| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o1dm | Structured version Visualization version GIF version | ||
| Description: An eventually bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| o1dm | ⊢ (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elo1 15499 | . . 3 ⊢ (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) | |
| 2 | 1 | simplbi 497 | . 2 ⊢ (𝐹 ∈ 𝑂(1) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| 3 | cnex 11156 | . . . 4 ⊢ ℂ ∈ V | |
| 4 | reex 11166 | . . . 4 ⊢ ℝ ∈ V | |
| 5 | 3, 4 | elpm2 8850 | . . 3 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
| 6 | 5 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ) |
| 7 | 2, 6 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∩ cin 3916 ⊆ wss 3917 class class class wbr 5110 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑pm cpm 8803 ℂcc 11073 ℝcr 11074 +∞cpnf 11212 ≤ cle 11216 [,)cico 13315 abscabs 15207 𝑂(1)co1 15459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-pm 8805 df-o1 15463 |
| This theorem is referenced by: o1bdd 15504 lo1o1 15505 o1lo1 15510 o1lo12 15511 o1co 15559 o1of2 15586 o1rlimmul 15592 o1add2 15597 o1mul2 15598 o1sub2 15599 o1dif 15603 o1cxp 26892 |
| Copyright terms: Public domain | W3C validator |