MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elo12 Structured version   Visualization version   GIF version

Theorem elo12 15500
Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
elo12 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝑚,𝐹,𝑥,𝑦

Proof of Theorem elo12
StepHypRef Expression
1 cnex 11156 . . . 4 ℂ ∈ V
2 reex 11166 . . . 4 ℝ ∈ V
3 elpm2r 8821 . . . 4 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
41, 2, 3mpanl12 702 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
5 elo1 15499 . . . 4 (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
65baib 535 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
74, 6syl 17 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
8 elin 3933 . . . . . . . 8 (𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) ↔ (𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)))
9 fdm 6700 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
109ad3antrrr 730 . . . . . . . . . . 11 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → dom 𝐹 = 𝐴)
1110eleq2d 2815 . . . . . . . . . 10 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑦 ∈ dom 𝐹𝑦𝐴))
1211anbi1d 631 . . . . . . . . 9 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑦 ∈ (𝑥[,)+∞))))
13 simpllr 775 . . . . . . . . . . . 12 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → 𝐴 ⊆ ℝ)
1413sselda 3949 . . . . . . . . . . 11 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
15 simpllr 775 . . . . . . . . . . . 12 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ)
16 elicopnf 13413 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑦 ∈ (𝑥[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥𝑦)))
1715, 16syl 17 . . . . . . . . . . 11 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 ∈ (𝑥[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥𝑦)))
1814, 17mpbirand 707 . . . . . . . . . 10 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 ∈ (𝑥[,)+∞) ↔ 𝑥𝑦))
1918pm5.32da 579 . . . . . . . . 9 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦𝐴𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑥𝑦)))
2012, 19bitrd 279 . . . . . . . 8 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑥𝑦)))
218, 20bitrid 283 . . . . . . 7 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑥𝑦)))
2221imbi1d 341 . . . . . 6 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) → (abs‘(𝐹𝑦)) ≤ 𝑚) ↔ ((𝑦𝐴𝑥𝑦) → (abs‘(𝐹𝑦)) ≤ 𝑚)))
23 impexp 450 . . . . . 6 (((𝑦𝐴𝑥𝑦) → (abs‘(𝐹𝑦)) ≤ 𝑚) ↔ (𝑦𝐴 → (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
2422, 23bitrdi 287 . . . . 5 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) → (abs‘(𝐹𝑦)) ≤ 𝑚) ↔ (𝑦𝐴 → (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚))))
2524ralbidv2 3153 . . . 4 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚 ↔ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
2625rexbidva 3156 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚 ↔ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
2726rexbidva 3156 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚 ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
287, 27bitrd 279 1 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cin 3916  wss 3917   class class class wbr 5110  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  pm cpm 8803  cc 11073  cr 11074  +∞cpnf 11212  cle 11216  [,)cico 13315  abscabs 15207  𝑂(1)co1 15459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ico 13319  df-o1 15463
This theorem is referenced by:  elo12r  15501  o1bdd  15504  lo1o1  15505  o1co  15559  rlimo1  15590
  Copyright terms: Public domain W3C validator