| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustbas2 | Structured version Visualization version GIF version | ||
| Description: Second direction for ustbas 24171. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
| Ref | Expression |
|---|---|
| ustbas2 | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmxpid 5915 | . 2 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
| 2 | ustbasel 24150 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
| 3 | elssuni 4918 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∈ 𝑈 → (𝑋 × 𝑋) ⊆ ∪ 𝑈) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ⊆ ∪ 𝑈) |
| 5 | elfvex 6919 | . . . . . . . . 9 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
| 6 | isust 24147 | . . . . . . . . 9 ⊢ (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
| 8 | 7 | ibi 267 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)))) |
| 9 | 8 | simp1d 1142 | . . . . . 6 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) |
| 10 | 9 | unissd 4898 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 ⊆ ∪ 𝒫 (𝑋 × 𝑋)) |
| 11 | unipw 5430 | . . . . 5 ⊢ ∪ 𝒫 (𝑋 × 𝑋) = (𝑋 × 𝑋) | |
| 12 | 10, 11 | sseqtrdi 4004 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 ⊆ (𝑋 × 𝑋)) |
| 13 | 4, 12 | eqssd 3981 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = ∪ 𝑈) |
| 14 | 13 | dmeqd 5890 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → dom (𝑋 × 𝑋) = dom ∪ 𝑈) |
| 15 | 1, 14 | eqtr3id 2785 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4888 I cid 5552 × cxp 5657 ◡ccnv 5658 dom cdm 5659 ↾ cres 5661 ∘ ccom 5663 ‘cfv 6536 UnifOncust 24143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fv 6544 df-ust 24144 |
| This theorem is referenced by: ustbas 24171 utopval 24176 tuslem 24210 ucnval 24220 iscfilu 24231 |
| Copyright terms: Public domain | W3C validator |