MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustneism Structured version   Visualization version   GIF version

Theorem ustneism 23735
Description: For a point 𝐴 in 𝑋, (𝑉 “ {𝐴}) is small enough in (𝑉𝑉). This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017.)
Assertion
Ref Expression
ustneism ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉𝑉))

Proof of Theorem ustneism
StepHypRef Expression
1 snnzg 4778 . . . 4 (𝐴𝑋 → {𝐴} ≠ ∅)
21adantl 482 . . 3 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → {𝐴} ≠ ∅)
3 xpco 6288 . . 3 ({𝐴} ≠ ∅ → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) = ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})))
42, 3syl 17 . 2 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) = ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})))
5 cnvxp 6156 . . . . 5 ({𝐴} × (𝑉 “ {𝐴})) = ((𝑉 “ {𝐴}) × {𝐴})
6 ressn 6284 . . . . . . 7 (𝑉 ↾ {𝐴}) = ({𝐴} × (𝑉 “ {𝐴}))
76cnveqi 5874 . . . . . 6 (𝑉 ↾ {𝐴}) = ({𝐴} × (𝑉 “ {𝐴}))
8 resss 6006 . . . . . . 7 (𝑉 ↾ {𝐴}) ⊆ 𝑉
9 cnvss 5872 . . . . . . 7 ((𝑉 ↾ {𝐴}) ⊆ 𝑉(𝑉 ↾ {𝐴}) ⊆ 𝑉)
108, 9ax-mp 5 . . . . . 6 (𝑉 ↾ {𝐴}) ⊆ 𝑉
117, 10eqsstrri 4017 . . . . 5 ({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉
125, 11eqsstrri 4017 . . . 4 ((𝑉 “ {𝐴}) × {𝐴}) ⊆ 𝑉
13 coss2 5856 . . . 4 (((𝑉 “ {𝐴}) × {𝐴}) ⊆ 𝑉 → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉))
1412, 13mp1i 13 . . 3 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉))
156, 8eqsstrri 4017 . . . 4 ({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉
16 coss1 5855 . . . 4 (({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉 → (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉) ⊆ (𝑉𝑉))
1715, 16mp1i 13 . . 3 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉) ⊆ (𝑉𝑉))
1814, 17sstrd 3992 . 2 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (𝑉𝑉))
194, 18eqsstrrd 4021 1 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  wss 3948  c0 4322  {csn 4628   × cxp 5674  ccnv 5675  cres 5678  cima 5679  ccom 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689
This theorem is referenced by:  neipcfilu  23808
  Copyright terms: Public domain W3C validator