![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf32lem3 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 10436. Being a chain, difference sets are disjoint (one case). (Contributed by Stefan O'Rear, 5-Nov-2014.) |
Ref | Expression |
---|---|
isf32lem.a | ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
isf32lem.b | ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
isf32lem.c | ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
Ref | Expression |
---|---|
isf32lem3 | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4154 | . . . 4 ⊢ (𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) → 𝑎 ∈ (𝐹‘𝐴)) | |
2 | simpll 766 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝐴 ∈ ω) | |
3 | peano2 7929 | . . . . . . 7 ⊢ (𝐵 ∈ ω → suc 𝐵 ∈ ω) | |
4 | 3 | ad2antlr 726 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → suc 𝐵 ∈ ω) |
5 | nnord 7911 | . . . . . . . 8 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
6 | 5 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → Ord 𝐴) |
7 | simprl 770 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝐵 ∈ 𝐴) | |
8 | ordsucss 7854 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) | |
9 | 6, 7, 8 | sylc 65 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → suc 𝐵 ⊆ 𝐴) |
10 | simprr 772 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝜑) | |
11 | isf32lem.a | . . . . . . 7 ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) | |
12 | isf32lem.b | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) | |
13 | isf32lem.c | . . . . . . 7 ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
14 | 11, 12, 13 | isf32lem1 10422 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ (suc 𝐵 ⊆ 𝐴 ∧ 𝜑)) → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐵)) |
15 | 2, 4, 9, 10, 14 | syl22anc 838 | . . . . 5 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐵)) |
16 | 15 | sseld 4007 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝑎 ∈ (𝐹‘𝐴) → 𝑎 ∈ (𝐹‘suc 𝐵))) |
17 | elndif 4156 | . . . 4 ⊢ (𝑎 ∈ (𝐹‘suc 𝐵) → ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) | |
18 | 1, 16, 17 | syl56 36 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) → ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵)))) |
19 | 18 | ralrimiv 3151 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → ∀𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) |
20 | disj 4473 | . 2 ⊢ ((((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅ ↔ ∀𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) | |
21 | 19, 20 | sylibr 234 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 ∩ cint 4970 ran crn 5701 Ord word 6394 suc csuc 6397 ⟶wf 6569 ‘cfv 6573 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fv 6581 df-om 7904 |
This theorem is referenced by: isf32lem4 10425 |
Copyright terms: Public domain | W3C validator |