![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o1f | Structured version Visualization version GIF version |
Description: An eventually bounded function is a function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
o1f | ⊢ (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elo1 15572 | . . 3 ⊢ (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) | |
2 | 1 | simplbi 497 | . 2 ⊢ (𝐹 ∈ 𝑂(1) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
3 | cnex 11265 | . . . 4 ⊢ ℂ ∈ V | |
4 | reex 11275 | . . . 4 ⊢ ℝ ∈ V | |
5 | 3, 4 | elpm2 8932 | . . 3 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
6 | 5 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ) |
7 | 2, 6 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑pm cpm 8885 ℂcc 11182 ℝcr 11183 +∞cpnf 11321 ≤ cle 11325 [,)cico 13409 abscabs 15283 𝑂(1)co1 15532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-pm 8887 df-o1 15536 |
This theorem is referenced by: o1res 15606 o1of2 15659 o1rlimmul 15665 o1mptrcl 15669 o1fsum 15861 o1cxp 27036 dchrisum0 27582 |
Copyright terms: Public domain | W3C validator |