![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf32lem3 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 10404. Being a chain, difference sets are disjoint (one case). (Contributed by Stefan O'Rear, 5-Nov-2014.) |
Ref | Expression |
---|---|
isf32lem.a | ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
isf32lem.b | ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
isf32lem.c | ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
Ref | Expression |
---|---|
isf32lem3 | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4140 | . . . 4 ⊢ (𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) → 𝑎 ∈ (𝐹‘𝐴)) | |
2 | simpll 767 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝐴 ∈ ω) | |
3 | peano2 7912 | . . . . . . 7 ⊢ (𝐵 ∈ ω → suc 𝐵 ∈ ω) | |
4 | 3 | ad2antlr 727 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → suc 𝐵 ∈ ω) |
5 | nnord 7894 | . . . . . . . 8 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
6 | 5 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → Ord 𝐴) |
7 | simprl 771 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝐵 ∈ 𝐴) | |
8 | ordsucss 7837 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) | |
9 | 6, 7, 8 | sylc 65 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → suc 𝐵 ⊆ 𝐴) |
10 | simprr 773 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝜑) | |
11 | isf32lem.a | . . . . . . 7 ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) | |
12 | isf32lem.b | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) | |
13 | isf32lem.c | . . . . . . 7 ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
14 | 11, 12, 13 | isf32lem1 10390 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ (suc 𝐵 ⊆ 𝐴 ∧ 𝜑)) → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐵)) |
15 | 2, 4, 9, 10, 14 | syl22anc 839 | . . . . 5 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐵)) |
16 | 15 | sseld 3993 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝑎 ∈ (𝐹‘𝐴) → 𝑎 ∈ (𝐹‘suc 𝐵))) |
17 | elndif 4142 | . . . 4 ⊢ (𝑎 ∈ (𝐹‘suc 𝐵) → ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) | |
18 | 1, 16, 17 | syl56 36 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) → ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵)))) |
19 | 18 | ralrimiv 3142 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → ∀𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) |
20 | disj 4455 | . 2 ⊢ ((((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅ ↔ ∀𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) | |
21 | 19, 20 | sylibr 234 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∖ cdif 3959 ∩ cin 3961 ⊆ wss 3962 ∅c0 4338 𝒫 cpw 4604 ∩ cint 4950 ran crn 5689 Ord word 6384 suc csuc 6387 ⟶wf 6558 ‘cfv 6562 ωcom 7886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fv 6570 df-om 7887 |
This theorem is referenced by: isf32lem4 10393 |
Copyright terms: Public domain | W3C validator |