MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reconnlem2 Structured version   Visualization version   GIF version

Theorem reconnlem2 22849
Description: Lemma for reconn 22850. (Contributed by Jeff Hankins, 17-Aug-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
reconnlem2.1 (𝜑𝐴 ⊆ ℝ)
reconnlem2.2 (𝜑𝑈 ∈ (topGen‘ran (,)))
reconnlem2.3 (𝜑𝑉 ∈ (topGen‘ran (,)))
reconnlem2.4 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
reconnlem2.5 (𝜑𝐵 ∈ (𝑈𝐴))
reconnlem2.6 (𝜑𝐶 ∈ (𝑉𝐴))
reconnlem2.7 (𝜑 → (𝑈𝑉) ⊆ (ℝ ∖ 𝐴))
reconnlem2.8 (𝜑𝐵𝐶)
reconnlem2.9 𝑆 = sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < )
Assertion
Ref Expression
reconnlem2 (𝜑 → ¬ 𝐴 ⊆ (𝑈𝑉))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem reconnlem2
Dummy variables 𝑤 𝑧 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reconnlem2.9 . . . . . . . . . . 11 𝑆 = sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < )
2 inss2 3982 . . . . . . . . . . . . 13 (𝑈 ∩ (𝐵[,]𝐶)) ⊆ (𝐵[,]𝐶)
3 inss2 3982 . . . . . . . . . . . . . . . 16 (𝑈𝐴) ⊆ 𝐴
4 reconnlem2.5 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ (𝑈𝐴))
53, 4sseldi 3750 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐴)
6 inss2 3982 . . . . . . . . . . . . . . . 16 (𝑉𝐴) ⊆ 𝐴
7 reconnlem2.6 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ (𝑉𝐴))
86, 7sseldi 3750 . . . . . . . . . . . . . . 15 (𝜑𝐶𝐴)
9 reconnlem2.4 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
10 oveq1 6802 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → (𝑥[,]𝑦) = (𝐵[,]𝑦))
1110sseq1d 3781 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐵 → ((𝑥[,]𝑦) ⊆ 𝐴 ↔ (𝐵[,]𝑦) ⊆ 𝐴))
12 oveq2 6803 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐶 → (𝐵[,]𝑦) = (𝐵[,]𝐶))
1312sseq1d 3781 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐶 → ((𝐵[,]𝑦) ⊆ 𝐴 ↔ (𝐵[,]𝐶) ⊆ 𝐴))
1411, 13rspc2va 3473 . . . . . . . . . . . . . . 15 (((𝐵𝐴𝐶𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (𝐵[,]𝐶) ⊆ 𝐴)
155, 8, 9, 14syl21anc 1475 . . . . . . . . . . . . . 14 (𝜑 → (𝐵[,]𝐶) ⊆ 𝐴)
16 reconnlem2.1 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℝ)
1715, 16sstrd 3762 . . . . . . . . . . . . 13 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
182, 17syl5ss 3763 . . . . . . . . . . . 12 (𝜑 → (𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ)
19 inss1 3981 . . . . . . . . . . . . . . 15 (𝑈𝐴) ⊆ 𝑈
2019, 4sseldi 3750 . . . . . . . . . . . . . 14 (𝜑𝐵𝑈)
2116, 5sseldd 3753 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ)
2221rexrd 10294 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
2316, 8sseldd 3753 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℝ)
2423rexrd 10294 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ*)
25 reconnlem2.8 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐶)
26 lbicc2 12494 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
2722, 24, 25, 26syl3anc 1476 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (𝐵[,]𝐶))
2820, 27elind 3949 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (𝑈 ∩ (𝐵[,]𝐶)))
2928ne0d 4070 . . . . . . . . . . . 12 (𝜑 → (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅)
302sseli 3748 . . . . . . . . . . . . . . 15 (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) → 𝑤 ∈ (𝐵[,]𝐶))
31 elicc2 12442 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑤 ∈ (𝐵[,]𝐶) ↔ (𝑤 ∈ ℝ ∧ 𝐵𝑤𝑤𝐶)))
3221, 23, 31syl2anc 573 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐵[,]𝐶) ↔ (𝑤 ∈ ℝ ∧ 𝐵𝑤𝑤𝐶)))
33 simp3 1132 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝐵𝑤𝑤𝐶) → 𝑤𝐶)
3432, 33syl6bi 243 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ (𝐵[,]𝐶) → 𝑤𝐶))
