MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bddrp Structured version   Visualization version   GIF version

Theorem lo1bddrp 15573
Description: Refine o1bdd2 15589 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.)
Hypotheses
Ref Expression
lo1bdd2.1 (𝜑𝐴 ⊆ ℝ)
lo1bdd2.2 (𝜑𝐶 ∈ ℝ)
lo1bdd2.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
lo1bdd2.4 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1bdd2.5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
lo1bdd2.6 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
Assertion
Ref Expression
lo1bddrp (𝜑 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑚,𝑀,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐵(𝑥)   𝐶(𝑚)   𝑀(𝑦)

Proof of Theorem lo1bddrp
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lo1bdd2.1 . . 3 (𝜑𝐴 ⊆ ℝ)
2 lo1bdd2.2 . . 3 (𝜑𝐶 ∈ ℝ)
3 lo1bdd2.3 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
4 lo1bdd2.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
5 lo1bdd2.5 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
6 lo1bdd2.6 . . 3 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
71, 2, 3, 4, 5, 6lo1bdd2 15572 . 2 (𝜑 → ∃𝑛 ∈ ℝ ∀𝑥𝐴 𝐵𝑛)
8 simpr 484 . . . . . . 7 ((𝜑𝑛 ∈ ℝ) → 𝑛 ∈ ℝ)
98recnd 11320 . . . . . 6 ((𝜑𝑛 ∈ ℝ) → 𝑛 ∈ ℂ)
109abscld 15487 . . . . 5 ((𝜑𝑛 ∈ ℝ) → (abs‘𝑛) ∈ ℝ)
119absge0d 15495 . . . . 5 ((𝜑𝑛 ∈ ℝ) → 0 ≤ (abs‘𝑛))
1210, 11ge0p1rpd 13131 . . . 4 ((𝜑𝑛 ∈ ℝ) → ((abs‘𝑛) + 1) ∈ ℝ+)
13 simplr 768 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
1410adantr 480 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝑛) ∈ ℝ)
15 peano2re 11465 . . . . . . . 8 ((abs‘𝑛) ∈ ℝ → ((abs‘𝑛) + 1) ∈ ℝ)
1614, 15syl 17 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝑛) + 1) ∈ ℝ)
1713leabsd 15465 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ≤ (abs‘𝑛))
1814lep1d 12228 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝑛) ≤ ((abs‘𝑛) + 1))
1913, 14, 16, 17, 18letrd 11449 . . . . . 6 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ≤ ((abs‘𝑛) + 1))
203adantlr 714 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
21 letr 11386 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ((abs‘𝑛) + 1) ∈ ℝ) → ((𝐵𝑛𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1)))
2220, 13, 16, 21syl3anc 1371 . . . . . 6 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑛𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1)))
2319, 22mpan2d 693 . . . . 5 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝑛𝐵 ≤ ((abs‘𝑛) + 1)))
2423ralimdva 3173 . . . 4 ((𝜑𝑛 ∈ ℝ) → (∀𝑥𝐴 𝐵𝑛 → ∀𝑥𝐴 𝐵 ≤ ((abs‘𝑛) + 1)))
25 brralrspcev 5226 . . . 4 ((((abs‘𝑛) + 1) ∈ ℝ+ ∧ ∀𝑥𝐴 𝐵 ≤ ((abs‘𝑛) + 1)) → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
2612, 24, 25syl6an 683 . . 3 ((𝜑𝑛 ∈ ℝ) → (∀𝑥𝐴 𝐵𝑛 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚))
2726rexlimdva 3161 . 2 (𝜑 → (∃𝑛 ∈ ℝ ∀𝑥𝐴 𝐵𝑛 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚))
287, 27mpd 15 1 (𝜑 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  cmpt 5249  cfv 6575  (class class class)co 7450  cr 11185  1c1 11187   + caddc 11189   < clt 11326  cle 11327  +crp 13059  abscabs 15285  ≤𝑂(1)clo1 15535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-er 8765  df-pm 8889  df-en 9006  df-dom 9007  df-sdom 9008  df-sup 9513  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-n0 12556  df-z 12642  df-uz 12906  df-rp 13060  df-ico 13415  df-seq 14055  df-exp 14115  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287  df-lo1 15539
This theorem is referenced by:  o1bddrp  15590  chpo1ubb  27545  pntrlog2bnd  27648
  Copyright terms: Public domain W3C validator