![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvunirn | Structured version Visualization version GIF version |
Description: A function value is a subset of the union of the range. (An artifact of our function value definition, compare elfvdm 6922). (Contributed by Thierry Arnoux, 13-Nov-2016.) Remove functionhood antecedent. (Revised by SN, 10-Jan-2025.) |
Ref | Expression |
---|---|
elfvunirn | ⊢ (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4329 | . . . 4 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐹‘𝐴) ≠ ∅) | |
2 | fvn0fvelrn 6916 | . . . 4 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐹‘𝐴) ∈ ran 𝐹) | |
3 | elssuni 4934 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ ran 𝐹 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
5 | 4 | sseld 3976 | . 2 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹)) |
6 | 5 | pm2.43i 52 | 1 ⊢ (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ≠ wne 2934 ⊆ wss 3943 ∅c0 4317 ∪ cuni 4902 ran crn 5670 ‘cfv 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-cnv 5677 df-dm 5679 df-rn 5680 df-iota 6489 df-fv 6545 |
This theorem is referenced by: fvssunirn 6918 elrnustOLD 24084 ustbas 24087 utopval 24092 tusval 24125 ucnval 24137 iscfilu 24148 metuval 24413 metidval 33400 pstmval 33405 measbasedom 33730 sxbrsigalem0 33800 |
Copyright terms: Public domain | W3C validator |