MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1f Structured version   Visualization version   GIF version

Theorem o1f 15238
Description: An eventually bounded function is a function. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
o1f (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ)

Proof of Theorem o1f
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elo1 15235 . . 3 (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
21simplbi 498 . 2 (𝐹 ∈ 𝑂(1) → 𝐹 ∈ (ℂ ↑pm ℝ))
3 cnex 10952 . . . 4 ℂ ∈ V
4 reex 10962 . . . 4 ℝ ∈ V
53, 4elpm2 8662 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
65simplbi 498 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ)
72, 6syl 17 1 (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wral 3064  wrex 3065  cin 3886  wss 3887   class class class wbr 5074  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  pm cpm 8616  cc 10869  cr 10870  +∞cpnf 11006  cle 11010  [,)cico 13081  abscabs 14945  𝑂(1)co1 15195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-pm 8618  df-o1 15199
This theorem is referenced by:  o1res  15269  o1of2  15322  o1rlimmul  15328  o1mptrcl  15332  o1fsum  15525  o1cxp  26124  dchrisum0  26668
  Copyright terms: Public domain W3C validator