| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvunirn | Structured version Visualization version GIF version | ||
| Description: A function value is a subset of the union of the range. (An artifact of our function value definition, compare elfvdm 6895). (Contributed by Thierry Arnoux, 13-Nov-2016.) Remove functionhood antecedent. (Revised by SN, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| elfvunirn | ⊢ (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4304 | . . . 4 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐹‘𝐴) ≠ ∅) | |
| 2 | fvn0fvelrn 6889 | . . . 4 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐹‘𝐴) ∈ ran 𝐹) | |
| 3 | elssuni 4901 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ ran 𝐹 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
| 5 | 4 | sseld 3945 | . 2 ⊢ (𝐵 ∈ (𝐹‘𝐴) → (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹)) |
| 6 | 5 | pm2.43i 52 | 1 ⊢ (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 ran crn 5639 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: fvssunirn 6891 elrnustOLD 24112 ustbas 24115 utopval 24120 tusval 24153 ucnval 24164 iscfilu 24175 metuval 24437 metidval 33880 pstmval 33885 measbasedom 34192 sxbrsigalem0 34262 |
| Copyright terms: Public domain | W3C validator |