Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isf32lem3 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 9870. Being a chain, difference sets are disjoint (one case). (Contributed by Stefan O'Rear, 5-Nov-2014.) |
Ref | Expression |
---|---|
isf32lem.a | ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
isf32lem.b | ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
isf32lem.c | ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
Ref | Expression |
---|---|
isf32lem3 | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4018 | . . . 4 ⊢ (𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) → 𝑎 ∈ (𝐹‘𝐴)) | |
2 | simpll 767 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝐴 ∈ ω) | |
3 | peano2 7624 | . . . . . . 7 ⊢ (𝐵 ∈ ω → suc 𝐵 ∈ ω) | |
4 | 3 | ad2antlr 727 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → suc 𝐵 ∈ ω) |
5 | nnord 7610 | . . . . . . . 8 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
6 | 5 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → Ord 𝐴) |
7 | simprl 771 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝐵 ∈ 𝐴) | |
8 | ordsucss 7555 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) | |
9 | 6, 7, 8 | sylc 65 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → suc 𝐵 ⊆ 𝐴) |
10 | simprr 773 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → 𝜑) | |
11 | isf32lem.a | . . . . . . 7 ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) | |
12 | isf32lem.b | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) | |
13 | isf32lem.c | . . . . . . 7 ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
14 | 11, 12, 13 | isf32lem1 9856 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ (suc 𝐵 ⊆ 𝐴 ∧ 𝜑)) → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐵)) |
15 | 2, 4, 9, 10, 14 | syl22anc 838 | . . . . 5 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐵)) |
16 | 15 | sseld 3877 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝑎 ∈ (𝐹‘𝐴) → 𝑎 ∈ (𝐹‘suc 𝐵))) |
17 | elndif 4020 | . . . 4 ⊢ (𝑎 ∈ (𝐹‘suc 𝐵) → ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) | |
18 | 1, 16, 17 | syl56 36 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) → ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵)))) |
19 | 18 | ralrimiv 3096 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → ∀𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) |
20 | disj 4338 | . 2 ⊢ ((((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅ ↔ ∀𝑎 ∈ ((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) | |
21 | 19, 20 | sylibr 237 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3054 ∖ cdif 3841 ∩ cin 3843 ⊆ wss 3844 ∅c0 4212 𝒫 cpw 4489 ∩ cint 4837 ran crn 5527 Ord word 6172 suc csuc 6175 ⟶wf 6336 ‘cfv 6340 ωcom 7602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-11 2162 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 ax-un 7482 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3401 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-tr 5138 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fv 6348 df-om 7603 |
This theorem is referenced by: isf32lem4 9859 |
Copyright terms: Public domain | W3C validator |