MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reconnlem2 Structured version   Visualization version   GIF version

Theorem reconnlem2 22909
Description: Lemma for reconn 22910. (Contributed by Jeff Hankins, 17-Aug-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
reconnlem2.1 (𝜑𝐴 ⊆ ℝ)
reconnlem2.2 (𝜑𝑈 ∈ (topGen‘ran (,)))
reconnlem2.3 (𝜑𝑉 ∈ (topGen‘ran (,)))
reconnlem2.4 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
reconnlem2.5 (𝜑𝐵 ∈ (𝑈𝐴))
reconnlem2.6 (𝜑𝐶 ∈ (𝑉𝐴))
reconnlem2.7 (𝜑 → (𝑈𝑉) ⊆ (ℝ ∖ 𝐴))
reconnlem2.8 (𝜑𝐵𝐶)
reconnlem2.9 𝑆 = sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < )
Assertion
Ref Expression
reconnlem2 (𝜑 → ¬ 𝐴 ⊆ (𝑈𝑉))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem reconnlem2
Dummy variables 𝑤 𝑧 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reconnlem2.9 . . . . . . . . . . 11 𝑆 = sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < )
2 inss2 3993 . . . . . . . . . . . . 13 (𝑈 ∩ (𝐵[,]𝐶)) ⊆ (𝐵[,]𝐶)
3 inss2 3993 . . . . . . . . . . . . . . . 16 (𝑈𝐴) ⊆ 𝐴
4 reconnlem2.5 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ (𝑈𝐴))
53, 4sseldi 3759 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐴)
6 inss2 3993 . . . . . . . . . . . . . . . 16 (𝑉𝐴) ⊆ 𝐴
7 reconnlem2.6 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ (𝑉𝐴))
86, 7sseldi 3759 . . . . . . . . . . . . . . 15 (𝜑𝐶𝐴)
9 reconnlem2.4 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
10 oveq1 6849 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → (𝑥[,]𝑦) = (𝐵[,]𝑦))
1110sseq1d 3792 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐵 → ((𝑥[,]𝑦) ⊆ 𝐴 ↔ (𝐵[,]𝑦) ⊆ 𝐴))
12 oveq2 6850 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐶 → (𝐵[,]𝑦) = (𝐵[,]𝐶))
1312sseq1d 3792 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐶 → ((𝐵[,]𝑦) ⊆ 𝐴 ↔ (𝐵[,]𝐶) ⊆ 𝐴))
1411, 13rspc2va 3475 . . . . . . . . . . . . . . 15 (((𝐵𝐴𝐶𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (𝐵[,]𝐶) ⊆ 𝐴)
155, 8, 9, 14syl21anc 866 . . . . . . . . . . . . . 14 (𝜑 → (𝐵[,]𝐶) ⊆ 𝐴)
16 reconnlem2.1 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℝ)
1715, 16sstrd 3771 . . . . . . . . . . . . 13 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
182, 17syl5ss 3772 . . . . . . . . . . . 12 (𝜑 → (𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ)
19 inss1 3992 . . . . . . . . . . . . . . 15 (𝑈𝐴) ⊆ 𝑈
2019, 4sseldi 3759 . . . . . . . . . . . . . 14 (𝜑𝐵𝑈)
2116, 5sseldd 3762 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ)
2221rexrd 10343 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
2316, 8sseldd 3762 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℝ)
2423rexrd 10343 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ*)
25 reconnlem2.8 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐶)
26 lbicc2 12492 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
2722, 24, 25, 26syl3anc 1490 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (𝐵[,]𝐶))
2820, 27elind 3960 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (𝑈 ∩ (𝐵[,]𝐶)))
2928ne0d 4086 . . . . . . . . . . . 12 (𝜑 → (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅)
302sseli 3757 . . . . . . . . . . . . . . 15 (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) → 𝑤 ∈ (𝐵[,]𝐶))
31 elicc2 12440 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑤 ∈ (𝐵[,]𝐶) ↔ (𝑤 ∈ ℝ ∧ 𝐵𝑤𝑤𝐶)))
3221, 23, 31syl2anc 579 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐵[,]𝐶) ↔ (𝑤 ∈ ℝ ∧ 𝐵𝑤𝑤𝐶)))
33 simp3 1168 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝐵𝑤𝑤𝐶) → 𝑤𝐶)
