MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elirrvOLD Structured version   Visualization version   GIF version

Theorem elirrvOLD 9526
Description: Obsolete version of elirrv 9525 as of 27-Dec-2025. (Contributed by NM, 19-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elirrvOLD ¬ 𝑥𝑥

Proof of Theorem elirrvOLD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vsnex 5384 . . 3 {𝑥} ∈ V
2 eleq1w 2811 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥} ↔ 𝑥 ∈ {𝑥}))
3 vsnid 4623 . . . 4 𝑥 ∈ {𝑥}
42, 3speivw 1973 . . 3 𝑦 𝑦 ∈ {𝑥}
5 zfregcl 9523 . . 3 ({𝑥} ∈ V → (∃𝑦 𝑦 ∈ {𝑥} → ∃𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥}))
61, 4, 5mp2 9 . 2 𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥}
7 velsn 4601 . . . . . . 7 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
8 ax9 2123 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥𝑥𝑦))
98equcoms 2020 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥𝑥𝑥𝑦))
109com12 32 . . . . . . 7 (𝑥𝑥 → (𝑦 = 𝑥𝑥𝑦))
117, 10biimtrid 242 . . . . . 6 (𝑥𝑥 → (𝑦 ∈ {𝑥} → 𝑥𝑦))
12 eleq1w 2811 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧 ∈ {𝑥} ↔ 𝑥 ∈ {𝑥}))
1312notbid 318 . . . . . . . 8 (𝑧 = 𝑥 → (¬ 𝑧 ∈ {𝑥} ↔ ¬ 𝑥 ∈ {𝑥}))
1413rspccv 3582 . . . . . . 7 (∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} → (𝑥𝑦 → ¬ 𝑥 ∈ {𝑥}))
153, 14mt2i 137 . . . . . 6 (∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} → ¬ 𝑥𝑦)
1611, 15nsyli 157 . . . . 5 (𝑥𝑥 → (∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} → ¬ 𝑦 ∈ {𝑥}))
1716con2d 134 . . . 4 (𝑥𝑥 → (𝑦 ∈ {𝑥} → ¬ ∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥}))
1817ralrimiv 3124 . . 3 (𝑥𝑥 → ∀𝑦 ∈ {𝑥} ¬ ∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥})
19 ralnex 3055 . . 3 (∀𝑦 ∈ {𝑥} ¬ ∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} ↔ ¬ ∃𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥})
2018, 19sylib 218 . 2 (𝑥𝑥 → ¬ ∃𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥})
216, 20mt2 200 1 ¬ 𝑥𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  {csn 4585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-pr 5382  ax-reg 9521
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3446  df-un 3916  df-sn 4586  df-pr 4588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator