MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elo12 Structured version   Visualization version   GIF version

Theorem elo12 15507
Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
elo12 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝑚,𝐹,𝑥,𝑦

Proof of Theorem elo12
StepHypRef Expression
1 cnex 11221 . . . 4 ℂ ∈ V
2 reex 11231 . . . 4 ℝ ∈ V
3 elpm2r 8864 . . . 4 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
41, 2, 3mpanl12 700 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
5 elo1 15506 . . . 4 (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
65baib 534 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
74, 6syl 17 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
8 elin 3960 . . . . . . . 8 (𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) ↔ (𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)))
9 fdm 6732 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
109ad3antrrr 728 . . . . . . . . . . 11 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → dom 𝐹 = 𝐴)
1110eleq2d 2811 . . . . . . . . . 10 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑦 ∈ dom 𝐹𝑦𝐴))
1211anbi1d 629 . . . . . . . . 9 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑦 ∈ (𝑥[,)+∞))))
13 simpllr 774 . . . . . . . . . . . 12 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → 𝐴 ⊆ ℝ)
1413sselda 3976 . . . . . . . . . . 11 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
15 simpllr 774 . . . . . . . . . . . 12 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ)
16 elicopnf 13457 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑦 ∈ (𝑥[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥𝑦)))
1715, 16syl 17 . . . . . . . . . . 11 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 ∈ (𝑥[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥𝑦)))
1814, 17mpbirand 705 . . . . . . . . . 10 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 ∈ (𝑥[,)+∞) ↔ 𝑥𝑦))
1918pm5.32da 577 . . . . . . . . 9 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦𝐴𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑥𝑦)))
2012, 19bitrd 278 . . . . . . . 8 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑥𝑦)))
218, 20bitrid 282 . . . . . . 7 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑥𝑦)))
2221imbi1d 340 . . . . . 6 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) → (abs‘(𝐹𝑦)) ≤ 𝑚) ↔ ((𝑦𝐴𝑥𝑦) → (abs‘(𝐹𝑦)) ≤ 𝑚)))
23 impexp 449 . . . . . 6 (((𝑦𝐴𝑥𝑦) → (abs‘(𝐹𝑦)) ≤ 𝑚) ↔ (𝑦𝐴 → (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
2422, 23bitrdi 286 . . . . 5 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) → (abs‘(𝐹𝑦)) ≤ 𝑚) ↔ (𝑦𝐴 → (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚))))
2524ralbidv2 3163 . . . 4 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚 ↔ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
2625rexbidva 3166 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚 ↔ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
2726rexbidva 3166 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚 ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
287, 27bitrd 278 1 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  wrex 3059  Vcvv 3461  cin 3943  wss 3944   class class class wbr 5149  dom cdm 5678  wf 6545  cfv 6549  (class class class)co 7419  pm cpm 8846  cc 11138  cr 11139  +∞cpnf 11277  cle 11281  [,)cico 13361  abscabs 15217  𝑂(1)co1 15466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-pre-lttri 11214  ax-pre-lttrn 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-er 8725  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-ico 13365  df-o1 15470
This theorem is referenced by:  elo12r  15508  o1bdd  15511  lo1o1  15512  o1co  15566  rlimo1  15597
  Copyright terms: Public domain W3C validator