3432, 33syl6bi 244 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ (𝐵[,]𝐶) → 𝑤𝐶))
3530, 34syl5 34 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) → 𝑤𝐶))
3635ralrimiv 3112 . . . . . . . . . . . . 13 (𝜑 → ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝐶)
37 brralrspcev 4869 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝐶) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧)
3823, 36, 37syl2anc 579 . . . . . . . . . . . 12 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧)
39 suprcl 11237 . . . . . . . . . . . 12 (((𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ ∧ (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧) → sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ∈ ℝ)
4018, 29, 38, 39syl3anc 1490 . . . . . . . . . . 11 (𝜑 → sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ∈ ℝ)
411, 40syl5eqel 2848 . . . . . . . . . 10 (𝜑𝑆 ∈ ℝ)
42 rphalfcl 12056 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
43 ltaddrp 12065 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ+) → 𝑆 < (𝑆 + (𝑟 / 2)))
4441, 42, 43syl2an 589 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → 𝑆 < (𝑆 + (𝑟 / 2)))
4541adantr 472 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → 𝑆 ∈ ℝ)
4642rpred 12070 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ)
47 readdcl 10272 . . . . . . . . . . 11 ((𝑆 ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) → (𝑆 + (𝑟 / 2)) ∈ ℝ)
4841, 46, 47syl2an 589 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (𝑆 + (𝑟 / 2)) ∈ ℝ)
4945, 48ltnled 10438 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → (𝑆 < (𝑆 + (𝑟 / 2)) ↔ ¬ (𝑆 + (𝑟 / 2)) ≤ 𝑆))
5044, 49mpbid 223 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → ¬ (𝑆 + (𝑟 / 2)) ≤ 𝑆)
5118ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ)
5229ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅)
5338ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧)
54 inss1 3992 . . . . . . . . . . . 12 (𝑈 ∩ (-∞(,)𝐶)) ⊆ 𝑈
55 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶)))
5654, 55sseldi 3759 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ∈ 𝑈)
5748adantr 472 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ∈ ℝ)
5821ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → 𝐵 ∈ ℝ)
5941ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → 𝑆 ∈ ℝ)
60 suprub 11238 . . . . . . . . . . . . . . . 16 ((((𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ ∧ (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧) ∧ 𝐵 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → 𝐵 ≤ sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ))
6118, 29, 38, 28, 60syl31anc 1492 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≤ sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ))
6261, 1syl6breqr 4851 . . . . . . . . . . . . . 14 (𝜑𝐵𝑆)
6362ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → 𝐵𝑆)
6444adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → 𝑆 < (𝑆 + (𝑟 / 2)))
6559, 57, 64ltled 10439 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → 𝑆 ≤ (𝑆 + (𝑟 / 2)))
6658, 59, 57, 63, 65letrd 10448 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → 𝐵 ≤ (𝑆 + (𝑟 / 2)))
6723ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → 𝐶 ∈ ℝ)
68 inss2 3993 . . . . . . . . . . . . . . 15 (𝑈 ∩ (-∞(,)𝐶)) ⊆ (-∞(,)𝐶)
6968, 55sseldi 3759 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ∈ (-∞(,)𝐶))
70 eliooord 12435 . . . . . . . . . . . . . . 15 ((𝑆 + (𝑟 / 2)) ∈ (-∞(,)𝐶) → (-∞ < (𝑆 + (𝑟 / 2)) ∧ (𝑆 + (𝑟 / 2)) < 𝐶))
