MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1dm Structured version   Visualization version   GIF version

Theorem o1dm 15500
Description: An eventually bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
o1dm (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)

Proof of Theorem o1dm
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elo1 15496 . . 3 (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
21simplbi 497 . 2 (𝐹 ∈ 𝑂(1) → 𝐹 ∈ (ℂ ↑pm ℝ))
3 cnex 11213 . . . 4 ℂ ∈ V
4 reex 11223 . . . 4 ℝ ∈ V
53, 4elpm2 8886 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
65simprbi 496 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
72, 6syl 17 1 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  wral 3057  wrex 3066  cin 3944  wss 3945   class class class wbr 5142  dom cdm 5672  wf 6538  cfv 6542  (class class class)co 7414  pm cpm 8839  cc 11130  cr 11131  +∞cpnf 11269  cle 11273  [,)cico 13352  abscabs 15207  𝑂(1)co1 15456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-pm 8841  df-o1 15460
This theorem is referenced by:  o1bdd  15501  lo1o1  15502  o1lo1  15507  o1lo12  15508  o1co  15556  o1of2  15583  o1rlimmul  15589  o1add2  15594  o1mul2  15595  o1sub2  15596  o1dif  15600  o1cxp  26900
  Copyright terms: Public domain W3C validator