3530, 34syl5 34 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) → 𝑤𝐶))
3635ralrimiv 3114 . . . . . . . . . . . . 13 (𝜑 → ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝐶)
37 breq2 4791 . . . . . . . . . . . . . . 15 (𝑧 = 𝐶 → (𝑤𝑧𝑤𝐶))
3837ralbidv 3135 . . . . . . . . . . . . . 14 (𝑧 = 𝐶 → (∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧 ↔ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝐶))
3938rspcev 3460 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝐶) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧)
4023, 36, 39syl2anc 573 . . . . . . . . . . . 12 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧)
41 suprcl 11188 . . . . . . . . . . . 12 (((𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ ∧ (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧) → sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ∈ ℝ)
4218, 29, 40, 41syl3anc 1476 . . . . . . . . . . 11 (𝜑 → sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ∈ ℝ)
431, 42syl5eqel 2854 . . . . . . . . . 10 (𝜑𝑆 ∈ ℝ)
44 rphalfcl 12060 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
45 ltaddrp 12069 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ+) → 𝑆 < (𝑆 + (𝑟 / 2)))
4643, 44, 45syl2an 583 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → 𝑆 < (𝑆 + (𝑟 / 2)))
4743adantr 466 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → 𝑆 ∈ ℝ)
4844rpred 12074 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ)
49 readdcl 10224 . . . . . . . . . . 11 ((𝑆 ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) → (𝑆 + (𝑟 / 2)) ∈ ℝ)
5043, 48, 49syl2an 583 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (𝑆 + (𝑟 / 2)) ∈ ℝ)
5147, 50ltnled 10389 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → (𝑆 < (𝑆 + (𝑟 / 2)) ↔ ¬ (𝑆 + (𝑟 / 2)) ≤ 𝑆))
5246, 51mpbid 222 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → ¬ (𝑆 + (𝑟 / 2)) ≤ 𝑆)
5318ad2antrr 705 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ)
5429ad2antrr 705 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅)
5540ad2antrr 705 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧)
56 inss1 3981 . . . . . . . . . . . 12 (𝑈 ∩ (-∞(,)𝐶)) ⊆ 𝑈
57 simpr 471 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶)))
5856, 57sseldi 3750 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ∈ 𝑈)
5950adantr 466 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ∈ ℝ)
6021ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → 𝐵 ∈ ℝ)
6143ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → 𝑆 ∈ ℝ)
62 suprub 11189 . . . . . . . . . . . . . . . 16 ((((𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ ∧ (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧) ∧ 𝐵 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → 𝐵 ≤ sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ))
6318, 29, 40, 28, 62syl31anc 1479 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≤ sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ))
6463, 1syl6breqr 4829 . . . . . . . . . . . . . 14 (𝜑𝐵𝑆)
6564ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → 𝐵𝑆)
6646adantr 466 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → 𝑆 < (𝑆 + (𝑟 / 2)))
6761, 59, 66ltled 10390 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → 𝑆 ≤ (𝑆 + (𝑟 / 2)))
6860, 61, 59, 65, 67letrd 10399 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → 𝐵 ≤ (𝑆 + (𝑟 / 2)))
6923ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → 𝐶 ∈ ℝ)
70 inss2 3982 . . . . . . . . . . . . . . 15 (𝑈 ∩ (-∞(,)𝐶)) ⊆ (-∞(,)𝐶)
7170, 57sseldi 3750 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ∈ (-∞(,)𝐶))