7170simprd 489 . . . . . . . . . . . . . 14 ((𝑆 + (𝑟 / 2)) ∈ (-∞(,)𝐶) → (𝑆 + (𝑟 / 2)) < 𝐶)
7269, 71syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) < 𝐶)
7357, 67, 72ltled 10439 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ≤ 𝐶)
74 elicc2 12440 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑆 + (𝑟 / 2)) ∈ (𝐵[,]𝐶) ↔ ((𝑆 + (𝑟 / 2)) ∈ ℝ ∧ 𝐵 ≤ (𝑆 + (𝑟 / 2)) ∧ (𝑆 + (𝑟 / 2)) ≤ 𝐶)))
7558, 67, 74syl2anc 579 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → ((𝑆 + (𝑟 / 2)) ∈ (𝐵[,]𝐶) ↔ ((𝑆 + (𝑟 / 2)) ∈ ℝ ∧ 𝐵 ≤ (𝑆 + (𝑟 / 2)) ∧ (𝑆 + (𝑟 / 2)) ≤ 𝐶)))
7657, 66, 73, 75mpbir3and 1442 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ∈ (𝐵[,]𝐶))
7756, 76elind 3960 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (𝐵[,]𝐶)))
78 suprub 11238 . . . . . . . . . 10 ((((𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ ∧ (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (𝐵[,]𝐶))) → (𝑆 + (𝑟 / 2)) ≤ sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ))
7951, 52, 53, 77, 78syl31anc 1492 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ≤ sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ))
8079, 1syl6breqr 4851 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ≤ 𝑆)
8150, 80mtand 850 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → ¬ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶)))
82 eqid 2765 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
8382remetdval 22871 . . . . . . . . . . . 12 (((𝑆 + (𝑟 / 2)) ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((𝑆 + (𝑟 / 2))((abs ∘ − ) ↾ (ℝ × ℝ))𝑆) = (abs‘((𝑆 + (𝑟 / 2)) − 𝑆)))
8448, 45, 83syl2anc 579 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → ((𝑆 + (𝑟 / 2))((abs ∘ − ) ↾ (ℝ × ℝ))𝑆) = (abs‘((𝑆 + (𝑟 / 2)) − 𝑆)))
8545recnd 10322 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℝ+) → 𝑆 ∈ ℂ)
8646adantl 473 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ)
8786recnd 10322 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℂ)
8885, 87pncan2d 10648 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → ((𝑆 + (𝑟 / 2)) − 𝑆) = (𝑟 / 2))
8988fveq2d 6379 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → (abs‘((𝑆 + (𝑟 / 2)) − 𝑆)) = (abs‘(𝑟 / 2)))
9042adantl 473 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
91 rpre 12036 . . . . . . . . . . . . 13 ((𝑟 / 2) ∈ ℝ+ → (𝑟 / 2) ∈ ℝ)
92 rpge0 12043 . . . . . . . . . . . . 13 ((𝑟 / 2) ∈ ℝ+ → 0 ≤ (𝑟 / 2))
9391, 92absidd 14448 . . . . . . . . . . . 12 ((𝑟 / 2) ∈ ℝ+ → (abs‘(𝑟 / 2)) = (𝑟 / 2))
9490, 93syl 17 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → (abs‘(𝑟 / 2)) = (𝑟 / 2))
9584, 89, 943eqtrd 2803 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → ((𝑆 + (𝑟 / 2))((abs ∘ − ) ↾ (ℝ × ℝ))𝑆) = (𝑟 / 2))
96 rphalflt 12058 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
9796adantl 473 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / 2) < 𝑟)
9895, 97eqbrtrd 4831 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → ((𝑆 + (𝑟 / 2))((abs ∘ − ) ↾ (ℝ × ℝ))𝑆) < 𝑟)
9982rexmet 22873 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
10099a1i 11 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ))
101 rpxr 12039 . . . . . . . . . . 11 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
102101adantl 473 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
103 elbl3 22476 . . . . . . . . . 10 (((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑆 ∈ ℝ ∧ (𝑆 + (𝑟 / 2)) ∈ ℝ)) → ((𝑆 + (𝑟 / 2)) ∈ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ↔ ((𝑆 + (𝑟 / 2))((abs ∘ − ) ↾ (ℝ × ℝ))𝑆) < 𝑟))
