MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem3 Structured version   Visualization version   GIF version

Theorem isf32lem3 10369
Description: Lemma for isfin3-2 10381. Being a chain, difference sets are disjoint (one case). (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
Assertion
Ref Expression
isf32lem3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem isf32lem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eldifi 4106 . . . 4 (𝑎 ∈ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) → 𝑎 ∈ (𝐹𝐴))
2 simpll 766 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → 𝐴 ∈ ω)
3 peano2 7886 . . . . . . 7 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
43ad2antlr 727 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → suc 𝐵 ∈ ω)
5 nnord 7869 . . . . . . . 8 (𝐴 ∈ ω → Ord 𝐴)
65ad2antrr 726 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → Ord 𝐴)
7 simprl 770 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → 𝐵𝐴)
8 ordsucss 7812 . . . . . . 7 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
96, 7, 8sylc 65 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → suc 𝐵𝐴)
10 simprr 772 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → 𝜑)
11 isf32lem.a . . . . . . 7 (𝜑𝐹:ω⟶𝒫 𝐺)
12 isf32lem.b . . . . . . 7 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
13 isf32lem.c . . . . . . 7 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
1411, 12, 13isf32lem1 10367 . . . . . 6 (((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ (suc 𝐵𝐴𝜑)) → (𝐹𝐴) ⊆ (𝐹‘suc 𝐵))
152, 4, 9, 10, 14syl22anc 838 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (𝐹𝐴) ⊆ (𝐹‘suc 𝐵))
1615sseld 3957 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (𝑎 ∈ (𝐹𝐴) → 𝑎 ∈ (𝐹‘suc 𝐵)))
17 elndif 4108 . . . 4 (𝑎 ∈ (𝐹‘suc 𝐵) → ¬ 𝑎 ∈ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵)))
181, 16, 17syl56 36 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (𝑎 ∈ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) → ¬ 𝑎 ∈ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))))
1918ralrimiv 3131 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → ∀𝑎 ∈ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵)))
20 disj 4425 . 2 ((((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅ ↔ ∀𝑎 ∈ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵)))
2119, 20sylibr 234 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  cdif 3923  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575   cint 4922  ran crn 5655  Ord word 6351  suc csuc 6354  wf 6527  cfv 6531  ωcom 7861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fv 6539  df-om 7862
This theorem is referenced by:  isf32lem4  10370
  Copyright terms: Public domain W3C validator