Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isf32lem3 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 10169. Being a chain, difference sets are disjoint (one case). (Contributed by Stefan O'Rear, 5-Nov-2014.) |
Ref | Expression |
---|---|
isf32lem.a | ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
isf32lem.b | ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
isf32lem.c | ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
Ref | Expression |
---|---|
isf32lem3 | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4067 | . . . 4 ⊢ (𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) → 𝑎 ∈ (𝐹‘𝐴)) | |
2 | simpll 765 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝐴 ∈ ω) | |
3 | peano2 7769 | . . . . . . 7 ⊢ (𝐵 ∈ ω → suc 𝐵 ∈ ω) | |
4 | 3 | ad2antlr 725 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → suc 𝐵 ∈ ω) |
5 | nnord 7752 | . . . . . . . 8 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
6 | 5 | ad2antrr 724 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → Ord 𝐴) |
7 | simprl 769 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝐵 ∈ 𝐴) | |
8 | ordsucss 7697 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) | |
9 | 6, 7, 8 | sylc 65 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → suc 𝐵 ⊆ 𝐴) |
10 | simprr 771 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝜑) | |
11 | isf32lem.a | . . . . . . 7 ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) | |
12 | isf32lem.b | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) | |
13 | isf32lem.c | . . . . . . 7 ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
14 | 11, 12, 13 | isf32lem1 10155 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ (suc 𝐵 ⊆ 𝐴 ∧ 𝜑)) → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐵)) |
15 | 2, 4, 9, 10, 14 | syl22anc 837 | . . . . 5 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐵)) |
16 | 15 | sseld 3925 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝑎 ∈ (𝐹‘𝐴) → 𝑎 ∈ (𝐹‘suc 𝐵))) |
17 | elndif 4069 | . . . 4 ⊢ (𝑎 ∈ (𝐹‘suc 𝐵) → ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) | |
18 | 1, 16, 17 | syl56 36 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) → ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵)))) |
19 | 18 | ralrimiv 3139 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → ∀𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) |
20 | disj 4387 | . 2 ⊢ ((((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅ ↔ ∀𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) | |
21 | 19, 20 | sylibr 233 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ∖ cdif 3889 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 𝒫 cpw 4539 ∩ cint 4886 ran crn 5601 Ord word 6280 suc csuc 6283 ⟶wf 6454 ‘cfv 6458 ωcom 7744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-tr 5199 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fv 6466 df-om 7745 |
This theorem is referenced by: isf32lem4 10158 |
Copyright terms: Public domain | W3C validator |