MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvunirn Structured version   Visualization version   GIF version

Theorem elfvunirn 6917
Description: A function value is a subset of the union of the range. (An artifact of our function value definition, compare elfvdm 6922). (Contributed by Thierry Arnoux, 13-Nov-2016.) Remove functionhood antecedent. (Revised by SN, 10-Jan-2025.)
Assertion
Ref Expression
elfvunirn (𝐵 ∈ (𝐹𝐴) → 𝐵 ran 𝐹)

Proof of Theorem elfvunirn
StepHypRef Expression
1 ne0i 4329 . . . 4 (𝐵 ∈ (𝐹𝐴) → (𝐹𝐴) ≠ ∅)
2 fvn0fvelrn 6916 . . . 4 ((𝐹𝐴) ≠ ∅ → (𝐹𝐴) ∈ ran 𝐹)
3 elssuni 4934 . . . 4 ((𝐹𝐴) ∈ ran 𝐹 → (𝐹𝐴) ⊆ ran 𝐹)
41, 2, 33syl 18 . . 3 (𝐵 ∈ (𝐹𝐴) → (𝐹𝐴) ⊆ ran 𝐹)
54sseld 3976 . 2 (𝐵 ∈ (𝐹𝐴) → (𝐵 ∈ (𝐹𝐴) → 𝐵 ran 𝐹))
65pm2.43i 52 1 (𝐵 ∈ (𝐹𝐴) → 𝐵 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wne 2934  wss 3943  c0 4317   cuni 4902  ran crn 5670  cfv 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-cnv 5677  df-dm 5679  df-rn 5680  df-iota 6489  df-fv 6545
This theorem is referenced by:  fvssunirn  6918  elrnustOLD  24084  ustbas  24087  utopval  24092  tusval  24125  ucnval  24137  iscfilu  24148  metuval  24413  metidval  33400  pstmval  33405  measbasedom  33730  sxbrsigalem0  33800
  Copyright terms: Public domain W3C validator