MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bddrp Structured version   Visualization version   GIF version

Theorem lo1bddrp 15567
Description: Refine o1bdd2 15583 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.)
Hypotheses
Ref Expression
lo1bdd2.1 (𝜑𝐴 ⊆ ℝ)
lo1bdd2.2 (𝜑𝐶 ∈ ℝ)
lo1bdd2.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
lo1bdd2.4 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1bdd2.5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
lo1bdd2.6 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
Assertion
Ref Expression
lo1bddrp (𝜑 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑚,𝑀,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐵(𝑥)   𝐶(𝑚)   𝑀(𝑦)

Proof of Theorem lo1bddrp
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lo1bdd2.1 . . 3 (𝜑𝐴 ⊆ ℝ)
2 lo1bdd2.2 . . 3 (𝜑𝐶 ∈ ℝ)
3 lo1bdd2.3 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
4 lo1bdd2.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
5 lo1bdd2.5 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
6 lo1bdd2.6 . . 3 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
71, 2, 3, 4, 5, 6lo1bdd2 15566 . 2 (𝜑 → ∃𝑛 ∈ ℝ ∀𝑥𝐴 𝐵𝑛)
8 simpr 484 . . . . . . 7 ((𝜑𝑛 ∈ ℝ) → 𝑛 ∈ ℝ)
98recnd 11314 . . . . . 6 ((𝜑𝑛 ∈ ℝ) → 𝑛 ∈ ℂ)
109abscld 15481 . . . . 5 ((𝜑𝑛 ∈ ℝ) → (abs‘𝑛) ∈ ℝ)
119absge0d 15489 . . . . 5 ((𝜑𝑛 ∈ ℝ) → 0 ≤ (abs‘𝑛))
1210, 11ge0p1rpd 13125 . . . 4 ((𝜑𝑛 ∈ ℝ) → ((abs‘𝑛) + 1) ∈ ℝ+)
13 simplr 768 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
1410adantr 480 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝑛) ∈ ℝ)
15 peano2re 11459 . . . . . . . 8 ((abs‘𝑛) ∈ ℝ → ((abs‘𝑛) + 1) ∈ ℝ)
1614, 15syl 17 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝑛) + 1) ∈ ℝ)
1713leabsd 15459 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ≤ (abs‘𝑛))
1814lep1d 12222 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝑛) ≤ ((abs‘𝑛) + 1))
1913, 14, 16, 17, 18letrd 11443 . . . . . 6 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ≤ ((abs‘𝑛) + 1))
203adantlr 714 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
21 letr 11380 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ((abs‘𝑛) + 1) ∈ ℝ) → ((𝐵𝑛𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1)))
2220, 13, 16, 21syl3anc 1371 . . . . . 6 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑛𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1)))
2319, 22mpan2d 693 . . . . 5 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝑛𝐵 ≤ ((abs‘𝑛) + 1)))
2423ralimdva 3169 . . . 4 ((𝜑𝑛 ∈ ℝ) → (∀𝑥𝐴 𝐵𝑛 → ∀𝑥𝐴 𝐵 ≤ ((abs‘𝑛) + 1)))
25 brralrspcev 5229 . . . 4 ((((abs‘𝑛) + 1) ∈ ℝ+ ∧ ∀𝑥𝐴 𝐵 ≤ ((abs‘𝑛) + 1)) → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
2612, 24, 25syl6an 683 . . 3 ((𝜑𝑛 ∈ ℝ) → (∀𝑥𝐴 𝐵𝑛 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚))
2726rexlimdva 3157 . 2 (𝜑 → (∃𝑛 ∈ ℝ ∀𝑥𝐴 𝐵𝑛 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚))
287, 27mpd 15 1 (𝜑 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2103  wral 3063  wrex 3072  wss 3970   class class class wbr 5169  cmpt 5252  cfv 6572  (class class class)co 7445  cr 11179  1c1 11181   + caddc 11183   < clt 11320  cle 11321  +crp 13053  abscabs 15279  ≤𝑂(1)clo1 15529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-er 8759  df-pm 8883  df-en 9000  df-dom 9001  df-sdom 9002  df-sup 9507  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-n0 12550  df-z 12636  df-uz 12900  df-rp 13054  df-ico 13409  df-seq 14049  df-exp 14109  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-lo1 15533
This theorem is referenced by:  o1bddrp  15584  chpo1ubb  27534  pntrlog2bnd  27637
  Copyright terms: Public domain W3C validator