MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustbas2 Structured version   Visualization version   GIF version

Theorem ustbas2 24250
Description: Second direction for ustbas 24252. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
ustbas2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)

Proof of Theorem ustbas2
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmxpid 5944 . 2 dom (𝑋 × 𝑋) = 𝑋
2 ustbasel 24231 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈)
3 elssuni 4942 . . . . 5 ((𝑋 × 𝑋) ∈ 𝑈 → (𝑋 × 𝑋) ⊆ 𝑈)
42, 3syl 17 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ⊆ 𝑈)
5 elfvex 6945 . . . . . . . . 9 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
6 isust 24228 . . . . . . . . 9 (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
75, 6syl 17 . . . . . . . 8 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
87ibi 267 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
98simp1d 1141 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋))
109unissd 4922 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 𝒫 (𝑋 × 𝑋))
11 unipw 5461 . . . . 5 𝒫 (𝑋 × 𝑋) = (𝑋 × 𝑋)
1210, 11sseqtrdi 4046 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ (𝑋 × 𝑋))
134, 12eqssd 4013 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = 𝑈)
1413dmeqd 5919 . 2 (𝑈 ∈ (UnifOn‘𝑋) → dom (𝑋 × 𝑋) = dom 𝑈)
151, 14eqtr3id 2789 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cin 3962  wss 3963  𝒫 cpw 4605   cuni 4912   I cid 5582   × cxp 5687  ccnv 5688  dom cdm 5689  cres 5691  ccom 5693  cfv 6563  UnifOncust 24224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-ust 24225
This theorem is referenced by:  ustbas  24252  utopval  24257  tuslem  24291  tuslemOLD  24292  ucnval  24302  iscfilu  24313
  Copyright terms: Public domain W3C validator