![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o1f | Structured version Visualization version GIF version |
Description: An eventually bounded function is a function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
o1f | β’ (πΉ β π(1) β πΉ:dom πΉβΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elo1 15475 | . . 3 β’ (πΉ β π(1) β (πΉ β (β βpm β) β§ βπ₯ β β βπ β β βπ¦ β (dom πΉ β© (π₯[,)+β))(absβ(πΉβπ¦)) β€ π)) | |
2 | 1 | simplbi 497 | . 2 β’ (πΉ β π(1) β πΉ β (β βpm β)) |
3 | cnex 11195 | . . . 4 β’ β β V | |
4 | reex 11205 | . . . 4 β’ β β V | |
5 | 3, 4 | elpm2 8872 | . . 3 β’ (πΉ β (β βpm β) β (πΉ:dom πΉβΆβ β§ dom πΉ β β)) |
6 | 5 | simplbi 497 | . 2 β’ (πΉ β (β βpm β) β πΉ:dom πΉβΆβ) |
7 | 2, 6 | syl 17 | 1 β’ (πΉ β π(1) β πΉ:dom πΉβΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2105 βwral 3060 βwrex 3069 β© cin 3947 β wss 3948 class class class wbr 5148 dom cdm 5676 βΆwf 6539 βcfv 6543 (class class class)co 7412 βpm cpm 8825 βcc 11112 βcr 11113 +βcpnf 11250 β€ cle 11254 [,)cico 13331 abscabs 15186 π(1)co1 15435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-pm 8827 df-o1 15439 |
This theorem is referenced by: o1res 15509 o1of2 15562 o1rlimmul 15568 o1mptrcl 15572 o1fsum 15764 o1cxp 26716 dchrisum0 27260 |
Copyright terms: Public domain | W3C validator |