72 eliooord 12437 . . . . . . . . . . . . . . 15 ((𝑆 + (𝑟 / 2)) ∈ (-∞(,)𝐶) → (-∞ < (𝑆 + (𝑟 / 2)) ∧ (𝑆 + (𝑟 / 2)) < 𝐶))
7372simprd 483 . . . . . . . . . . . . . 14 ((𝑆 + (𝑟 / 2)) ∈ (-∞(,)𝐶) → (𝑆 + (𝑟 / 2)) < 𝐶)
7471, 73syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) < 𝐶)
7559, 69, 74ltled 10390 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ≤ 𝐶)
76 elicc2 12442 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑆 + (𝑟 / 2)) ∈ (𝐵[,]𝐶) ↔ ((𝑆 + (𝑟 / 2)) ∈ ℝ ∧ 𝐵 ≤ (𝑆 + (𝑟 / 2)) ∧ (𝑆 + (𝑟 / 2)) ≤ 𝐶)))
7760, 69, 76syl2anc 573 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → ((𝑆 + (𝑟 / 2)) ∈ (𝐵[,]𝐶) ↔ ((𝑆 + (𝑟 / 2)) ∈ ℝ ∧ 𝐵 ≤ (𝑆 + (𝑟 / 2)) ∧ (𝑆 + (𝑟 / 2)) ≤ 𝐶)))
7859, 68, 75, 77mpbir3and 1427 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ∈ (𝐵[,]𝐶))
7958, 78elind 3949 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (𝐵[,]𝐶)))
80 suprub 11189 . . . . . . . . . 10 ((((𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ ∧ (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (𝐵[,]𝐶))) → (𝑆 + (𝑟 / 2)) ≤ sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ))
8153, 54, 55, 79, 80syl31anc 1479 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ≤ sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ))
8281, 1syl6breqr 4829 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))) → (𝑆 + (𝑟 / 2)) ≤ 𝑆)
8352, 82mtand 817 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → ¬ (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶)))
84 eqid 2771 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
8584remetdval 22811 . . . . . . . . . . . 12 (((𝑆 + (𝑟 / 2)) ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((𝑆 + (𝑟 / 2))((abs ∘ − ) ↾ (ℝ × ℝ))𝑆) = (abs‘((𝑆 + (𝑟 / 2)) − 𝑆)))
8650, 47, 85syl2anc 573 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → ((𝑆 + (𝑟 / 2))((abs ∘ − ) ↾ (ℝ × ℝ))𝑆) = (abs‘((𝑆 + (𝑟 / 2)) − 𝑆)))
8747recnd 10273 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℝ+) → 𝑆 ∈ ℂ)
8848adantl 467 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ)
8988recnd 10273 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℂ)
9087, 89pncan2d 10599 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → ((𝑆 + (𝑟 / 2)) − 𝑆) = (𝑟 / 2))
9190fveq2d 6337 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → (abs‘((𝑆 + (𝑟 / 2)) − 𝑆)) = (abs‘(𝑟 / 2)))
9244adantl 467 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
93 rpre 12041 . . . . . . . . . . . . 13 ((𝑟 / 2) ∈ ℝ+ → (𝑟 / 2) ∈ ℝ)
94 rpge0 12047 . . . . . . . . . . . . 13 ((𝑟 / 2) ∈ ℝ+ → 0 ≤ (𝑟 / 2))
9593, 94absidd 14368 . . . . . . . . . . . 12 ((𝑟 / 2) ∈ ℝ+ → (abs‘(𝑟 / 2)) = (𝑟 / 2))
9692, 95syl 17 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → (abs‘(𝑟 / 2)) = (𝑟 / 2))
9786, 91, 963eqtrd 2809 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → ((𝑆 + (𝑟 / 2))((abs ∘ − ) ↾ (ℝ × ℝ))𝑆) = (𝑟 / 2))
98 rphalflt 12062 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
9998adantl 467 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / 2) < 𝑟)
10097, 99eqbrtrd 4809 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → ((𝑆 + (𝑟 / 2))((abs ∘ − ) ↾ (ℝ × ℝ))𝑆) < 𝑟)
10184rexmet 22813 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
102101a1i 11 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ))
103 rpxr 12042 . . . . . . . . . . 11 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
104103adantl 467 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
105 elbl3 22416 . . . . . . . . . 10 (((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑆 ∈ ℝ ∧ (𝑆 + (𝑟 / 2)) ∈ ℝ)) → ((𝑆 + (𝑟 / 2)) ∈ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ↔ ((𝑆 + (𝑟 / 2))((abs ∘ − ) ↾ (ℝ × ℝ))𝑆) < 𝑟))
