Proof of Theorem elo12
Step | Hyp | Ref
| Expression |
1 | | cnex 10696 |
. . . 4
⊢ ℂ
∈ V |
2 | | reex 10706 |
. . . 4
⊢ ℝ
∈ V |
3 | | elpm2r 8455 |
. . . 4
⊢
(((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
4 | 1, 2, 3 | mpanl12 702 |
. . 3
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
5 | | elo1 14973 |
. . . 4
⊢ (𝐹 ∈ 𝑂(1) ↔
(𝐹 ∈ (ℂ
↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
6 | 5 | baib 539 |
. . 3
⊢ (𝐹 ∈ (ℂ
↑pm ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
7 | 4, 6 | syl 17 |
. 2
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
8 | | elin 3859 |
. . . . . . . 8
⊢ (𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) ↔ (𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ (𝑥[,)+∞))) |
9 | | fdm 6513 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴) |
10 | 9 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → dom 𝐹 = 𝐴) |
11 | 10 | eleq2d 2818 |
. . . . . . . . . 10
⊢ ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴)) |
12 | 11 | anbi1d 633 |
. . . . . . . . 9
⊢ ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑥[,)+∞)))) |
13 | | simpllr 776 |
. . . . . . . . . . . 12
⊢ ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → 𝐴 ⊆ ℝ) |
14 | 13 | sselda 3877 |
. . . . . . . . . . 11
⊢
(((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
15 | | simpllr 776 |
. . . . . . . . . . . 12
⊢
(((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ ℝ) |
16 | | elicopnf 12919 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → (𝑦 ∈ (𝑥[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦))) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ (𝑥[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦))) |
18 | 14, 17 | mpbirand 707 |
. . . . . . . . . 10
⊢
(((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ (𝑥[,)+∞) ↔ 𝑥 ≤ 𝑦)) |
19 | 18 | pm5.32da 582 |
. . . . . . . . 9
⊢ ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦))) |
20 | 12, 19 | bitrd 282 |
. . . . . . . 8
⊢ ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦))) |
21 | 8, 20 | syl5bb 286 |
. . . . . . 7
⊢ ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦))) |
22 | 21 | imbi1d 345 |
. . . . . 6
⊢ ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) → (abs‘(𝐹‘𝑦)) ≤ 𝑚) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦) → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
23 | | impexp 454 |
. . . . . 6
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦) → (abs‘(𝐹‘𝑦)) ≤ 𝑚) ↔ (𝑦 ∈ 𝐴 → (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
24 | 22, 23 | bitrdi 290 |
. . . . 5
⊢ ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) → (abs‘(𝐹‘𝑦)) ≤ 𝑚) ↔ (𝑦 ∈ 𝐴 → (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚)))) |
25 | 24 | ralbidv2 3107 |
. . . 4
⊢ ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚 ↔ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
26 | 25 | rexbidva 3206 |
. . 3
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚 ↔ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
27 | 26 | rexbidva 3206 |
. 2
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚 ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
28 | 7, 27 | bitrd 282 |
1
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |