![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvunirn | Structured version Visualization version GIF version |
Description: A function value is a subset of the union of the range. (An artifact of our function value definition, compare elfvdm 6957). (Contributed by Thierry Arnoux, 13-Nov-2016.) Remove functionhood antecedent. (Revised by SN, 10-Jan-2025.) |
Ref | Expression |
---|---|
elfvunirn | ⊢ (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4364 | . . . 4 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐹‘𝐴) ≠ ∅) | |
2 | fvn0fvelrn 6951 | . . . 4 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐹‘𝐴) ∈ ran 𝐹) | |
3 | elssuni 4961 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ ran 𝐹 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
5 | 4 | sseld 4007 | . 2 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹)) |
6 | 5 | pm2.43i 52 | 1 ⊢ (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 ∅c0 4352 ∪ cuni 4931 ran crn 5701 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 df-iota 6525 df-fv 6581 |
This theorem is referenced by: fvssunirn 6953 elrnustOLD 24254 ustbas 24257 utopval 24262 tusval 24295 ucnval 24307 iscfilu 24318 metuval 24583 metidval 33836 pstmval 33841 measbasedom 34166 sxbrsigalem0 34236 |
Copyright terms: Public domain | W3C validator |