MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustneism Structured version   Visualization version   GIF version

Theorem ustneism 24253
Description: For a point 𝐴 in 𝑋, (𝑉 “ {𝐴}) is small enough in (𝑉𝑉). This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017.)
Assertion
Ref Expression
ustneism ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉𝑉))

Proof of Theorem ustneism
StepHypRef Expression
1 snnzg 4799 . . . 4 (𝐴𝑋 → {𝐴} ≠ ∅)
21adantl 481 . . 3 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → {𝐴} ≠ ∅)
3 xpco 6320 . . 3 ({𝐴} ≠ ∅ → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) = ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})))
42, 3syl 17 . 2 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) = ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})))
5 cnvxp 6188 . . . . 5 ({𝐴} × (𝑉 “ {𝐴})) = ((𝑉 “ {𝐴}) × {𝐴})
6 ressn 6316 . . . . . . 7 (𝑉 ↾ {𝐴}) = ({𝐴} × (𝑉 “ {𝐴}))
76cnveqi 5899 . . . . . 6 (𝑉 ↾ {𝐴}) = ({𝐴} × (𝑉 “ {𝐴}))
8 resss 6031 . . . . . . 7 (𝑉 ↾ {𝐴}) ⊆ 𝑉
9 cnvss 5897 . . . . . . 7 ((𝑉 ↾ {𝐴}) ⊆ 𝑉(𝑉 ↾ {𝐴}) ⊆ 𝑉)
108, 9ax-mp 5 . . . . . 6 (𝑉 ↾ {𝐴}) ⊆ 𝑉
117, 10eqsstrri 4044 . . . . 5 ({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉
125, 11eqsstrri 4044 . . . 4 ((𝑉 “ {𝐴}) × {𝐴}) ⊆ 𝑉
13 coss2 5881 . . . 4 (((𝑉 “ {𝐴}) × {𝐴}) ⊆ 𝑉 → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉))
1412, 13mp1i 13 . . 3 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉))
156, 8eqsstrri 4044 . . . 4 ({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉
16 coss1 5880 . . . 4 (({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉 → (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉) ⊆ (𝑉𝑉))
1715, 16mp1i 13 . . 3 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉) ⊆ (𝑉𝑉))
1814, 17sstrd 4019 . 2 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (𝑉𝑉))
194, 18eqsstrrd 4048 1 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wss 3976  c0 4352  {csn 4648   × cxp 5698  ccnv 5699  cres 5702  cima 5703  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  neipcfilu  24326
  Copyright terms: Public domain W3C validator