Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lo1bddrp | Structured version Visualization version GIF version |
Description: Refine o1bdd2 15102 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.) |
Ref | Expression |
---|---|
lo1bdd2.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
lo1bdd2.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lo1bdd2.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
lo1bdd2.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
lo1bdd2.5 | ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) |
lo1bdd2.6 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝐵 ≤ 𝑀) |
Ref | Expression |
---|---|
lo1bddrp | ⊢ (𝜑 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lo1bdd2.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | lo1bdd2.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
3 | lo1bdd2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
4 | lo1bdd2.4 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) | |
5 | lo1bdd2.5 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) | |
6 | lo1bdd2.6 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝐵 ≤ 𝑀) | |
7 | 1, 2, 3, 4, 5, 6 | lo1bdd2 15085 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛) |
8 | simpr 488 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 𝑛 ∈ ℝ) | |
9 | 8 | recnd 10861 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 𝑛 ∈ ℂ) |
10 | 9 | abscld 15000 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (abs‘𝑛) ∈ ℝ) |
11 | 9 | absge0d 15008 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 0 ≤ (abs‘𝑛)) |
12 | 10, 11 | ge0p1rpd 12658 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → ((abs‘𝑛) + 1) ∈ ℝ+) |
13 | simplr 769 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ∈ ℝ) | |
14 | 10 | adantr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (abs‘𝑛) ∈ ℝ) |
15 | peano2re 11005 | . . . . . . . 8 ⊢ ((abs‘𝑛) ∈ ℝ → ((abs‘𝑛) + 1) ∈ ℝ) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘𝑛) + 1) ∈ ℝ) |
17 | 13 | leabsd 14978 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ≤ (abs‘𝑛)) |
18 | 14 | lep1d 11763 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (abs‘𝑛) ≤ ((abs‘𝑛) + 1)) |
19 | 13, 14, 16, 17, 18 | letrd 10989 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ≤ ((abs‘𝑛) + 1)) |
20 | 3 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
21 | letr 10926 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ((abs‘𝑛) + 1) ∈ ℝ) → ((𝐵 ≤ 𝑛 ∧ 𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1))) | |
22 | 20, 13, 16, 21 | syl3anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐵 ≤ 𝑛 ∧ 𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1))) |
23 | 19, 22 | mpan2d 694 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝑛 → 𝐵 ≤ ((abs‘𝑛) + 1))) |
24 | 23 | ralimdva 3100 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∀𝑥 ∈ 𝐴 𝐵 ≤ ((abs‘𝑛) + 1))) |
25 | brralrspcev 5113 | . . . 4 ⊢ ((((abs‘𝑛) + 1) ∈ ℝ+ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ ((abs‘𝑛) + 1)) → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) | |
26 | 12, 24, 25 | syl6an 684 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚)) |
27 | 26 | rexlimdva 3203 | . 2 ⊢ (𝜑 → (∃𝑛 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚)) |
28 | 7, 27 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 ⊆ wss 3866 class class class wbr 5053 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 ℝcr 10728 1c1 10730 + caddc 10732 < clt 10867 ≤ cle 10868 ℝ+crp 12586 abscabs 14797 ≤𝑂(1)clo1 15048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-pm 8511 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-ico 12941 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-lo1 15052 |
This theorem is referenced by: o1bddrp 15103 chpo1ubb 26362 pntrlog2bnd 26465 |
Copyright terms: Public domain | W3C validator |