MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1dm Structured version   Visualization version   GIF version

Theorem o1dm 15227
Description: An eventually bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
o1dm (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)

Proof of Theorem o1dm
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elo1 15223 . . 3 (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
21simplbi 498 . 2 (𝐹 ∈ 𝑂(1) → 𝐹 ∈ (ℂ ↑pm ℝ))
3 cnex 10940 . . . 4 ℂ ∈ V
4 reex 10950 . . . 4 ℝ ∈ V
53, 4elpm2 8650 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
65simprbi 497 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
72, 6syl 17 1 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wral 3064  wrex 3065  cin 3886  wss 3887   class class class wbr 5074  dom cdm 5585  wf 6423  cfv 6427  (class class class)co 7268  pm cpm 8604  cc 10857  cr 10858  +∞cpnf 10994  cle 10998  [,)cico 13069  abscabs 14933  𝑂(1)co1 15183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-opab 5137  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-fv 6435  df-ov 7271  df-oprab 7272  df-mpo 7273  df-pm 8606  df-o1 15187
This theorem is referenced by:  o1bdd  15228  lo1o1  15229  o1lo1  15234  o1lo12  15235  o1co  15283  o1of2  15310  o1rlimmul  15316  o1add2  15321  o1mul2  15322  o1sub2  15323  o1dif  15327  o1cxp  26112
  Copyright terms: Public domain W3C validator