| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lo1bddrp | Structured version Visualization version GIF version | ||
| Description: Refine o1bdd2 15448 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.) |
| Ref | Expression |
|---|---|
| lo1bdd2.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| lo1bdd2.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lo1bdd2.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| lo1bdd2.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
| lo1bdd2.5 | ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) |
| lo1bdd2.6 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝐵 ≤ 𝑀) |
| Ref | Expression |
|---|---|
| lo1bddrp | ⊢ (𝜑 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lo1bdd2.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | lo1bdd2.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 3 | lo1bdd2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 4 | lo1bdd2.4 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) | |
| 5 | lo1bdd2.5 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) | |
| 6 | lo1bdd2.6 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝐵 ≤ 𝑀) | |
| 7 | 1, 2, 3, 4, 5, 6 | lo1bdd2 15431 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛) |
| 8 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 𝑛 ∈ ℝ) | |
| 9 | 8 | recnd 11143 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 𝑛 ∈ ℂ) |
| 10 | 9 | abscld 15346 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (abs‘𝑛) ∈ ℝ) |
| 11 | 9 | absge0d 15354 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → 0 ≤ (abs‘𝑛)) |
| 12 | 10, 11 | ge0p1rpd 12967 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → ((abs‘𝑛) + 1) ∈ ℝ+) |
| 13 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ∈ ℝ) | |
| 14 | 10 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (abs‘𝑛) ∈ ℝ) |
| 15 | peano2re 11289 | . . . . . . . 8 ⊢ ((abs‘𝑛) ∈ ℝ → ((abs‘𝑛) + 1) ∈ ℝ) | |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘𝑛) + 1) ∈ ℝ) |
| 17 | 13 | leabsd 15322 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ≤ (abs‘𝑛)) |
| 18 | 14 | lep1d 12056 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (abs‘𝑛) ≤ ((abs‘𝑛) + 1)) |
| 19 | 13, 14, 16, 17, 18 | letrd 11273 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ≤ ((abs‘𝑛) + 1)) |
| 20 | 3 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 21 | letr 11210 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ((abs‘𝑛) + 1) ∈ ℝ) → ((𝐵 ≤ 𝑛 ∧ 𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1))) | |
| 22 | 20, 13, 16, 21 | syl3anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐵 ≤ 𝑛 ∧ 𝑛 ≤ ((abs‘𝑛) + 1)) → 𝐵 ≤ ((abs‘𝑛) + 1))) |
| 23 | 19, 22 | mpan2d 694 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝑛 → 𝐵 ≤ ((abs‘𝑛) + 1))) |
| 24 | 23 | ralimdva 3141 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∀𝑥 ∈ 𝐴 𝐵 ≤ ((abs‘𝑛) + 1))) |
| 25 | brralrspcev 5152 | . . . 4 ⊢ ((((abs‘𝑛) + 1) ∈ ℝ+ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ ((abs‘𝑛) + 1)) → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) | |
| 26 | 12, 24, 25 | syl6an 684 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚)) |
| 27 | 26 | rexlimdva 3130 | . 2 ⊢ (𝜑 → (∃𝑛 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚)) |
| 28 | 7, 27 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3903 class class class wbr 5092 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 1c1 11010 + caddc 11012 < clt 11149 ≤ cle 11150 ℝ+crp 12893 abscabs 15141 ≤𝑂(1)clo1 15394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-ico 13254 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-lo1 15398 |
| This theorem is referenced by: o1bddrp 15449 chpo1ubb 27390 pntrlog2bnd 27493 |
| Copyright terms: Public domain | W3C validator |