Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustneism | Structured version Visualization version GIF version |
Description: For a point 𝐴 in 𝑋, (𝑉 “ {𝐴}) is small enough in (𝑉 ∘ ◡𝑉). This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
Ref | Expression |
---|---|
ustneism | ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉 ∘ ◡𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnzg 4707 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → {𝐴} ≠ ∅) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ≠ ∅) |
3 | xpco 6181 | . . 3 ⊢ ({𝐴} ≠ ∅ → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) = ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴}))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) = ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴}))) |
5 | cnvxp 6049 | . . . . 5 ⊢ ◡({𝐴} × (𝑉 “ {𝐴})) = ((𝑉 “ {𝐴}) × {𝐴}) | |
6 | ressn 6177 | . . . . . . 7 ⊢ (𝑉 ↾ {𝐴}) = ({𝐴} × (𝑉 “ {𝐴})) | |
7 | 6 | cnveqi 5772 | . . . . . 6 ⊢ ◡(𝑉 ↾ {𝐴}) = ◡({𝐴} × (𝑉 “ {𝐴})) |
8 | resss 5905 | . . . . . . 7 ⊢ (𝑉 ↾ {𝐴}) ⊆ 𝑉 | |
9 | cnvss 5770 | . . . . . . 7 ⊢ ((𝑉 ↾ {𝐴}) ⊆ 𝑉 → ◡(𝑉 ↾ {𝐴}) ⊆ ◡𝑉) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ ◡(𝑉 ↾ {𝐴}) ⊆ ◡𝑉 |
11 | 7, 10 | eqsstrri 3952 | . . . . 5 ⊢ ◡({𝐴} × (𝑉 “ {𝐴})) ⊆ ◡𝑉 |
12 | 5, 11 | eqsstrri 3952 | . . . 4 ⊢ ((𝑉 “ {𝐴}) × {𝐴}) ⊆ ◡𝑉 |
13 | coss2 5754 | . . . 4 ⊢ (((𝑉 “ {𝐴}) × {𝐴}) ⊆ ◡𝑉 → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (({𝐴} × (𝑉 “ {𝐴})) ∘ ◡𝑉)) | |
14 | 12, 13 | mp1i 13 | . . 3 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (({𝐴} × (𝑉 “ {𝐴})) ∘ ◡𝑉)) |
15 | 6, 8 | eqsstrri 3952 | . . . 4 ⊢ ({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉 |
16 | coss1 5753 | . . . 4 ⊢ (({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉 → (({𝐴} × (𝑉 “ {𝐴})) ∘ ◡𝑉) ⊆ (𝑉 ∘ ◡𝑉)) | |
17 | 15, 16 | mp1i 13 | . . 3 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ◡𝑉) ⊆ (𝑉 ∘ ◡𝑉)) |
18 | 14, 17 | sstrd 3927 | . 2 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (𝑉 ∘ ◡𝑉)) |
19 | 4, 18 | eqsstrrd 3956 | 1 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉 ∘ ◡𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 ∅c0 4253 {csn 4558 × cxp 5578 ◡ccnv 5579 ↾ cres 5582 “ cima 5583 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: neipcfilu 23356 |
Copyright terms: Public domain | W3C validator |