MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvunirn Structured version   Visualization version   GIF version

Theorem elfvunirn 6872
Description: A function value is a subset of the union of the range. (An artifact of our function value definition, compare elfvdm 6877). (Contributed by Thierry Arnoux, 13-Nov-2016.) Remove functionhood antecedent. (Revised by SN, 10-Jan-2025.)
Assertion
Ref Expression
elfvunirn (𝐵 ∈ (𝐹𝐴) → 𝐵 ran 𝐹)

Proof of Theorem elfvunirn
StepHypRef Expression
1 ne0i 4300 . . . 4 (𝐵 ∈ (𝐹𝐴) → (𝐹𝐴) ≠ ∅)
2 fvn0fvelrn 6871 . . . 4 ((𝐹𝐴) ≠ ∅ → (𝐹𝐴) ∈ ran 𝐹)
3 elssuni 4897 . . . 4 ((𝐹𝐴) ∈ ran 𝐹 → (𝐹𝐴) ⊆ ran 𝐹)
41, 2, 33syl 18 . . 3 (𝐵 ∈ (𝐹𝐴) → (𝐹𝐴) ⊆ ran 𝐹)
54sseld 3942 . 2 (𝐵 ∈ (𝐹𝐴) → (𝐵 ∈ (𝐹𝐴) → 𝐵 ran 𝐹))
65pm2.43i 52 1 (𝐵 ∈ (𝐹𝐴) → 𝐵 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  wss 3911  c0 4292   cuni 4867  ran crn 5632  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-cnv 5639  df-dm 5641  df-rn 5642  df-iota 6452  df-fv 6507
This theorem is referenced by:  fvssunirn  6873  elrnustOLD  24088  ustbas  24091  utopval  24096  tusval  24129  ucnval  24140  iscfilu  24151  metuval  24413  metidval  33853  pstmval  33858  measbasedom  34165  sxbrsigalem0  34235
  Copyright terms: Public domain W3C validator