![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustbas2 | Structured version Visualization version GIF version |
Description: Second direction for ustbas 24257. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
Ref | Expression |
---|---|
ustbas2 | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmxpid 5955 | . 2 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
2 | ustbasel 24236 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
3 | elssuni 4961 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∈ 𝑈 → (𝑋 × 𝑋) ⊆ ∪ 𝑈) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ⊆ ∪ 𝑈) |
5 | elfvex 6958 | . . . . . . . . 9 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
6 | isust 24233 | . . . . . . . . 9 ⊢ (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
8 | 7 | ibi 267 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)))) |
9 | 8 | simp1d 1142 | . . . . . 6 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) |
10 | 9 | unissd 4941 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 ⊆ ∪ 𝒫 (𝑋 × 𝑋)) |
11 | unipw 5470 | . . . . 5 ⊢ ∪ 𝒫 (𝑋 × 𝑋) = (𝑋 × 𝑋) | |
12 | 10, 11 | sseqtrdi 4059 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 ⊆ (𝑋 × 𝑋)) |
13 | 4, 12 | eqssd 4026 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = ∪ 𝑈) |
14 | 13 | dmeqd 5930 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → dom (𝑋 × 𝑋) = dom ∪ 𝑈) |
15 | 1, 14 | eqtr3id 2794 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 I cid 5592 × cxp 5698 ◡ccnv 5699 dom cdm 5700 ↾ cres 5702 ∘ ccom 5704 ‘cfv 6573 UnifOncust 24229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-ust 24230 |
This theorem is referenced by: ustbas 24257 utopval 24262 tuslem 24296 tuslemOLD 24297 ucnval 24307 iscfilu 24318 |
Copyright terms: Public domain | W3C validator |