104100, 102, 45, 48, 103syl22anc 867 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → ((𝑆 + (𝑟 / 2)) ∈ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ↔ ((𝑆 + (𝑟 / 2))((abs ∘ − ) ↾ (ℝ × ℝ))𝑆) < 𝑟))
10598, 104mpbird 248 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → (𝑆 + (𝑟 / 2)) ∈ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟))
106 ssel 3755 . . . . . . . 8 ((𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶)) → ((𝑆 + (𝑟 / 2)) ∈ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) → (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))))
107105, 106syl5com 31 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → ((𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶)) → (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))))
10881, 107mtod 189 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ¬ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶)))
109108nrexdv 3147 . . . . 5 (𝜑 → ¬ ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶)))
11041adantr 472 . . . . . . . . 9 ((𝜑𝑆𝑈) → 𝑆 ∈ ℝ)
111 mnflt 12157 . . . . . . . . . 10 (𝑆 ∈ ℝ → -∞ < 𝑆)
112110, 111syl 17 . . . . . . . . 9 ((𝜑𝑆𝑈) → -∞ < 𝑆)
113 suprleub 11243 . . . . . . . . . . . . . . . . 17 ((((𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ ∧ (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧) ∧ 𝐶 ∈ ℝ) → (sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ≤ 𝐶 ↔ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝐶))
11418, 29, 38, 23, 113syl31anc 1492 . . . . . . . . . . . . . . . 16 (𝜑 → (sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ≤ 𝐶 ↔ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝐶))
11536, 114mpbird 248 . . . . . . . . . . . . . . 15 (𝜑 → sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ≤ 𝐶)
1161, 115syl5eqbr 4844 . . . . . . . . . . . . . 14 (𝜑𝑆𝐶)
11741, 23leloed 10434 . . . . . . . . . . . . . 14 (𝜑 → (𝑆𝐶 ↔ (𝑆 < 𝐶𝑆 = 𝐶)))
118116, 117mpbid 223 . . . . . . . . . . . . 13 (𝜑 → (𝑆 < 𝐶𝑆 = 𝐶))
119118ord 890 . . . . . . . . . . . 12 (𝜑 → (¬ 𝑆 < 𝐶𝑆 = 𝐶))
120 elndif 3896 . . . . . . . . . . . . . . 15 (𝐶𝐴 → ¬ 𝐶 ∈ (ℝ ∖ 𝐴))
1218, 120syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐶 ∈ (ℝ ∖ 𝐴))
122 inss1 3992 . . . . . . . . . . . . . . . 16 (𝑉𝐴) ⊆ 𝑉
123122, 7sseldi 3759 . . . . . . . . . . . . . . 15 (𝜑𝐶𝑉)
124 elin 3958 . . . . . . . . . . . . . . . 16 (𝐶 ∈ (𝑈𝑉) ↔ (𝐶𝑈𝐶𝑉))
125 reconnlem2.7 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈𝑉) ⊆ (ℝ ∖ 𝐴))
126125sseld 3760 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 ∈ (𝑈𝑉) → 𝐶 ∈ (ℝ ∖ 𝐴)))
127124, 126syl5bir 234 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶𝑈𝐶𝑉) → 𝐶 ∈ (ℝ ∖ 𝐴)))
128123, 127mpan2d 685 . . . . . . . . . . . . . 14 (𝜑 → (𝐶𝑈𝐶 ∈ (ℝ ∖ 𝐴)))
129121, 128mtod 189 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐶𝑈)
130 eleq1 2832 . . . . . . . . . . . . . 14 (𝑆 = 𝐶 → (𝑆𝑈𝐶𝑈))
131130notbid 309 . . . . . . . . . . . . 13 (𝑆 = 𝐶 → (¬ 𝑆𝑈 ↔ ¬ 𝐶𝑈))
132129, 131syl5ibrcom 238 . . . . . . . . . . . 12 (𝜑 → (𝑆 = 𝐶 → ¬ 𝑆𝑈))
133119, 132syld 47 . . . . . . . . . . 11 (𝜑 → (¬ 𝑆 < 𝐶 → ¬ 𝑆𝑈))
134133con4d 115 . . . . . . . . . 10 (𝜑 → (𝑆𝑈𝑆 < 𝐶))
135134imp 395 . . . . . . . . 9 ((𝜑𝑆𝑈) → 𝑆 < 𝐶)
136 mnfxr 10350 . . . . . . . . . . 11 -∞ ∈ ℝ*
137 elioo2 12418 . . . . . . . . . . 11 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*) → (𝑆 ∈ (-∞(,)𝐶) ↔ (𝑆 ∈ ℝ ∧ -∞ < 𝑆𝑆 < 𝐶)))
138136, 24, 137sylancr 581 . . . . . . . . . 10 (𝜑 → (𝑆 ∈ (-∞(,)𝐶) ↔ (𝑆 ∈ ℝ ∧ -∞ < 𝑆𝑆 < 𝐶)))
139138adantr 472 . . . . . . . . 9 ((𝜑𝑆𝑈) → (𝑆 ∈ (-∞(,)𝐶) ↔ (𝑆 ∈ ℝ ∧ -∞ < 𝑆𝑆 < 𝐶)))
