MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bddrp Structured version   Visualization version   GIF version

Theorem lo1bddrp 14882
Description: Refine o1bdd2 14898 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.)
Hypotheses
Ref Expression
lo1bdd2.1 (𝜑𝐴 ⊆ ℝ)
lo1bdd2.2 (𝜑𝐶 ∈ ℝ)
lo1bdd2.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
lo1bdd2.4 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1bdd2.5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
lo1bdd2.6 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
Assertion
Ref Expression
lo1bddrp (𝜑 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑚,𝑀,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐵(𝑥)   𝐶(𝑚)   𝑀(𝑦)

Proof of Theorem lo1bddrp
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lo1bdd2.1 . . 3 (𝜑𝐴 ⊆ ℝ)
2 lo1bdd2.2 . . 3 (𝜑𝐶 ∈ ℝ)
3 lo1bdd2.3 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
4 lo1bdd2.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
5 lo1bdd2.5 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
6 lo1bdd2.6 . . 3 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
71, 2, 3, 4, 5, 6lo1bdd2 14881 . 2 (𝜑 → ∃𝑛 ∈ ℝ ∀𝑥𝐴 𝐵𝑛)
8 simpr 487 . . . . . . 7 ((𝜑𝑛 ∈ ℝ) → 𝑛 ∈ ℝ)
98recnd 10669 . . . . . 6 ((𝜑𝑛 ∈ ℝ) → 𝑛 ∈ ℂ)
109abscld 14796 . . . . 5 ((𝜑𝑛 ∈ ℝ) → (abs‘𝑛) ∈ ℝ)
119absge0d 14804 . . . . 5 ((𝜑𝑛 ∈ ℝ) → 0 ≤ (abs‘𝑛))
1210, 11ge0p1rpd 12462 . . . 4 ((𝜑𝑛 ∈ ℝ) → ((abs‘𝑛) + 1) ∈ ℝ+)
13 simplr 767 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
1410adantr 483 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝑛) ∈ ℝ)
15 peano2re 10813 . . . . . . . 8 ((abs‘𝑛) ∈ ℝ → ((abs‘𝑛) + 1) ∈ ℝ)
1614, 15syl 17 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝑛) + 1) ∈ ℝ)
1713leabsd 14774 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ≤ (abs‘𝑛))
1814lep1d 11571 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝑛) ≤ ((abs‘𝑛) + 1))
1913, 14, 16, 17, 18letrd 10797 . . . . . 6 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ≤ ((abs‘𝑛) + 1))
203adantlr 713 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
21 letr 10734 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ((abs‘𝑛) + 1) ∈ ℝ) → ((𝐵𝑛𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1)))
2220, 13, 16, 21syl3anc 1367 . . . . . 6 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑛𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1)))
2319, 22mpan2d 692 . . . . 5 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝑛𝐵 ≤ ((abs‘𝑛) + 1)))
2423ralimdva 3177 . . . 4 ((𝜑𝑛 ∈ ℝ) → (∀𝑥𝐴 𝐵𝑛 → ∀𝑥𝐴 𝐵 ≤ ((abs‘𝑛) + 1)))
25 brralrspcev 5126 . . . 4 ((((abs‘𝑛) + 1) ∈ ℝ+ ∧ ∀𝑥𝐴 𝐵 ≤ ((abs‘𝑛) + 1)) → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
2612, 24, 25syl6an 682 . . 3 ((𝜑𝑛 ∈ ℝ) → (∀𝑥𝐴 𝐵𝑛 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚))
2726rexlimdva 3284 . 2 (𝜑 → (∃𝑛 ∈ ℝ ∀𝑥𝐴 𝐵𝑛 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚))
287, 27mpd 15 1 (𝜑 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wral 3138  wrex 3139  wss 3936   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  cr 10536  1c1 10538   + caddc 10540   < clt 10675  cle 10676  +crp 12390  abscabs 14593  ≤𝑂(1)clo1 14844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-lo1 14848
This theorem is referenced by:  o1bddrp  14899  chpo1ubb  26057  pntrlog2bnd  26160
  Copyright terms: Public domain W3C validator