MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem3 Structured version   Visualization version   GIF version

Theorem isf32lem3 10157
Description: Lemma for isfin3-2 10169. Being a chain, difference sets are disjoint (one case). (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
Assertion
Ref Expression
isf32lem3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem isf32lem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eldifi 4067 . . . 4 (𝑎 ∈ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) → 𝑎 ∈ (𝐹𝐴))
2 simpll 765 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → 𝐴 ∈ ω)
3 peano2 7769 . . . . . . 7 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
43ad2antlr 725 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → suc 𝐵 ∈ ω)
5 nnord 7752 . . . . . . . 8 (𝐴 ∈ ω → Ord 𝐴)
65ad2antrr 724 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → Ord 𝐴)
7 simprl 769 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → 𝐵𝐴)
8 ordsucss 7697 . . . . . . 7 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
96, 7, 8sylc 65 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → suc 𝐵𝐴)
10 simprr 771 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → 𝜑)
11 isf32lem.a . . . . . . 7 (𝜑𝐹:ω⟶𝒫 𝐺)
12 isf32lem.b . . . . . . 7 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
13 isf32lem.c . . . . . . 7 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
1411, 12, 13isf32lem1 10155 . . . . . 6 (((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ (suc 𝐵𝐴𝜑)) → (𝐹𝐴) ⊆ (𝐹‘suc 𝐵))
152, 4, 9, 10, 14syl22anc 837 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (𝐹𝐴) ⊆ (𝐹‘suc 𝐵))
1615sseld 3925 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (𝑎 ∈ (𝐹𝐴) → 𝑎 ∈ (𝐹‘suc 𝐵)))
17 elndif 4069 . . . 4 (𝑎 ∈ (𝐹‘suc 𝐵) → ¬ 𝑎 ∈ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵)))
181, 16, 17syl56 36 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (𝑎 ∈ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) → ¬ 𝑎 ∈ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))))
1918ralrimiv 3139 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → ∀𝑎 ∈ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵)))
20 disj 4387 . 2 ((((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅ ↔ ∀𝑎 ∈ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵)))
2119, 20sylibr 233 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1539  wcel 2104  wral 3062  cdif 3889  cin 3891  wss 3892  c0 4262  𝒫 cpw 4539   cint 4886  ran crn 5601  Ord word 6280  suc csuc 6283  wf 6454  cfv 6458  ωcom 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-tr 5199  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fv 6466  df-om 7745
This theorem is referenced by:  isf32lem4  10158
  Copyright terms: Public domain W3C validator