![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o1dm | Structured version Visualization version GIF version |
Description: An eventually bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
o1dm | β’ (πΉ β π(1) β dom πΉ β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elo1 15472 | . . 3 β’ (πΉ β π(1) β (πΉ β (β βpm β) β§ βπ₯ β β βπ β β βπ¦ β (dom πΉ β© (π₯[,)+β))(absβ(πΉβπ¦)) β€ π)) | |
2 | 1 | simplbi 498 | . 2 β’ (πΉ β π(1) β πΉ β (β βpm β)) |
3 | cnex 11193 | . . . 4 β’ β β V | |
4 | reex 11203 | . . . 4 β’ β β V | |
5 | 3, 4 | elpm2 8870 | . . 3 β’ (πΉ β (β βpm β) β (πΉ:dom πΉβΆβ β§ dom πΉ β β)) |
6 | 5 | simprbi 497 | . 2 β’ (πΉ β (β βpm β) β dom πΉ β β) |
7 | 2, 6 | syl 17 | 1 β’ (πΉ β π(1) β dom πΉ β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2106 βwral 3061 βwrex 3070 β© cin 3947 β wss 3948 class class class wbr 5148 dom cdm 5676 βΆwf 6539 βcfv 6543 (class class class)co 7411 βpm cpm 8823 βcc 11110 βcr 11111 +βcpnf 11247 β€ cle 11251 [,)cico 13328 abscabs 15183 π(1)co1 15432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-pm 8825 df-o1 15436 |
This theorem is referenced by: o1bdd 15477 lo1o1 15478 o1lo1 15483 o1lo12 15484 o1co 15532 o1of2 15559 o1rlimmul 15565 o1add2 15570 o1mul2 15571 o1sub2 15572 o1dif 15576 o1cxp 26486 |
Copyright terms: Public domain | W3C validator |