MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmindif2 Structured version   Visualization version   GIF version

Theorem onmindif2 7826
Description: The minimum of a class of ordinal numbers is less than the minimum of that class with its minimum removed. (Contributed by NM, 20-Nov-2003.)
Assertion
Ref Expression
onmindif2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 (𝐴 ∖ { 𝐴}))

Proof of Theorem onmindif2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsn 4790 . . . 4 (𝑥 ∈ (𝐴 ∖ { 𝐴}) ↔ (𝑥𝐴𝑥 𝐴))
2 onnmin 7817 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ 𝑥𝐴) → ¬ 𝑥 𝐴)
32adantlr 715 . . . . . . . . 9 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ 𝑥 𝐴)
4 oninton 7814 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5 ssel2 3989 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
65adantlr 715 . . . . . . . . . 10 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ On)
7 ontri1 6419 . . . . . . . . . . 11 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → ( 𝐴𝑥 ↔ ¬ 𝑥 𝐴))
8 onsseleq 6426 . . . . . . . . . . 11 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → ( 𝐴𝑥 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
97, 8bitr3d 281 . . . . . . . . . 10 (( 𝐴 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 𝐴 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
104, 6, 9syl2an2r 685 . . . . . . . . 9 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝑥 𝐴 ↔ ( 𝐴𝑥 𝐴 = 𝑥)))
113, 10mpbid 232 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ( 𝐴𝑥 𝐴 = 𝑥))
1211ord 864 . . . . . . 7 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝐴𝑥 𝐴 = 𝑥))
13 eqcom 2741 . . . . . . 7 ( 𝐴 = 𝑥𝑥 = 𝐴)
1412, 13imbitrdi 251 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝐴𝑥𝑥 = 𝐴))
1514necon1ad 2954 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 𝐴 𝐴𝑥))
1615expimpd 453 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ((𝑥𝐴𝑥 𝐴) → 𝐴𝑥))
171, 16biimtrid 242 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → (𝑥 ∈ (𝐴 ∖ { 𝐴}) → 𝐴𝑥))
1817ralrimiv 3142 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥)
19 intex 5349 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
20 elintg 4958 . . . 4 ( 𝐴 ∈ V → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2119, 20sylbi 217 . . 3 (𝐴 ≠ ∅ → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2221adantl 481 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ( 𝐴 (𝐴 ∖ { 𝐴}) ↔ ∀𝑥 ∈ (𝐴 ∖ { 𝐴}) 𝐴𝑥))
2318, 22mpbird 257 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 (𝐴 ∖ { 𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  wral 3058  Vcvv 3477  cdif 3959  wss 3962  c0 4338  {csn 4630   cint 4950  Oncon0 6385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-ord 6388  df-on 6389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator