MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnustOLD Structured version   Visualization version   GIF version

Theorem elrnustOLD 24119
Description: Obsolete version of elfvunirn 6893 as of 12-Jan-2025. (Contributed by Thierry Arnoux, 16-Nov-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elrnustOLD (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)

Proof of Theorem elrnustOLD
StepHypRef Expression
1 elfvunirn 6893 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   cuni 4874  ran crn 5642  cfv 6514  UnifOncust 24094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-cnv 5649  df-dm 5651  df-rn 5652  df-iota 6467  df-fv 6522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator