![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustneism | Structured version Visualization version GIF version |
Description: For a point 𝐴 in 𝑋, (𝑉 “ {𝐴}) is small enough in (𝑉 ∘ ◡𝑉). This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
Ref | Expression |
---|---|
ustneism | ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉 ∘ ◡𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnzg 4777 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → {𝐴} ≠ ∅) | |
2 | 1 | adantl 482 | . . 3 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ≠ ∅) |
3 | xpco 6285 | . . 3 ⊢ ({𝐴} ≠ ∅ → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) = ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴}))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) = ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴}))) |
5 | cnvxp 6153 | . . . . 5 ⊢ ◡({𝐴} × (𝑉 “ {𝐴})) = ((𝑉 “ {𝐴}) × {𝐴}) | |
6 | ressn 6281 | . . . . . . 7 ⊢ (𝑉 ↾ {𝐴}) = ({𝐴} × (𝑉 “ {𝐴})) | |
7 | 6 | cnveqi 5872 | . . . . . 6 ⊢ ◡(𝑉 ↾ {𝐴}) = ◡({𝐴} × (𝑉 “ {𝐴})) |
8 | resss 6004 | . . . . . . 7 ⊢ (𝑉 ↾ {𝐴}) ⊆ 𝑉 | |
9 | cnvss 5870 | . . . . . . 7 ⊢ ((𝑉 ↾ {𝐴}) ⊆ 𝑉 → ◡(𝑉 ↾ {𝐴}) ⊆ ◡𝑉) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ ◡(𝑉 ↾ {𝐴}) ⊆ ◡𝑉 |
11 | 7, 10 | eqsstrri 4016 | . . . . 5 ⊢ ◡({𝐴} × (𝑉 “ {𝐴})) ⊆ ◡𝑉 |
12 | 5, 11 | eqsstrri 4016 | . . . 4 ⊢ ((𝑉 “ {𝐴}) × {𝐴}) ⊆ ◡𝑉 |
13 | coss2 5854 | . . . 4 ⊢ (((𝑉 “ {𝐴}) × {𝐴}) ⊆ ◡𝑉 → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (({𝐴} × (𝑉 “ {𝐴})) ∘ ◡𝑉)) | |
14 | 12, 13 | mp1i 13 | . . 3 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (({𝐴} × (𝑉 “ {𝐴})) ∘ ◡𝑉)) |
15 | 6, 8 | eqsstrri 4016 | . . . 4 ⊢ ({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉 |
16 | coss1 5853 | . . . 4 ⊢ (({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉 → (({𝐴} × (𝑉 “ {𝐴})) ∘ ◡𝑉) ⊆ (𝑉 ∘ ◡𝑉)) | |
17 | 15, 16 | mp1i 13 | . . 3 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ◡𝑉) ⊆ (𝑉 ∘ ◡𝑉)) |
18 | 14, 17 | sstrd 3991 | . 2 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (𝑉 ∘ ◡𝑉)) |
19 | 4, 18 | eqsstrrd 4020 | 1 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉 ∘ ◡𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ⊆ wss 3947 ∅c0 4321 {csn 4627 × cxp 5673 ◡ccnv 5674 ↾ cres 5677 “ cima 5678 ∘ ccom 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 |
This theorem is referenced by: neipcfilu 23792 |
Copyright terms: Public domain | W3C validator |