MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bddrp Structured version   Visualization version   GIF version

Theorem lo1bddrp 15542
Description: Refine o1bdd2 15558 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.)
Hypotheses
Ref Expression
lo1bdd2.1 (𝜑𝐴 ⊆ ℝ)
lo1bdd2.2 (𝜑𝐶 ∈ ℝ)
lo1bdd2.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
lo1bdd2.4 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1bdd2.5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
lo1bdd2.6 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
Assertion
Ref Expression
lo1bddrp (𝜑 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑚,𝑀,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐵(𝑥)   𝐶(𝑚)   𝑀(𝑦)

Proof of Theorem lo1bddrp
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lo1bdd2.1 . . 3 (𝜑𝐴 ⊆ ℝ)
2 lo1bdd2.2 . . 3 (𝜑𝐶 ∈ ℝ)
3 lo1bdd2.3 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
4 lo1bdd2.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
5 lo1bdd2.5 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
6 lo1bdd2.6 . . 3 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
71, 2, 3, 4, 5, 6lo1bdd2 15541 . 2 (𝜑 → ∃𝑛 ∈ ℝ ∀𝑥𝐴 𝐵𝑛)
8 simpr 484 . . . . . . 7 ((𝜑𝑛 ∈ ℝ) → 𝑛 ∈ ℝ)
98recnd 11270 . . . . . 6 ((𝜑𝑛 ∈ ℝ) → 𝑛 ∈ ℂ)
109abscld 15456 . . . . 5 ((𝜑𝑛 ∈ ℝ) → (abs‘𝑛) ∈ ℝ)
119absge0d 15464 . . . . 5 ((𝜑𝑛 ∈ ℝ) → 0 ≤ (abs‘𝑛))
1210, 11ge0p1rpd 13088 . . . 4 ((𝜑𝑛 ∈ ℝ) → ((abs‘𝑛) + 1) ∈ ℝ+)
13 simplr 768 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
1410adantr 480 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝑛) ∈ ℝ)
15 peano2re 11415 . . . . . . . 8 ((abs‘𝑛) ∈ ℝ → ((abs‘𝑛) + 1) ∈ ℝ)
1614, 15syl 17 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝑛) + 1) ∈ ℝ)
1713leabsd 15434 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ≤ (abs‘𝑛))
1814lep1d 12180 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝑛) ≤ ((abs‘𝑛) + 1))
1913, 14, 16, 17, 18letrd 11399 . . . . . 6 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ≤ ((abs‘𝑛) + 1))
203adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
21 letr 11336 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ((abs‘𝑛) + 1) ∈ ℝ) → ((𝐵𝑛𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1)))
2220, 13, 16, 21syl3anc 1372 . . . . . 6 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑛𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1)))
2319, 22mpan2d 694 . . . . 5 (((𝜑𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝑛𝐵 ≤ ((abs‘𝑛) + 1)))
2423ralimdva 3154 . . . 4 ((𝜑𝑛 ∈ ℝ) → (∀𝑥𝐴 𝐵𝑛 → ∀𝑥𝐴 𝐵 ≤ ((abs‘𝑛) + 1)))
25 brralrspcev 5183 . . . 4 ((((abs‘𝑛) + 1) ∈ ℝ+ ∧ ∀𝑥𝐴 𝐵 ≤ ((abs‘𝑛) + 1)) → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
2612, 24, 25syl6an 684 . . 3 ((𝜑𝑛 ∈ ℝ) → (∀𝑥𝐴 𝐵𝑛 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚))
2726rexlimdva 3142 . 2 (𝜑 → (∃𝑛 ∈ ℝ ∀𝑥𝐴 𝐵𝑛 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚))
287, 27mpd 15 1 (𝜑 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wral 3050  wrex 3059  wss 3931   class class class wbr 5123  cmpt 5205  cfv 6540  (class class class)co 7412  cr 11135  1c1 11137   + caddc 11139   < clt 11276  cle 11277  +crp 13015  abscabs 15254  ≤𝑂(1)clo1 15504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8726  df-pm 8850  df-en 8967  df-dom 8968  df-sdom 8969  df-sup 9463  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-2 12310  df-3 12311  df-n0 12509  df-z 12596  df-uz 12860  df-rp 13016  df-ico 13374  df-seq 14024  df-exp 14084  df-cj 15119  df-re 15120  df-im 15121  df-sqrt 15255  df-abs 15256  df-lo1 15508
This theorem is referenced by:  o1bddrp  15559  chpo1ubb  27460  pntrlog2bnd  27563
  Copyright terms: Public domain W3C validator