MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1dm Structured version   Visualization version   GIF version

Theorem o1dm 15167
Description: An eventually bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
o1dm (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)

Proof of Theorem o1dm
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elo1 15163 . . 3 (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
21simplbi 497 . 2 (𝐹 ∈ 𝑂(1) → 𝐹 ∈ (ℂ ↑pm ℝ))
3 cnex 10883 . . . 4 ℂ ∈ V
4 reex 10893 . . . 4 ℝ ∈ V
53, 4elpm2 8620 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
65simprbi 496 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
72, 6syl 17 1 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3063  wrex 3064  cin 3882  wss 3883   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  pm cpm 8574  cc 10800  cr 10801  +∞cpnf 10937  cle 10941  [,)cico 13010  abscabs 14873  𝑂(1)co1 15123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-pm 8576  df-o1 15127
This theorem is referenced by:  o1bdd  15168  lo1o1  15169  o1lo1  15174  o1lo12  15175  o1co  15223  o1of2  15250  o1rlimmul  15256  o1add2  15261  o1mul2  15262  o1sub2  15263  o1dif  15267  o1cxp  26029
  Copyright terms: Public domain W3C validator