| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustbas2 | Structured version Visualization version GIF version | ||
| Description: Second direction for ustbas 24122. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
| Ref | Expression |
|---|---|
| ustbas2 | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmxpid 5897 | . 2 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
| 2 | ustbasel 24101 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
| 3 | elssuni 4904 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∈ 𝑈 → (𝑋 × 𝑋) ⊆ ∪ 𝑈) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ⊆ ∪ 𝑈) |
| 5 | elfvex 6899 | . . . . . . . . 9 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
| 6 | isust 24098 | . . . . . . . . 9 ⊢ (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
| 8 | 7 | ibi 267 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)))) |
| 9 | 8 | simp1d 1142 | . . . . . 6 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) |
| 10 | 9 | unissd 4884 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 ⊆ ∪ 𝒫 (𝑋 × 𝑋)) |
| 11 | unipw 5413 | . . . . 5 ⊢ ∪ 𝒫 (𝑋 × 𝑋) = (𝑋 × 𝑋) | |
| 12 | 10, 11 | sseqtrdi 3990 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 ⊆ (𝑋 × 𝑋)) |
| 13 | 4, 12 | eqssd 3967 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = ∪ 𝑈) |
| 14 | 13 | dmeqd 5872 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → dom (𝑋 × 𝑋) = dom ∪ 𝑈) |
| 15 | 1, 14 | eqtr3id 2779 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 I cid 5535 × cxp 5639 ◡ccnv 5640 dom cdm 5641 ↾ cres 5643 ∘ ccom 5645 ‘cfv 6514 UnifOncust 24094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 df-ust 24095 |
| This theorem is referenced by: ustbas 24122 utopval 24127 tuslem 24161 ucnval 24171 iscfilu 24182 |
| Copyright terms: Public domain | W3C validator |