| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lo1bddrp | Structured version Visualization version GIF version | ||
| Description: Refine o1bdd2 15448 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.) |
| Ref | Expression |
|---|---|
| lo1bdd2.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| lo1bdd2.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lo1bdd2.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| lo1bdd2.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
| lo1bdd2.5 | ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) |
| lo1bdd2.6 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝐵 ≤ 𝑀) |
| Ref | Expression |
|---|---|
| lo1bddrp | ⊢ (𝜑 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lo1bdd2.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | lo1bdd2.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 3 | lo1bdd2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 4 | lo1bdd2.4 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) | |
| 5 | lo1bdd2.5 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) | |
| 6 | lo1bdd2.6 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝐵 ≤ 𝑀) | |
| 7 | 1, 2, 3, 4, 5, 6 | lo1bdd2 15431 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛) |
| 8 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 𝑛 ∈ ℝ) | |
| 9 | 8 | recnd 11140 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 𝑛 ∈ ℂ) |
| 10 | 9 | abscld 15346 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (abs‘𝑛) ∈ ℝ) |
| 11 | 9 | absge0d 15354 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 0 ≤ (abs‘𝑛)) |
| 12 | 10, 11 | ge0p1rpd 12964 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → ((abs‘𝑛) + 1) ∈ ℝ+) |
| 13 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ∈ ℝ) | |
| 14 | 10 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (abs‘𝑛) ∈ ℝ) |
| 15 | peano2re 11286 | . . . . . . . 8 ⊢ ((abs‘𝑛) ∈ ℝ → ((abs‘𝑛) + 1) ∈ ℝ) | |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘𝑛) + 1) ∈ ℝ) |
| 17 | 13 | leabsd 15322 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ≤ (abs‘𝑛)) |
| 18 | 14 | lep1d 12053 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (abs‘𝑛) ≤ ((abs‘𝑛) + 1)) |
| 19 | 13, 14, 16, 17, 18 | letrd 11270 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ≤ ((abs‘𝑛) + 1)) |
| 20 | 3 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 21 | letr 11207 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ((abs‘𝑛) + 1) ∈ ℝ) → ((𝐵 ≤ 𝑛 ∧ 𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1))) | |
| 22 | 20, 13, 16, 21 | syl3anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐵 ≤ 𝑛 ∧ 𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1))) |
| 23 | 19, 22 | mpan2d 694 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝑛 → 𝐵 ≤ ((abs‘𝑛) + 1))) |
| 24 | 23 | ralimdva 3144 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∀𝑥 ∈ 𝐴 𝐵 ≤ ((abs‘𝑛) + 1))) |
| 25 | brralrspcev 5149 | . . . 4 ⊢ ((((abs‘𝑛) + 1) ∈ ℝ+ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ ((abs‘𝑛) + 1)) → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) | |
| 26 | 12, 24, 25 | syl6an 684 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚)) |
| 27 | 26 | rexlimdva 3133 | . 2 ⊢ (𝜑 → (∃𝑛 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚)) |
| 28 | 7, 27 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 ℝ+crp 12890 abscabs 15141 ≤𝑂(1)clo1 15394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-ico 13251 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-lo1 15398 |
| This theorem is referenced by: o1bddrp 15449 chpo1ubb 27419 pntrlog2bnd 27522 |
| Copyright terms: Public domain | W3C validator |