![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvunirn | Structured version Visualization version GIF version |
Description: A function value is a subset of the union of the range. (An artifact of our function value definition, compare elfvdm 6929). (Contributed by Thierry Arnoux, 13-Nov-2016.) Remove functionhood antecedent. (Revised by SN, 10-Jan-2025.) |
Ref | Expression |
---|---|
elfvunirn | ⊢ (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4330 | . . . 4 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐹‘𝐴) ≠ ∅) | |
2 | fvn0fvelrn 6923 | . . . 4 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐹‘𝐴) ∈ ran 𝐹) | |
3 | elssuni 4935 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ ran 𝐹 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
5 | 4 | sseld 3971 | . 2 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹)) |
6 | 5 | pm2.43i 52 | 1 ⊢ (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ≠ wne 2930 ⊆ wss 3939 ∅c0 4318 ∪ cuni 4903 ran crn 5673 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-cnv 5680 df-dm 5682 df-rn 5683 df-iota 6495 df-fv 6551 |
This theorem is referenced by: fvssunirn 6925 elrnustOLD 24147 ustbas 24150 utopval 24155 tusval 24188 ucnval 24200 iscfilu 24211 metuval 24476 metidval 33548 pstmval 33553 measbasedom 33878 sxbrsigalem0 33948 |
Copyright terms: Public domain | W3C validator |