![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf32lem3 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 10358. Being a chain, difference sets are disjoint (one case). (Contributed by Stefan O'Rear, 5-Nov-2014.) |
Ref | Expression |
---|---|
isf32lem.a | ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
isf32lem.b | ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
isf32lem.c | ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
Ref | Expression |
---|---|
isf32lem3 | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4118 | . . . 4 ⊢ (𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) → 𝑎 ∈ (𝐹‘𝐴)) | |
2 | simpll 764 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝐴 ∈ ω) | |
3 | peano2 7874 | . . . . . . 7 ⊢ (𝐵 ∈ ω → suc 𝐵 ∈ ω) | |
4 | 3 | ad2antlr 724 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → suc 𝐵 ∈ ω) |
5 | nnord 7856 | . . . . . . . 8 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
6 | 5 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → Ord 𝐴) |
7 | simprl 768 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝐵 ∈ 𝐴) | |
8 | ordsucss 7799 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) | |
9 | 6, 7, 8 | sylc 65 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → suc 𝐵 ⊆ 𝐴) |
10 | simprr 770 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝜑) | |
11 | isf32lem.a | . . . . . . 7 ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) | |
12 | isf32lem.b | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) | |
13 | isf32lem.c | . . . . . . 7 ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
14 | 11, 12, 13 | isf32lem1 10344 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ (suc 𝐵 ⊆ 𝐴 ∧ 𝜑)) → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐵)) |
15 | 2, 4, 9, 10, 14 | syl22anc 836 | . . . . 5 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐵)) |
16 | 15 | sseld 3973 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝑎 ∈ (𝐹‘𝐴) → 𝑎 ∈ (𝐹‘suc 𝐵))) |
17 | elndif 4120 | . . . 4 ⊢ (𝑎 ∈ (𝐹‘suc 𝐵) → ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) | |
18 | 1, 16, 17 | syl56 36 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) → ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵)))) |
19 | 18 | ralrimiv 3137 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → ∀𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) |
20 | disj 4439 | . 2 ⊢ ((((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅ ↔ ∀𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) | |
21 | 19, 20 | sylibr 233 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∖ cdif 3937 ∩ cin 3939 ⊆ wss 3940 ∅c0 4314 𝒫 cpw 4594 ∩ cint 4940 ran crn 5667 Ord word 6353 suc csuc 6356 ⟶wf 6529 ‘cfv 6533 ωcom 7848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-tr 5256 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fv 6541 df-om 7849 |
This theorem is referenced by: isf32lem4 10347 |
Copyright terms: Public domain | W3C validator |