| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > lo1bddrp | Structured version Visualization version GIF version | ||
| Description: Refine o1bdd2 15558 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.) | 
| Ref | Expression | 
|---|---|
| lo1bdd2.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) | 
| lo1bdd2.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) | 
| lo1bdd2.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | 
| lo1bdd2.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) | 
| lo1bdd2.5 | ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) | 
| lo1bdd2.6 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝐵 ≤ 𝑀) | 
| Ref | Expression | 
|---|---|
| lo1bddrp | ⊢ (𝜑 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lo1bdd2.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | lo1bdd2.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 3 | lo1bdd2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 4 | lo1bdd2.4 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) | |
| 5 | lo1bdd2.5 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) | |
| 6 | lo1bdd2.6 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝐵 ≤ 𝑀) | |
| 7 | 1, 2, 3, 4, 5, 6 | lo1bdd2 15541 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛) | 
| 8 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 𝑛 ∈ ℝ) | |
| 9 | 8 | recnd 11270 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 𝑛 ∈ ℂ) | 
| 10 | 9 | abscld 15456 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (abs‘𝑛) ∈ ℝ) | 
| 11 | 9 | absge0d 15464 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 0 ≤ (abs‘𝑛)) | 
| 12 | 10, 11 | ge0p1rpd 13088 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → ((abs‘𝑛) + 1) ∈ ℝ+) | 
| 13 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ∈ ℝ) | |
| 14 | 10 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (abs‘𝑛) ∈ ℝ) | 
| 15 | peano2re 11415 | . . . . . . . 8 ⊢ ((abs‘𝑛) ∈ ℝ → ((abs‘𝑛) + 1) ∈ ℝ) | |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘𝑛) + 1) ∈ ℝ) | 
| 17 | 13 | leabsd 15434 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ≤ (abs‘𝑛)) | 
| 18 | 14 | lep1d 12180 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (abs‘𝑛) ≤ ((abs‘𝑛) + 1)) | 
| 19 | 13, 14, 16, 17, 18 | letrd 11399 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ≤ ((abs‘𝑛) + 1)) | 
| 20 | 3 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | 
| 21 | letr 11336 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ((abs‘𝑛) + 1) ∈ ℝ) → ((𝐵 ≤ 𝑛 ∧ 𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1))) | |
| 22 | 20, 13, 16, 21 | syl3anc 1372 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐵 ≤ 𝑛 ∧ 𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1))) | 
| 23 | 19, 22 | mpan2d 694 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝑛 → 𝐵 ≤ ((abs‘𝑛) + 1))) | 
| 24 | 23 | ralimdva 3154 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∀𝑥 ∈ 𝐴 𝐵 ≤ ((abs‘𝑛) + 1))) | 
| 25 | brralrspcev 5183 | . . . 4 ⊢ ((((abs‘𝑛) + 1) ∈ ℝ+ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ ((abs‘𝑛) + 1)) → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) | |
| 26 | 12, 24, 25 | syl6an 684 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚)) | 
| 27 | 26 | rexlimdva 3142 | . 2 ⊢ (𝜑 → (∃𝑛 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚)) | 
| 28 | 7, 27 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ⊆ wss 3931 class class class wbr 5123 ↦ cmpt 5205 ‘cfv 6540 (class class class)co 7412 ℝcr 11135 1c1 11137 + caddc 11139 < clt 11276 ≤ cle 11277 ℝ+crp 13015 abscabs 15254 ≤𝑂(1)clo1 15504 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-pm 8850 df-en 8967 df-dom 8968 df-sdom 8969 df-sup 9463 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-n0 12509 df-z 12596 df-uz 12860 df-rp 13016 df-ico 13374 df-seq 14024 df-exp 14084 df-cj 15119 df-re 15120 df-im 15121 df-sqrt 15255 df-abs 15256 df-lo1 15508 | 
| This theorem is referenced by: o1bddrp 15559 chpo1ubb 27460 pntrlog2bnd 27563 | 
| Copyright terms: Public domain | W3C validator |