106102, 104, 47, 50, 105syl22anc 1477 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → ((𝑆 + (𝑟 / 2)) ∈ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ↔ ((𝑆 + (𝑟 / 2))((abs ∘ − ) ↾ (ℝ × ℝ))𝑆) < 𝑟))
107100, 106mpbird 247 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → (𝑆 + (𝑟 / 2)) ∈ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟))
108 ssel 3746 . . . . . . . 8 ((𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶)) → ((𝑆 + (𝑟 / 2)) ∈ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) → (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))))
109107, 108syl5com 31 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → ((𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶)) → (𝑆 + (𝑟 / 2)) ∈ (𝑈 ∩ (-∞(,)𝐶))))
11083, 109mtod 189 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ¬ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶)))
111110nrexdv 3149 . . . . 5 (𝜑 → ¬ ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶)))
11243adantr 466 . . . . . . . . 9 ((𝜑𝑆𝑈) → 𝑆 ∈ ℝ)
113 mnflt 12161 . . . . . . . . . 10 (𝑆 ∈ ℝ → -∞ < 𝑆)
114112, 113syl 17 . . . . . . . . 9 ((𝜑𝑆𝑈) → -∞ < 𝑆)
115 suprleub 11194 . . . . . . . . . . . . . . . . 17 ((((𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ ∧ (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧) ∧ 𝐶 ∈ ℝ) → (sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ≤ 𝐶 ↔ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝐶))
11618, 29, 40, 23, 115syl31anc 1479 . . . . . . . . . . . . . . . 16 (𝜑 → (sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ≤ 𝐶 ↔ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝐶))
11736, 116mpbird 247 . . . . . . . . . . . . . . 15 (𝜑 → sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ≤ 𝐶)
1181, 117syl5eqbr 4822 . . . . . . . . . . . . . 14 (𝜑𝑆𝐶)
11943, 23leloed 10385 . . . . . . . . . . . . . 14 (𝜑 → (𝑆𝐶 ↔ (𝑆 < 𝐶𝑆 = 𝐶)))
120118, 119mpbid 222 . . . . . . . . . . . . 13 (𝜑 → (𝑆 < 𝐶𝑆 = 𝐶))
121120ord 853 . . . . . . . . . . . 12 (𝜑 → (¬ 𝑆 < 𝐶𝑆 = 𝐶))
122 elndif 3885 . . . . . . . . . . . . . . 15 (𝐶𝐴 → ¬ 𝐶 ∈ (ℝ ∖ 𝐴))
1238, 122syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝐶 ∈ (ℝ ∖ 𝐴))
124 inss1 3981 . . . . . . . . . . . . . . . 16 (𝑉𝐴) ⊆ 𝑉
125124, 7sseldi 3750 . . . . . . . . . . . . . . 15 (𝜑𝐶𝑉)
126 elin 3947 . . . . . . . . . . . . . . . 16 (𝐶 ∈ (𝑈𝑉) ↔ (𝐶𝑈𝐶𝑉))
127 reconnlem2.7 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈𝑉) ⊆ (ℝ ∖ 𝐴))
128127sseld 3751 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 ∈ (𝑈𝑉) → 𝐶 ∈ (ℝ ∖ 𝐴)))
129126, 128syl5bir 233 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶𝑈𝐶𝑉) → 𝐶 ∈ (ℝ ∖ 𝐴)))
130125, 129mpan2d 674 . . . . . . . . . . . . . 14 (𝜑 → (𝐶𝑈𝐶 ∈ (ℝ ∖ 𝐴)))
131123, 130mtod 189 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐶𝑈)
132 eleq1 2838 . . . . . . . . . . . . . 14 (𝑆 = 𝐶 → (𝑆𝑈𝐶𝑈))
133132notbid 307 . . . . . . . . . . . . 13 (𝑆 = 𝐶 → (¬ 𝑆𝑈 ↔ ¬ 𝐶𝑈))
134131, 133syl5ibrcom 237 . . . . . . . . . . . 12 (𝜑 → (𝑆 = 𝐶 → ¬ 𝑆𝑈))
135121, 134syld 47 . . . . . . . . . . 11 (𝜑 → (¬ 𝑆 < 𝐶 → ¬ 𝑆𝑈))
136135con4d 115 . . . . . . . . . 10 (𝜑 → (𝑆𝑈𝑆 < 𝐶))
137136imp 393 . . . . . . . . 9 ((𝜑𝑆𝑈) → 𝑆 < 𝐶)
138 mnfxr 10301 . . . . . . . . . . 11 -∞ ∈ ℝ*
139 elioo2 12420 . . . . . . . . . . 11 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*) → (𝑆 ∈ (-∞(,)𝐶) ↔ (𝑆 ∈ ℝ ∧ -∞ < 𝑆𝑆 < 𝐶)))
140138, 24, 139sylancr 575 . . . . . . . . . 10 (𝜑 → (𝑆 ∈ (-∞(,)𝐶) ↔ (𝑆 ∈ ℝ ∧ -∞ < 𝑆𝑆 < 𝐶)))
141140adantr 466 . . . . . . . . 9 ((𝜑𝑆𝑈) → (𝑆 ∈ (-∞(,)𝐶) ↔ (𝑆 ∈ ℝ ∧ -∞ < 𝑆𝑆 < 𝐶)))
142112, 114, 137, 141mpbir3and 1427 . . . . . . . 8 ((𝜑𝑆𝑈) → 𝑆 ∈ (-∞(,)𝐶))
