| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustbas2 | Structured version Visualization version GIF version | ||
| Description: Second direction for ustbas 24143. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
| Ref | Expression |
|---|---|
| ustbas2 | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmxpid 5874 | . 2 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
| 2 | ustbasel 24123 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
| 3 | elssuni 4889 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∈ 𝑈 → (𝑋 × 𝑋) ⊆ ∪ 𝑈) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ⊆ ∪ 𝑈) |
| 5 | elfvex 6863 | . . . . . . . . 9 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
| 6 | isust 24120 | . . . . . . . . 9 ⊢ (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
| 8 | 7 | ibi 267 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)))) |
| 9 | 8 | simp1d 1142 | . . . . . 6 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) |
| 10 | 9 | unissd 4868 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 ⊆ ∪ 𝒫 (𝑋 × 𝑋)) |
| 11 | unipw 5393 | . . . . 5 ⊢ ∪ 𝒫 (𝑋 × 𝑋) = (𝑋 × 𝑋) | |
| 12 | 10, 11 | sseqtrdi 3971 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 ⊆ (𝑋 × 𝑋)) |
| 13 | 4, 12 | eqssd 3948 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = ∪ 𝑈) |
| 14 | 13 | dmeqd 5849 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → dom (𝑋 × 𝑋) = dom ∪ 𝑈) |
| 15 | 1, 14 | eqtr3id 2782 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4549 ∪ cuni 4858 I cid 5513 × cxp 5617 ◡ccnv 5618 dom cdm 5619 ↾ cres 5621 ∘ ccom 5623 ‘cfv 6486 UnifOncust 24116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6442 df-fun 6488 df-fv 6494 df-ust 24117 |
| This theorem is referenced by: ustbas 24143 utopval 24148 tuslem 24182 ucnval 24192 iscfilu 24203 |
| Copyright terms: Public domain | W3C validator |