| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o1dm | Structured version Visualization version GIF version | ||
| Description: An eventually bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| o1dm | ⊢ (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elo1 15425 | . . 3 ⊢ (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) | |
| 2 | 1 | simplbi 497 | . 2 ⊢ (𝐹 ∈ 𝑂(1) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| 3 | cnex 11079 | . . . 4 ⊢ ℂ ∈ V | |
| 4 | reex 11089 | . . . 4 ⊢ ℝ ∈ V | |
| 5 | 3, 4 | elpm2 8793 | . . 3 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
| 6 | 5 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ) |
| 7 | 2, 6 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 ∀wral 3045 ∃wrex 3054 ∩ cin 3899 ⊆ wss 3900 class class class wbr 5089 dom cdm 5614 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ↑pm cpm 8746 ℂcc 10996 ℝcr 10997 +∞cpnf 11135 ≤ cle 11139 [,)cico 13239 abscabs 15133 𝑂(1)co1 15385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-pm 8748 df-o1 15389 |
| This theorem is referenced by: o1bdd 15430 lo1o1 15431 o1lo1 15436 o1lo12 15437 o1co 15485 o1of2 15512 o1rlimmul 15518 o1add2 15523 o1mul2 15524 o1sub2 15525 o1dif 15529 o1cxp 26905 |
| Copyright terms: Public domain | W3C validator |