140110, 112, 135, 139mpbir3and 1442 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝑆 ∈ (-∞(,)𝐶))
141140ex 401 . . . . . . 7 (𝜑 → (𝑆𝑈𝑆 ∈ (-∞(,)𝐶)))
142141ancld 546 . . . . . 6 (𝜑 → (𝑆𝑈 → (𝑆𝑈𝑆 ∈ (-∞(,)𝐶))))
143 elin 3958 . . . . . . 7 (𝑆 ∈ (𝑈 ∩ (-∞(,)𝐶)) ↔ (𝑆𝑈𝑆 ∈ (-∞(,)𝐶)))
144 reconnlem2.2 . . . . . . . 8 (𝜑𝑈 ∈ (topGen‘ran (,)))
145 retop 22844 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
146 iooretop 22848 . . . . . . . . 9 (-∞(,)𝐶) ∈ (topGen‘ran (,))
147 inopn 20983 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ 𝑈 ∈ (topGen‘ran (,)) ∧ (-∞(,)𝐶) ∈ (topGen‘ran (,))) → (𝑈 ∩ (-∞(,)𝐶)) ∈ (topGen‘ran (,)))
148145, 146, 147mp3an13 1576 . . . . . . . 8 (𝑈 ∈ (topGen‘ran (,)) → (𝑈 ∩ (-∞(,)𝐶)) ∈ (topGen‘ran (,)))
149 eqid 2765 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
15082, 149tgioo 22878 . . . . . . . . . . 11 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
151150mopni2 22577 . . . . . . . . . 10 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (𝑈 ∩ (-∞(,)𝐶)) ∈ (topGen‘ran (,)) ∧ 𝑆 ∈ (𝑈 ∩ (-∞(,)𝐶))) → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶)))
15299, 151mp3an1 1572 . . . . . . . . 9 (((𝑈 ∩ (-∞(,)𝐶)) ∈ (topGen‘ran (,)) ∧ 𝑆 ∈ (𝑈 ∩ (-∞(,)𝐶))) → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶)))
153152ex 401 . . . . . . . 8 ((𝑈 ∩ (-∞(,)𝐶)) ∈ (topGen‘ran (,)) → (𝑆 ∈ (𝑈 ∩ (-∞(,)𝐶)) → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶))))
154144, 148, 1533syl 18 . . . . . . 7 (𝜑 → (𝑆 ∈ (𝑈 ∩ (-∞(,)𝐶)) → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶))))
155143, 154syl5bir 234 . . . . . 6 (𝜑 → ((𝑆𝑈𝑆 ∈ (-∞(,)𝐶)) → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶))))
156142, 155syld 47 . . . . 5 (𝜑 → (𝑆𝑈 → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶))))
157109, 156mtod 189 . . . 4 (𝜑 → ¬ 𝑆𝑈)
158 ltsubrp 12064 . . . . . . . . 9 ((𝑆 ∈ ℝ ∧ 𝑟 ∈ ℝ+) → (𝑆𝑟) < 𝑆)
15941, 158sylan 575 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → (𝑆𝑟) < 𝑆)
160 rpre 12036 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
161 resubcl 10599 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑆𝑟) ∈ ℝ)
16241, 160, 161syl2an 589 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → (𝑆𝑟) ∈ ℝ)
163162, 45ltnled 10438 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → ((𝑆𝑟) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑆𝑟)))
164159, 163mpbid 223 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → ¬ 𝑆 ≤ (𝑆𝑟))
16582bl2ioo 22874 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑆𝑟)(,)(𝑆 + 𝑟)))
16641, 160, 165syl2an 589 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑆𝑟)(,)(𝑆 + 𝑟)))
167166sseq1d 3792 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → ((𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉 ↔ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉))
16815ad2antrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → (𝐵[,]𝐶) ⊆ 𝐴)
1692, 168syl5ss 3772 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → (𝑈 ∩ (𝐵[,]𝐶)) ⊆ 𝐴)
170169sselda 3761 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → 𝑤𝐴)
171 elndif 3896 . . . . . . . . . . . . . . 15 (𝑤𝐴 → ¬ 𝑤 ∈ (ℝ ∖ 𝐴))
172170, 171syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → ¬ 𝑤 ∈ (ℝ ∖ 𝐴))
173125ad3antrrr 721 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → (𝑈𝑉) ⊆ (ℝ ∖ 𝐴))
174 inss1 3992 . . . . . . . . . . . . . . . . . 18 (𝑈 ∩ (𝐵[,]𝐶)) ⊆ 𝑈
175 simprl 787 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)))
176174, 175sseldi 3759 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤𝑈)
