Proof of Theorem uffixfr
Step | Hyp | Ref
| Expression |
1 | | simpl 487 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐹 ∈ (UFil‘𝑋)) |
2 | | ufilfil 22605 |
. . . . . . 7
⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) |
3 | | filtop 22556 |
. . . . . . 7
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝐹 ∈ (UFil‘𝑋) → 𝑋 ∈ 𝐹) |
5 | | filn0 22563 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) |
6 | | intssuni 4861 |
. . . . . . . . 9
⊢ (𝐹 ≠ ∅ → ∩ 𝐹
⊆ ∪ 𝐹) |
7 | 2, 5, 6 | 3syl 18 |
. . . . . . . 8
⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹
⊆ ∪ 𝐹) |
8 | | filunibas 22582 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 =
𝑋) |
9 | 2, 8 | syl 17 |
. . . . . . . 8
⊢ (𝐹 ∈ (UFil‘𝑋) → ∪ 𝐹 =
𝑋) |
10 | 7, 9 | sseqtrd 3933 |
. . . . . . 7
⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹
⊆ 𝑋) |
11 | 10 | sselda 3893 |
. . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐴 ∈ 𝑋) |
12 | | uffix 22622 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐹 ∧ 𝐴 ∈ 𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} = (𝑋filGen{{𝐴}}))) |
13 | 4, 11, 12 | syl2an2r 685 |
. . . . 5
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} = (𝑋filGen{{𝐴}}))) |
14 | 13 | simprd 500 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} = (𝑋filGen{{𝐴}})) |
15 | 13 | simpld 499 |
. . . . 5
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {{𝐴}} ∈ (fBas‘𝑋)) |
16 | | fgcl 22579 |
. . . . 5
⊢ ({{𝐴}} ∈ (fBas‘𝑋) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋)) |
17 | 15, 16 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋)) |
18 | 14, 17 | eqeltrd 2853 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ∈ (Fil‘𝑋)) |
19 | 2 | adantr 485 |
. . . . 5
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
20 | | filsspw 22552 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) |
21 | 19, 20 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐹 ⊆ 𝒫 𝑋) |
22 | | elintg 4847 |
. . . . . 6
⊢ (𝐴 ∈ ∩ 𝐹
→ (𝐴 ∈ ∩ 𝐹
↔ ∀𝑥 ∈
𝐹 𝐴 ∈ 𝑥)) |
23 | 22 | ibi 270 |
. . . . 5
⊢ (𝐴 ∈ ∩ 𝐹
→ ∀𝑥 ∈
𝐹 𝐴 ∈ 𝑥) |
24 | 23 | adantl 486 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → ∀𝑥 ∈ 𝐹 𝐴 ∈ 𝑥) |
25 | | ssrab 3978 |
. . . 4
⊢ (𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝐹 𝐴 ∈ 𝑥)) |
26 | 21, 24, 25 | sylanbrc 587 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
27 | | ufilmax 22608 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) → 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
28 | 1, 18, 26, 27 | syl3anc 1369 |
. 2
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
29 | | eqimss 3949 |
. . . . 5
⊢ (𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
30 | 29 | adantl 486 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
31 | 25 | simprbi 501 |
. . . 4
⊢ (𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} → ∀𝑥 ∈ 𝐹 𝐴 ∈ 𝑥) |
32 | 30, 31 | syl 17 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) → ∀𝑥 ∈ 𝐹 𝐴 ∈ 𝑥) |
33 | | eleq2 2841 |
. . . . . 6
⊢ (𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} → (𝑋 ∈ 𝐹 ↔ 𝑋 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥})) |
34 | 33 | biimpac 483 |
. . . . 5
⊢ ((𝑋 ∈ 𝐹 ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) → 𝑋 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
35 | 4, 34 | sylan 584 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) → 𝑋 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
36 | | eleq2 2841 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑋)) |
37 | 36 | elrab 3603 |
. . . . 5
⊢ (𝑋 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ↔ (𝑋 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑋)) |
38 | 37 | simprbi 501 |
. . . 4
⊢ (𝑋 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} → 𝐴 ∈ 𝑋) |
39 | | elintg 4847 |
. . . 4
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ ∩ 𝐹 ↔ ∀𝑥 ∈ 𝐹 𝐴 ∈ 𝑥)) |
40 | 35, 38, 39 | 3syl 18 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) → (𝐴 ∈ ∩ 𝐹 ↔ ∀𝑥 ∈ 𝐹 𝐴 ∈ 𝑥)) |
41 | 32, 40 | mpbird 260 |
. 2
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) → 𝐴 ∈ ∩ 𝐹) |
42 | 28, 41 | impbida 801 |
1
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐴 ∈ ∩ 𝐹 ↔ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥})) |