𝑥 ∈ (𝐴 ∖ {∩ 𝐴}) → ∩ 𝐴
∈ 𝑥)) |
18 | 17 | ralrimiv 3102 |
. 2
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) →
∀𝑥 ∈ (𝐴 ∖ {∩ 𝐴})∩ 𝐴 ∈ 𝑥) |
19 | | intex 5261 |
. . . 4
⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴
∈ V) |
20 | | elintg 4887 |
. . . 4
⊢ (∩ 𝐴
∈ V → (∩ 𝐴 ∈ ∩ (𝐴 ∖ {∩ 𝐴})
↔ ∀𝑥 ∈
(𝐴 ∖ {∩ 𝐴})∩ 𝐴 ∈ 𝑥)) |
21 | 19, 20 | sylbi 216 |
. . 3
⊢ (𝐴 ≠ ∅ → (∩ 𝐴
∈ ∩ (𝐴 ∖ {∩ 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ {∩ 𝐴})∩
𝐴 ∈ 𝑥)) |
22 | 21 | adantl 482 |
. 2
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → (∩ 𝐴
∈ ∩ (𝐴 ∖ {∩ 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ {∩ 𝐴})∩
𝐴 ∈ 𝑥)) |
23 | 18, 22 | mpbird 256 |
1
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴
∈ ∩ (𝐴 ∖ {∩ 𝐴})) |