MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmindif2 Structured version   Visualization version   GIF version

Theorem onmindif2 7749
Description: The minimum of a class of ordinal numbers is less than the minimum of that class with its minimum removed. (Contributed by NM, 20-Nov-2003.)
Assertion
Ref Expression
onmindif2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 (𝐴 ∖ { 𝐴}))

Proof of Theorem onmindif2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsn 4739 . . . 4 (𝑥 ∈ (𝐴 ∖ { 𝐴}) ↔ (𝑥𝐴𝑥 𝐴))
2 onnmin 7740 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ 𝑥𝐴) → ¬ 𝑥 𝐴)
32adantlr 715 . . . . . . . . 9 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ 𝑥 𝐴)
4 oninton 7737 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5 ssel2 3925 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
65adantlr 715 . . . . . . . . . 10 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ On)
7 ontri1 6348 . . . . . . . . . . 11 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → ( 𝐴𝑥 ↔ ¬ 𝑥 𝐴))
8 onsseleq 6355 . . . . . . . . . . 11 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → ( 𝐴𝑥 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
97, 8bitr3d 281 . . . . . . . . . 10 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 𝐴 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
104, 6, 9syl2an2r 685 . . . . . . . . 9 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝑥 𝐴 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
113, 10mpbid 232 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ( 𝐴𝑥 𝐴 = 𝑥))
1211ord 864 . . . . . . 7 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝐴𝑥 𝐴 = 𝑥))
13 eqcom 2740 . . . . . . 7 ( 𝐴 = 𝑥𝑥 = 𝐴)
1412, 13imbitrdi 251 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝐴𝑥𝑥 = 𝐴))
1514necon1ad 2946 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 𝐴 𝐴𝑥))
1615expimpd 453 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ((𝑥𝐴𝑥 𝐴) → 𝐴𝑥))
171, 16biimtrid 242 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → (𝑥 ∈ (𝐴 ∖ { 𝐴}) → 𝐴𝑥))
1817ralrimiv 3124 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥)
19 intex 5286 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
20 elintg 4907 . . . 4 ( 𝐴 ∈ V → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2119, 20sylbi 217 . . 3 (𝐴 ≠ ∅ → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2221adantl 481 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2318, 22mpbird 257 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 (𝐴 ∖ { 𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  wral 3048  Vcvv 3437  cdif 3895  wss 3898  c0 4282  {csn 4577   cint 4899  Oncon0 6314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-ord 6317  df-on 6318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator