MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustneism Structured version   Visualization version   GIF version

Theorem ustneism 24159
Description: For a point 𝐴 in 𝑋, (𝑉 “ {𝐴}) is small enough in (𝑉𝑉). This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017.)
Assertion
Ref Expression
ustneism ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉𝑉))

Proof of Theorem ustneism
StepHypRef Expression
1 snnzg 4728 . . . 4 (𝐴𝑋 → {𝐴} ≠ ∅)
21adantl 481 . . 3 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → {𝐴} ≠ ∅)
3 xpco 6244 . . 3 ({𝐴} ≠ ∅ → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) = ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})))
42, 3syl 17 . 2 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) = ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})))
5 cnvxp 6112 . . . . 5 ({𝐴} × (𝑉 “ {𝐴})) = ((𝑉 “ {𝐴}) × {𝐴})
6 ressn 6240 . . . . . . 7 (𝑉 ↾ {𝐴}) = ({𝐴} × (𝑉 “ {𝐴}))
76cnveqi 5820 . . . . . 6 (𝑉 ↾ {𝐴}) = ({𝐴} × (𝑉 “ {𝐴}))
8 resss 5957 . . . . . . 7 (𝑉 ↾ {𝐴}) ⊆ 𝑉
9 cnvss 5818 . . . . . . 7 ((𝑉 ↾ {𝐴}) ⊆ 𝑉(𝑉 ↾ {𝐴}) ⊆ 𝑉)
108, 9ax-mp 5 . . . . . 6 (𝑉 ↾ {𝐴}) ⊆ 𝑉
117, 10eqsstrri 3978 . . . . 5 ({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉
125, 11eqsstrri 3978 . . . 4 ((𝑉 “ {𝐴}) × {𝐴}) ⊆ 𝑉
13 coss2 5802 . . . 4 (((𝑉 “ {𝐴}) × {𝐴}) ⊆ 𝑉 → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉))
1412, 13mp1i 13 . . 3 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉))
156, 8eqsstrri 3978 . . . 4 ({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉
16 coss1 5801 . . . 4 (({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉 → (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉) ⊆ (𝑉𝑉))
1715, 16mp1i 13 . . 3 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ 𝑉) ⊆ (𝑉𝑉))
1814, 17sstrd 3941 . 2 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (𝑉𝑉))
194, 18eqsstrrd 3966 1 ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wss 3898  c0 4282  {csn 4577   × cxp 5619  ccnv 5620  cres 5623  cima 5624  ccom 5625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634
This theorem is referenced by:  neipcfilu  24230
  Copyright terms: Public domain W3C validator