| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o1dm | Structured version Visualization version GIF version | ||
| Description: An eventually bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| o1dm | ⊢ (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elo1 15443 | . . 3 ⊢ (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) | |
| 2 | 1 | simplbi 497 | . 2 ⊢ (𝐹 ∈ 𝑂(1) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| 3 | cnex 11097 | . . . 4 ⊢ ℂ ∈ V | |
| 4 | reex 11107 | . . . 4 ⊢ ℝ ∈ V | |
| 5 | 3, 4 | elpm2 8807 | . . 3 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
| 6 | 5 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ) |
| 7 | 2, 6 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∀wral 3049 ∃wrex 3058 ∩ cin 3898 ⊆ wss 3899 class class class wbr 5095 dom cdm 5621 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ↑pm cpm 8760 ℂcc 11014 ℝcr 11015 +∞cpnf 11153 ≤ cle 11157 [,)cico 13257 abscabs 15151 𝑂(1)co1 15403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-pm 8762 df-o1 15407 |
| This theorem is referenced by: o1bdd 15448 lo1o1 15449 o1lo1 15454 o1lo12 15455 o1co 15503 o1of2 15530 o1rlimmul 15536 o1add2 15541 o1mul2 15542 o1sub2 15543 o1dif 15547 o1cxp 26922 |
| Copyright terms: Public domain | W3C validator |