177 simplr 785 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉)
17818ad3antrrr 721 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → (𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ)
179 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)))
180178, 179sseldd 3762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → 𝑤 ∈ ℝ)
181180adantrr 708 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤 ∈ ℝ)
182 simprr 789 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → (𝑆𝑟) < 𝑤)
18345ad2antrr 717 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑆 ∈ ℝ)
184 simpllr 793 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑟 ∈ ℝ+)
185184rpred 12070 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑟 ∈ ℝ)
186183, 185readdcld 10323 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → (𝑆 + 𝑟) ∈ ℝ)
187178adantrr 708 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → (𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ)
18829ad3antrrr 721 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅)
18938ad3antrrr 721 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧)
190 suprub 11238 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ ∧ (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → 𝑤 ≤ sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ))
191187, 188, 189, 175, 190syl31anc 1492 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤 ≤ sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ))
192191, 1syl6breqr 4851 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤𝑆)
193183, 184ltaddrpd 12103 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑆 < (𝑆 + 𝑟))
194181, 183, 186, 192, 193lelttrd 10449 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤 < (𝑆 + 𝑟))
195162ad2antrr 717 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → (𝑆𝑟) ∈ ℝ)
196 rexr 10339 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆𝑟) ∈ ℝ → (𝑆𝑟) ∈ ℝ*)
197 rexr 10339 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 + 𝑟) ∈ ℝ → (𝑆 + 𝑟) ∈ ℝ*)
198 elioo2 12418 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆𝑟) ∈ ℝ* ∧ (𝑆 + 𝑟) ∈ ℝ*) → (𝑤 ∈ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ↔ (𝑤 ∈ ℝ ∧ (𝑆𝑟) < 𝑤𝑤 < (𝑆 + 𝑟))))
199196, 197, 198syl2an 589 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑟) ∈ ℝ ∧ (𝑆 + 𝑟) ∈ ℝ) → (𝑤 ∈ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ↔ (𝑤 ∈ ℝ ∧ (𝑆𝑟) < 𝑤𝑤 < (𝑆 + 𝑟))))
200195, 186, 199syl2anc 579 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → (𝑤 ∈ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ↔ (𝑤 ∈ ℝ ∧ (𝑆𝑟) < 𝑤𝑤 < (𝑆 + 𝑟))))
201181, 182, 194, 200mpbir3and 1442 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤 ∈ ((𝑆𝑟)(,)(𝑆 + 𝑟)))
202177, 201sseldd 3762 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤𝑉)
203176, 202elind 3960 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤 ∈ (𝑈𝑉))
204173, 203sseldd 3762 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤 ∈ (ℝ ∖ 𝐴))
205204expr 448 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → ((𝑆𝑟) < 𝑤𝑤 ∈ (ℝ ∖ 𝐴)))
206172, 205mtod 189 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → ¬ (𝑆𝑟) < 𝑤)
207162ad2antrr 717 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → (𝑆𝑟) ∈ ℝ)
208180, 207lenltd 10437 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → (𝑤 ≤ (𝑆𝑟) ↔ ¬ (𝑆𝑟) < 𝑤))
209206, 208mpbird 248 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → 𝑤 ≤ (𝑆𝑟))
210209ralrimiva 3113 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤 ≤ (𝑆𝑟))