143142ex 397 . . . . . . 7 (𝜑 → (𝑆𝑈𝑆 ∈ (-∞(,)𝐶)))
144143ancld 540 . . . . . 6 (𝜑 → (𝑆𝑈 → (𝑆𝑈𝑆 ∈ (-∞(,)𝐶))))
145 elin 3947 . . . . . . 7 (𝑆 ∈ (𝑈 ∩ (-∞(,)𝐶)) ↔ (𝑆𝑈𝑆 ∈ (-∞(,)𝐶)))
146 reconnlem2.2 . . . . . . . 8 (𝜑𝑈 ∈ (topGen‘ran (,)))
147 retop 22784 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
148 iooretop 22788 . . . . . . . . 9 (-∞(,)𝐶) ∈ (topGen‘ran (,))
149 inopn 20923 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ 𝑈 ∈ (topGen‘ran (,)) ∧ (-∞(,)𝐶) ∈ (topGen‘ran (,))) → (𝑈 ∩ (-∞(,)𝐶)) ∈ (topGen‘ran (,)))
150147, 148, 149mp3an13 1563 . . . . . . . 8 (𝑈 ∈ (topGen‘ran (,)) → (𝑈 ∩ (-∞(,)𝐶)) ∈ (topGen‘ran (,)))
151 eqid 2771 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
15284, 151tgioo 22818 . . . . . . . . . . 11 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
153152mopni2 22517 . . . . . . . . . 10 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (𝑈 ∩ (-∞(,)𝐶)) ∈ (topGen‘ran (,)) ∧ 𝑆 ∈ (𝑈 ∩ (-∞(,)𝐶))) → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶)))
154101, 153mp3an1 1559 . . . . . . . . 9 (((𝑈 ∩ (-∞(,)𝐶)) ∈ (topGen‘ran (,)) ∧ 𝑆 ∈ (𝑈 ∩ (-∞(,)𝐶))) → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶)))
155154ex 397 . . . . . . . 8 ((𝑈 ∩ (-∞(,)𝐶)) ∈ (topGen‘ran (,)) → (𝑆 ∈ (𝑈 ∩ (-∞(,)𝐶)) → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶))))
156146, 150, 1553syl 18 . . . . . . 7 (𝜑 → (𝑆 ∈ (𝑈 ∩ (-∞(,)𝐶)) → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶))))
157145, 156syl5bir 233 . . . . . 6 (𝜑 → ((𝑆𝑈𝑆 ∈ (-∞(,)𝐶)) → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶))))
158144, 157syld 47 . . . . 5 (𝜑 → (𝑆𝑈 → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑈 ∩ (-∞(,)𝐶))))
159111, 158mtod 189 . . . 4 (𝜑 → ¬ 𝑆𝑈)
160 ltsubrp 12068 . . . . . . . . 9 ((𝑆 ∈ ℝ ∧ 𝑟 ∈ ℝ+) → (𝑆𝑟) < 𝑆)
16143, 160sylan 569 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → (𝑆𝑟) < 𝑆)
162 rpre 12041 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
163 resubcl 10550 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑆𝑟) ∈ ℝ)
16443, 162, 163syl2an 583 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → (𝑆𝑟) ∈ ℝ)
165164, 47ltnled 10389 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → ((𝑆𝑟) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑆𝑟)))
166161, 165mpbid 222 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → ¬ 𝑆 ≤ (𝑆𝑟))
16784bl2ioo 22814 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑆𝑟)(,)(𝑆 + 𝑟)))
16843, 162, 167syl2an 583 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑆𝑟)(,)(𝑆 + 𝑟)))
169168sseq1d 3781 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → ((𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉 ↔ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉))
17015ad2antrr 705 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → (𝐵[,]𝐶) ⊆ 𝐴)
1712, 170syl5ss 3763 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → (𝑈 ∩ (𝐵[,]𝐶)) ⊆ 𝐴)
172171sselda 3752 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → 𝑤𝐴)
173 elndif 3885 . . . . . . . . . . . . . . 15 (𝑤𝐴 → ¬ 𝑤 ∈ (ℝ ∖ 𝐴))
174172, 173syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → ¬ 𝑤 ∈ (ℝ ∖ 𝐴))
175127ad3antrrr 709 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → (𝑈𝑉) ⊆ (ℝ ∖ 𝐴))
176 inss1 3981 . . . . . . . . . . . . . . . . . 18 (𝑈 ∩ (𝐵[,]𝐶)) ⊆ 𝑈
177 simprl 754 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)))
178176, 177sseldi 3750 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤𝑈)
179 simplr 752 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉)
18018ad3antrrr 709 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → (𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ)
