MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustbas2 Structured version   Visualization version   GIF version

Theorem ustbas2 24113
Description: Second direction for ustbas 24115. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
ustbas2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)

Proof of Theorem ustbas2
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmxpid 5894 . 2 dom (𝑋 × 𝑋) = 𝑋
2 ustbasel 24094 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈)
3 elssuni 4901 . . . . 5 ((𝑋 × 𝑋) ∈ 𝑈 → (𝑋 × 𝑋) ⊆ 𝑈)
42, 3syl 17 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ⊆ 𝑈)
5 elfvex 6896 . . . . . . . . 9 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
6 isust 24091 . . . . . . . . 9 (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
75, 6syl 17 . . . . . . . 8 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
87ibi 267 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
98simp1d 1142 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋))
109unissd 4881 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 𝒫 (𝑋 × 𝑋))
11 unipw 5410 . . . . 5 𝒫 (𝑋 × 𝑋) = (𝑋 × 𝑋)
1210, 11sseqtrdi 3987 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ (𝑋 × 𝑋))
134, 12eqssd 3964 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = 𝑈)
1413dmeqd 5869 . 2 (𝑈 ∈ (UnifOn‘𝑋) → dom (𝑋 × 𝑋) = dom 𝑈)
151, 14eqtr3id 2778 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  cin 3913  wss 3914  𝒫 cpw 4563   cuni 4871   I cid 5532   × cxp 5636  ccnv 5637  dom cdm 5638  cres 5640  ccom 5642  cfv 6511  UnifOncust 24087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-ust 24088
This theorem is referenced by:  ustbas  24115  utopval  24120  tuslem  24154  ucnval  24164  iscfilu  24175
  Copyright terms: Public domain W3C validator