MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1f Structured version   Visualization version   GIF version

Theorem o1f 15480
Description: An eventually bounded function is a function. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
o1f (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ)

Proof of Theorem o1f
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elo1 15477 . . 3 (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
21simplbi 497 . 2 (𝐹 ∈ 𝑂(1) → 𝐹 ∈ (ℂ ↑pm ℝ))
3 cnex 11197 . . . 4 ℂ ∈ V
4 reex 11207 . . . 4 ℝ ∈ V
53, 4elpm2 8874 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
65simplbi 497 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ)
72, 6syl 17 1 (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  wral 3060  wrex 3069  cin 3947  wss 3948   class class class wbr 5148  dom cdm 5676  wf 6539  cfv 6543  (class class class)co 7412  pm cpm 8827  cc 11114  cr 11115  +∞cpnf 11252  cle 11256  [,)cico 13333  abscabs 15188  𝑂(1)co1 15437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-pm 8829  df-o1 15441
This theorem is referenced by:  o1res  15511  o1of2  15564  o1rlimmul  15570  o1mptrcl  15574  o1fsum  15766  o1cxp  26820  dchrisum0  27366
  Copyright terms: Public domain W3C validator