21118ad2antrr 717 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → (𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ)
21229ad2antrr 717 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅)
21338ad2antrr 717 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧)
214162adantr 472 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → (𝑆𝑟) ∈ ℝ)
215 suprleub 11243 . . . . . . . . . . . 12 ((((𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ ∧ (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧) ∧ (𝑆𝑟) ∈ ℝ) → (sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ≤ (𝑆𝑟) ↔ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤 ≤ (𝑆𝑟)))
216211, 212, 213, 214, 215syl31anc 1492 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → (sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ≤ (𝑆𝑟) ↔ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤 ≤ (𝑆𝑟)))
217210, 216mpbird 248 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ≤ (𝑆𝑟))
2181, 217syl5eqbr 4844 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → 𝑆 ≤ (𝑆𝑟))
219218ex 401 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → (((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉𝑆 ≤ (𝑆𝑟)))
220167, 219sylbid 231 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → ((𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉𝑆 ≤ (𝑆𝑟)))
221164, 220mtod 189 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ¬ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉)
222221nrexdv 3147 . . . . 5 (𝜑 → ¬ ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉)
223 reconnlem2.3 . . . . . 6 (𝜑𝑉 ∈ (topGen‘ran (,)))
224150mopni2 22577 . . . . . . . 8 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝑉 ∈ (topGen‘ran (,)) ∧ 𝑆𝑉) → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉)
22599, 224mp3an1 1572 . . . . . . 7 ((𝑉 ∈ (topGen‘ran (,)) ∧ 𝑆𝑉) → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉)
226225ex 401 . . . . . 6 (𝑉 ∈ (topGen‘ran (,)) → (𝑆𝑉 → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉))
227223, 226syl 17 . . . . 5 (𝜑 → (𝑆𝑉 → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉))
228222, 227mtod 189 . . . 4 (𝜑 → ¬ 𝑆𝑉)
229 ioran 1006 . . . 4 (¬ (𝑆𝑈𝑆𝑉) ↔ (¬ 𝑆𝑈 ∧ ¬ 𝑆𝑉))
230157, 228, 229sylanbrc 578 . . 3 (𝜑 → ¬ (𝑆𝑈𝑆𝑉))
231 elun 3915 . . 3 (𝑆 ∈ (𝑈𝑉) ↔ (𝑆𝑈𝑆𝑉))
232230, 231sylnibr 320 . 2 (𝜑 → ¬ 𝑆 ∈ (𝑈𝑉))
233 elicc2 12440 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑆 ∈ (𝐵[,]𝐶) ↔ (𝑆 ∈ ℝ ∧ 𝐵𝑆𝑆𝐶)))
23421, 23, 233syl2anc 579 . . . . 5 (𝜑 → (𝑆 ∈ (𝐵[,]𝐶) ↔ (𝑆 ∈ ℝ ∧ 𝐵𝑆𝑆𝐶)))
23541, 62, 116, 234mpbir3and 1442 . . . 4 (𝜑𝑆 ∈ (𝐵[,]𝐶))
23615, 235sseldd 3762 . . 3 (𝜑𝑆𝐴)
237 ssel 3755 . . 3 (𝐴 ⊆ (𝑈𝑉) → (𝑆𝐴𝑆 ∈ (𝑈𝑉)))
238236, 237syl5com 31 . 2 (𝜑 → (𝐴 ⊆ (𝑈𝑉) → 𝑆 ∈ (𝑈𝑉)))
239232, 238mtod 189 1 (𝜑 → ¬ 𝐴 ⊆ (𝑈𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  cdif 3729  cun 3730  cin 3731  wss 3732  c0 4079   class class class wbr 4809   × cxp 5275  ran crn 5278  cres 5279  ccom 5281  cfv 6068  (class class class)co 6842  supcsup 8553  cr 10188   + caddc 10192  -∞cmnf 10326  *cxr 10327   < clt 10328  cle 10329  cmin 10520   / cdiv 10938  2c2 11327  +crp 12028  (,)cioo 12377  [,]cicc 12380  abscabs 14261  topGenctg 16366  ∞Metcxmet 20004  ballcbl 20006  MetOpencmopn 20009  Topctop 20977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-icc 12384  df-seq 13009  df-exp 13068  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-topgen 16372  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-top 20978  df-topon 20995  df-bases 21030
This theorem is referenced by:  reconn  22910
  Copyright terms: Public domain W3C validator