181 simpr 471 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)))
182180, 181sseldd 3753 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → 𝑤 ∈ ℝ)
183182adantrr 696 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤 ∈ ℝ)
184 simprr 756 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → (𝑆𝑟) < 𝑤)
18547ad2antrr 705 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑆 ∈ ℝ)
186 simpllr 760 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑟 ∈ ℝ+)
187186rpred 12074 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑟 ∈ ℝ)
188185, 187readdcld 10274 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → (𝑆 + 𝑟) ∈ ℝ)
189180adantrr 696 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → (𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ)
19029ad3antrrr 709 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅)
19140ad3antrrr 709 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧)
192 suprub 11189 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ ∧ (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → 𝑤 ≤ sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ))
193189, 190, 191, 177, 192syl31anc 1479 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤 ≤ sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ))
194193, 1syl6breqr 4829 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤𝑆)
195185, 186ltaddrpd 12107 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑆 < (𝑆 + 𝑟))
196183, 185, 188, 194, 195lelttrd 10400 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤 < (𝑆 + 𝑟))
197164ad2antrr 705 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → (𝑆𝑟) ∈ ℝ)
198 rexr 10290 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆𝑟) ∈ ℝ → (𝑆𝑟) ∈ ℝ*)
199 rexr 10290 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 + 𝑟) ∈ ℝ → (𝑆 + 𝑟) ∈ ℝ*)
200 elioo2 12420 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆𝑟) ∈ ℝ* ∧ (𝑆 + 𝑟) ∈ ℝ*) → (𝑤 ∈ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ↔ (𝑤 ∈ ℝ ∧ (𝑆𝑟) < 𝑤𝑤 < (𝑆 + 𝑟))))
201198, 199, 200syl2an 583 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑟) ∈ ℝ ∧ (𝑆 + 𝑟) ∈ ℝ) → (𝑤 ∈ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ↔ (𝑤 ∈ ℝ ∧ (𝑆𝑟) < 𝑤𝑤 < (𝑆 + 𝑟))))
202197, 188, 201syl2anc 573 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → (𝑤 ∈ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ↔ (𝑤 ∈ ℝ ∧ (𝑆𝑟) < 𝑤𝑤 < (𝑆 + 𝑟))))
203183, 184, 196, 202mpbir3and 1427 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤 ∈ ((𝑆𝑟)(,)(𝑆 + 𝑟)))
204179, 203sseldd 3753 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤𝑉)
205178, 204elind 3949 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤 ∈ (𝑈𝑉))
206175, 205sseldd 3753 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ (𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶)) ∧ (𝑆𝑟) < 𝑤)) → 𝑤 ∈ (ℝ ∖ 𝐴))
207206expr 444 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → ((𝑆𝑟) < 𝑤𝑤 ∈ (ℝ ∖ 𝐴)))
208174, 207mtod 189 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → ¬ (𝑆𝑟) < 𝑤)
209164ad2antrr 705 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → (𝑆𝑟) ∈ ℝ)
210182, 209lenltd 10388 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → (𝑤 ≤ (𝑆𝑟) ↔ ¬ (𝑆𝑟) < 𝑤))
211208, 210mpbird 247 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) ∧ 𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))) → 𝑤 ≤ (𝑆𝑟))
212211ralrimiva 3115 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤 ≤ (𝑆𝑟))
21318ad2antrr 705 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → (𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ)
