![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvunirn | Structured version Visualization version GIF version |
Description: A function value is a subset of the union of the range. (An artifact of our function value definition, compare elfvdm 6944). (Contributed by Thierry Arnoux, 13-Nov-2016.) Remove functionhood antecedent. (Revised by SN, 10-Jan-2025.) |
Ref | Expression |
---|---|
elfvunirn | ⊢ (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4347 | . . . 4 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐹‘𝐴) ≠ ∅) | |
2 | fvn0fvelrn 6938 | . . . 4 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐹‘𝐴) ∈ ran 𝐹) | |
3 | elssuni 4942 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ ran 𝐹 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
5 | 4 | sseld 3994 | . 2 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹)) |
6 | 5 | pm2.43i 52 | 1 ⊢ (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2938 ⊆ wss 3963 ∅c0 4339 ∪ cuni 4912 ran crn 5690 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-cnv 5697 df-dm 5699 df-rn 5700 df-iota 6516 df-fv 6571 |
This theorem is referenced by: fvssunirn 6940 elrnustOLD 24249 ustbas 24252 utopval 24257 tusval 24290 ucnval 24302 iscfilu 24313 metuval 24578 metidval 33851 pstmval 33856 measbasedom 34183 sxbrsigalem0 34253 |
Copyright terms: Public domain | W3C validator |