MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elo12 Structured version   Visualization version   GIF version

Theorem elo12 15548
Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
elo12 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝑚,𝐹,𝑥,𝑦

Proof of Theorem elo12
StepHypRef Expression
1 cnex 11215 . . . 4 ℂ ∈ V
2 reex 11225 . . . 4 ℝ ∈ V
3 elpm2r 8864 . . . 4 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
41, 2, 3mpanl12 702 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
5 elo1 15547 . . . 4 (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
65baib 535 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
74, 6syl 17 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
8 elin 3947 . . . . . . . 8 (𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) ↔ (𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)))
9 fdm 6720 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
109ad3antrrr 730 . . . . . . . . . . 11 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → dom 𝐹 = 𝐴)
1110eleq2d 2821 . . . . . . . . . 10 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑦 ∈ dom 𝐹𝑦𝐴))
1211anbi1d 631 . . . . . . . . 9 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑦 ∈ (𝑥[,)+∞))))
13 simpllr 775 . . . . . . . . . . . 12 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → 𝐴 ⊆ ℝ)
1413sselda 3963 . . . . . . . . . . 11 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
15 simpllr 775 . . . . . . . . . . . 12 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ)
16 elicopnf 13467 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑦 ∈ (𝑥[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥𝑦)))
1715, 16syl 17 . . . . . . . . . . 11 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 ∈ (𝑥[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥𝑦)))
1814, 17mpbirand 707 . . . . . . . . . 10 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 ∈ (𝑥[,)+∞) ↔ 𝑥𝑦))
1918pm5.32da 579 . . . . . . . . 9 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦𝐴𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑥𝑦)))
2012, 19bitrd 279 . . . . . . . 8 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑥𝑦)))
218, 20bitrid 283 . . . . . . 7 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑥𝑦)))
2221imbi1d 341 . . . . . 6 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) → (abs‘(𝐹𝑦)) ≤ 𝑚) ↔ ((𝑦𝐴𝑥𝑦) → (abs‘(𝐹𝑦)) ≤ 𝑚)))
23 impexp 450 . . . . . 6 (((𝑦𝐴𝑥𝑦) → (abs‘(𝐹𝑦)) ≤ 𝑚) ↔ (𝑦𝐴 → (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
2422, 23bitrdi 287 . . . . 5 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) → (abs‘(𝐹𝑦)) ≤ 𝑚) ↔ (𝑦𝐴 → (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚))))
2524ralbidv2 3160 . . . 4 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚 ↔ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
2625rexbidva 3163 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚 ↔ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
2726rexbidva 3163 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚 ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
287, 27bitrd 279 1 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  cin 3930  wss 3931   class class class wbr 5124  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  pm cpm 8846  cc 11132  cr 11133  +∞cpnf 11271  cle 11275  [,)cico 13369  abscabs 15258  𝑂(1)co1 15507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-ico 13373  df-o1 15511
This theorem is referenced by:  elo12r  15549  o1bdd  15552  lo1o1  15553  o1co  15607  rlimo1  15638
  Copyright terms: Public domain W3C validator