![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o1f | Structured version Visualization version GIF version |
Description: An eventually bounded function is a function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
o1f | ⊢ (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elo1 15477 | . . 3 ⊢ (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) | |
2 | 1 | simplbi 497 | . 2 ⊢ (𝐹 ∈ 𝑂(1) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
3 | cnex 11197 | . . . 4 ⊢ ℂ ∈ V | |
4 | reex 11207 | . . . 4 ⊢ ℝ ∈ V | |
5 | 3, 4 | elpm2 8874 | . . 3 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
6 | 5 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ) |
7 | 2, 6 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 ∩ cin 3947 ⊆ wss 3948 class class class wbr 5148 dom cdm 5676 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 ↑pm cpm 8827 ℂcc 11114 ℝcr 11115 +∞cpnf 11252 ≤ cle 11256 [,)cico 13333 abscabs 15188 𝑂(1)co1 15437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-pm 8829 df-o1 15441 |
This theorem is referenced by: o1res 15511 o1of2 15564 o1rlimmul 15570 o1mptrcl 15574 o1fsum 15766 o1cxp 26820 dchrisum0 27366 |
Copyright terms: Public domain | W3C validator |