Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustbas2 | Structured version Visualization version GIF version |
Description: Second direction for ustbas 23287. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
Ref | Expression |
---|---|
ustbas2 | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmxpid 5828 | . 2 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
2 | ustbasel 23266 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
3 | elssuni 4868 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∈ 𝑈 → (𝑋 × 𝑋) ⊆ ∪ 𝑈) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ⊆ ∪ 𝑈) |
5 | elfvex 6789 | . . . . . . . . 9 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
6 | isust 23263 | . . . . . . . . 9 ⊢ (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
8 | 7 | ibi 266 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)))) |
9 | 8 | simp1d 1140 | . . . . . 6 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) |
10 | 9 | unissd 4846 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 ⊆ ∪ 𝒫 (𝑋 × 𝑋)) |
11 | unipw 5360 | . . . . 5 ⊢ ∪ 𝒫 (𝑋 × 𝑋) = (𝑋 × 𝑋) | |
12 | 10, 11 | sseqtrdi 3967 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 ⊆ (𝑋 × 𝑋)) |
13 | 4, 12 | eqssd 3934 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = ∪ 𝑈) |
14 | 13 | dmeqd 5803 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → dom (𝑋 × 𝑋) = dom ∪ 𝑈) |
15 | 1, 14 | eqtr3id 2793 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 I cid 5479 × cxp 5578 ◡ccnv 5579 dom cdm 5580 ↾ cres 5582 ∘ ccom 5584 ‘cfv 6418 UnifOncust 23259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-ust 23260 |
This theorem is referenced by: ustbas 23287 utopval 23292 tuslem 23326 tuslemOLD 23327 ucnval 23337 iscfilu 23348 |
Copyright terms: Public domain | W3C validator |