MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffixfr Structured version   Visualization version   GIF version

Theorem uffixfr 23647
Description: An ultrafilter is either fixed or free. A fixed ultrafilter is called principal (generated by a single element 𝐴), and a free ultrafilter is called nonprincipal (having empty intersection). Note that examples of free ultrafilters cannot be defined in ZFC without some form of global choice. (Contributed by Jeff Hankins, 4-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffixfr (𝐹 ∈ (UFil‘𝑋) → (𝐴 𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑋

Proof of Theorem uffixfr
StepHypRef Expression
1 simpl 483 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 ∈ (UFil‘𝑋))
2 ufilfil 23628 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
3 filtop 23579 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
42, 3syl 17 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → 𝑋𝐹)
5 filn0 23586 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
6 intssuni 4974 . . . . . . . . 9 (𝐹 ≠ ∅ → 𝐹 𝐹)
72, 5, 63syl 18 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 𝐹)
8 filunibas 23605 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
92, 8syl 17 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
107, 9sseqtrd 4022 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹𝑋)
1110sselda 3982 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐴𝑋)
12 uffix 23645 . . . . . 6 ((𝑋𝐹𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
134, 11, 12syl2an2r 683 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
1413simprd 496 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}}))
1513simpld 495 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {{𝐴}} ∈ (fBas‘𝑋))
16 fgcl 23602 . . . . 5 ({{𝐴}} ∈ (fBas‘𝑋) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋))
1715, 16syl 17 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋))
1814, 17eqeltrd 2833 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (Fil‘𝑋))
192adantr 481 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 ∈ (Fil‘𝑋))
20 filsspw 23575 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
2119, 20syl 17 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 ⊆ 𝒫 𝑋)
22 elintg 4958 . . . . . 6 (𝐴 𝐹 → (𝐴 𝐹 ↔ ∀𝑥𝐹 𝐴𝑥))
2322ibi 266 . . . . 5 (𝐴 𝐹 → ∀𝑥𝐹 𝐴𝑥)
2423adantl 482 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → ∀𝑥𝐹 𝐴𝑥)
25 ssrab 4070 . . . 4 (𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ ∀𝑥𝐹 𝐴𝑥))
2621, 24, 25sylanbrc 583 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
27 ufilmax 23631 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
281, 18, 26, 27syl3anc 1371 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
29 eqimss 4040 . . . . 5 (𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥} → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
3029adantl 482 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
3125simprbi 497 . . . 4 (𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} → ∀𝑥𝐹 𝐴𝑥)
3230, 31syl 17 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → ∀𝑥𝐹 𝐴𝑥)
33 eleq2 2822 . . . . . 6 (𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥} → (𝑋𝐹𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
3433biimpac 479 . . . . 5 ((𝑋𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
354, 34sylan 580 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
36 eleq2 2822 . . . . . 6 (𝑥 = 𝑋 → (𝐴𝑥𝐴𝑋))
3736elrab 3683 . . . . 5 (𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑋 ∈ 𝒫 𝑋𝐴𝑋))
3837simprbi 497 . . . 4 (𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} → 𝐴𝑋)
39 elintg 4958 . . . 4 (𝐴𝑋 → (𝐴 𝐹 ↔ ∀𝑥𝐹 𝐴𝑥))
4035, 38, 393syl 18 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → (𝐴 𝐹 ↔ ∀𝑥𝐹 𝐴𝑥))
4132, 40mpbird 256 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝐴 𝐹)
4228, 41impbida 799 1 (𝐹 ∈ (UFil‘𝑋) → (𝐴 𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  {crab 3432  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628   cuni 4908   cint 4950  cfv 6543  (class class class)co 7411  fBascfbas 21132  filGencfg 21133  Filcfil 23569  UFilcufil 23623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-fbas 21141  df-fg 21142  df-fil 23570  df-ufil 23625
This theorem is referenced by:  uffix2  23648  uffixsn  23649
  Copyright terms: Public domain W3C validator