MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bddrp Structured version   Visualization version   GIF version

Theorem lo1bddrp 15498
Description: Refine o1bdd2 15514 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.)
Hypotheses
Ref Expression
lo1bdd2.1 (𝜑𝐴 ⊆ ℝ)
lo1bdd2.2 (𝜑𝐶 ∈ ℝ)
lo1bdd2.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
lo1bdd2.4 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1bdd2.5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
lo1bdd2.6 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
Assertion
Ref Expression
lo1bddrp (𝜑 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑚,𝑀,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐵(𝑥)   𝐶(𝑚)   𝑀(𝑦)

Proof of Theorem lo1bddrp
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lo1bdd2.1 . . 3 (𝜑𝐴 ⊆ ℝ)
2 lo1bdd2.2 . . 3 (𝜑𝐶 ∈ ℝ)
3 lo1bdd2.3 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
4 lo1bdd2.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
5 lo1bdd2.5 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
6 lo1bdd2.6 . . 3 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
71, 2, 3, 4, 5, 6lo1bdd2 15497 . 2 (𝜑 → ∃𝑛 ∈ ℝ ∀𝑥𝐴 𝐵𝑛)
8 simpr 484 . . . . . . 7 ((𝜑𝑛 ∈ ℝ) → 𝑛 ∈ ℝ)
98recnd 11220 . . . . . 6 ((𝜑𝑛 ∈ ℝ) → 𝑛 ∈ ℂ)
109abscld 15412 . . . . 5 ((𝜑𝑛 ∈ ℝ) → (abs‘𝑛) ∈ ℝ)
119absge0d 15420 . . . . 5 ((𝜑𝑛 ∈ ℝ) → 0 ≤ (abs‘𝑛))
1210, 11ge0p1rpd 13038 . . . 4 ((𝜑𝑛 ∈ ℝ) → ((abs‘𝑛) + 1) ∈ ℝ+)
13 simplr 768 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
1410adantr 480 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝑛) ∈ ℝ)
15 peano2re 11365 . . . . . . . 8 ((abs‘𝑛) ∈ ℝ → ((abs‘𝑛) + 1) ∈ ℝ)
1614, 15syl 17 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝑛) + 1) ∈ ℝ)
1713leabsd 15390 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ≤ (abs‘𝑛))
1814lep1d 12130 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝑛) ≤ ((abs‘𝑛) + 1))
1913, 14, 16, 17, 18letrd 11349 . . . . . 6 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ≤ ((abs‘𝑛) + 1))
203adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
21 letr 11286 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ((abs‘𝑛) + 1) ∈ ℝ) → ((𝐵𝑛𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1)))
2220, 13, 16, 21syl3anc 1373 . . . . . 6 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑛𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1)))
2319, 22mpan2d 694 . . . . 5 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝑛𝐵 ≤ ((abs‘𝑛) + 1)))
2423ralimdva 3147 . . . 4 ((𝜑𝑛 ∈ ℝ) → (∀𝑥𝐴 𝐵𝑛 → ∀𝑥𝐴 𝐵 ≤ ((abs‘𝑛) + 1)))
25 brralrspcev 5175 . . . 4 ((((abs‘𝑛) + 1) ∈ ℝ+ ∧ ∀𝑥𝐴 𝐵 ≤ ((abs‘𝑛) + 1)) → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
2612, 24, 25syl6an 684 . . 3 ((𝜑𝑛 ∈ ℝ) → (∀𝑥𝐴 𝐵𝑛 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚))
2726rexlimdva 3136 . 2 (𝜑 → (∃𝑛 ∈ ℝ ∀𝑥𝐴 𝐵𝑛 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚))
287, 27mpd 15 1 (𝜑 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3046  wrex 3055  wss 3922   class class class wbr 5115  cmpt 5196  cfv 6519  (class class class)co 7394  cr 11085  1c1 11087   + caddc 11089   < clt 11226  cle 11227  +crp 12965  abscabs 15210  ≤𝑂(1)clo1 15460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-er 8682  df-pm 8806  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9411  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-n0 12459  df-z 12546  df-uz 12810  df-rp 12966  df-ico 13325  df-seq 13977  df-exp 14037  df-cj 15075  df-re 15076  df-im 15077  df-sqrt 15211  df-abs 15212  df-lo1 15464
This theorem is referenced by:  o1bddrp  15515  chpo1ubb  27399  pntrlog2bnd  27502
  Copyright terms: Public domain W3C validator