21429ad2antrr 705 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅)
21540ad2antrr 705 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧)
216164adantr 466 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → (𝑆𝑟) ∈ ℝ)
217 suprleub 11194 . . . . . . . . . . . 12 ((((𝑈 ∩ (𝐵[,]𝐶)) ⊆ ℝ ∧ (𝑈 ∩ (𝐵[,]𝐶)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤𝑧) ∧ (𝑆𝑟) ∈ ℝ) → (sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ≤ (𝑆𝑟) ↔ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤 ≤ (𝑆𝑟)))
218213, 214, 215, 216, 217syl31anc 1479 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → (sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ≤ (𝑆𝑟) ↔ ∀𝑤 ∈ (𝑈 ∩ (𝐵[,]𝐶))𝑤 ≤ (𝑆𝑟)))
219212, 218mpbird 247 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ≤ (𝑆𝑟))
2201, 219syl5eqbr 4822 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ ((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉) → 𝑆 ≤ (𝑆𝑟))
221220ex 397 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → (((𝑆𝑟)(,)(𝑆 + 𝑟)) ⊆ 𝑉𝑆 ≤ (𝑆𝑟)))
222169, 221sylbid 230 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → ((𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉𝑆 ≤ (𝑆𝑟)))
223166, 222mtod 189 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ¬ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉)
224223nrexdv 3149 . . . . 5 (𝜑 → ¬ ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉)
225 reconnlem2.3 . . . . . 6 (𝜑𝑉 ∈ (topGen‘ran (,)))
226152mopni2 22517 . . . . . . . 8 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝑉 ∈ (topGen‘ran (,)) ∧ 𝑆𝑉) → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉)
227101, 226mp3an1 1559 . . . . . . 7 ((𝑉 ∈ (topGen‘ran (,)) ∧ 𝑆𝑉) → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉)
228227ex 397 . . . . . 6 (𝑉 ∈ (topGen‘ran (,)) → (𝑆𝑉 → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉))
229225, 228syl 17 . . . . 5 (𝜑 → (𝑆𝑉 → ∃𝑟 ∈ ℝ+ (𝑆(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑉))
230224, 229mtod 189 . . . 4 (𝜑 → ¬ 𝑆𝑉)
231 ioran 968 . . . 4 (¬ (𝑆𝑈𝑆𝑉) ↔ (¬ 𝑆𝑈 ∧ ¬ 𝑆𝑉))
232159, 230, 231sylanbrc 572 . . 3 (𝜑 → ¬ (𝑆𝑈𝑆𝑉))
233 elun 3904 . . 3 (𝑆 ∈ (𝑈𝑉) ↔ (𝑆𝑈𝑆𝑉))
234232, 233sylnibr 318 . 2 (𝜑 → ¬ 𝑆 ∈ (𝑈𝑉))
235 elicc2 12442 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑆 ∈ (𝐵[,]𝐶) ↔ (𝑆 ∈ ℝ ∧ 𝐵𝑆𝑆𝐶)))
23621, 23, 235syl2anc 573 . . . . 5 (𝜑 → (𝑆 ∈ (𝐵[,]𝐶) ↔ (𝑆 ∈ ℝ ∧ 𝐵𝑆𝑆𝐶)))
23743, 64, 118, 236mpbir3and 1427 . . . 4 (𝜑𝑆 ∈ (𝐵[,]𝐶))
23815, 237sseldd 3753 . . 3 (𝜑𝑆𝐴)
239 ssel 3746 . . 3 (𝐴 ⊆ (𝑈𝑉) → (𝑆𝐴𝑆 ∈ (𝑈𝑉)))
240238, 239syl5com 31 . 2 (𝜑 → (𝐴 ⊆ (𝑈𝑉) → 𝑆 ∈ (𝑈𝑉)))
241234, 240mtod 189 1 (𝜑 → ¬ 𝐴 ⊆ (𝑈𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  cdif 3720  cun 3721  cin 3722  wss 3723  c0 4063   class class class wbr 4787   × cxp 5248  ran crn 5251  cres 5252  ccom 5254  cfv 6030  (class class class)co 6795  supcsup 8505  cr 10140   + caddc 10144  -∞cmnf 10277  *cxr 10278   < clt 10279  cle 10280  cmin 10471   / cdiv 10889  2c2 11275  +crp 12034  (,)cioo 12379  [,]cicc 12382  abscabs 14181  topGenctg 16305  ∞Metcxmt 19945  ballcbl 19947  MetOpencmopn 19950  Topctop 20917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-er 7899  df-map 8014  df-en 8113  df-dom 8114  df-sdom 8115  df-sup 8507  df-inf 8508  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-z 11584  df-uz 11893  df-q 11996  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-icc 12386  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-topgen 16311  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-top 20918  df-topon 20935  df-bases 20970
This theorem is referenced by:  reconn  22850
  Copyright terms: Public domain W3C validator