MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0i Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0i 26060
Description: Auxiliary lemma 9 for gausslemma2d 26070. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2dlem0.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2dlem0.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem0i (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))

Proof of Theorem gausslemma2dlem0i
StepHypRef Expression
1 2z 12066 . . 3 2 ∈ ℤ
2 gausslemma2dlem0.p . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
3 id 22 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℙ ∖ {2}))
43gausslemma2dlem0a 26052 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
54nnzd 12138 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
62, 5syl 17 . . 3 (𝜑𝑃 ∈ ℤ)
7 lgscl1 26016 . . 3 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (2 /L 𝑃) ∈ {-1, 0, 1})
81, 6, 7sylancr 590 . 2 (𝜑 → (2 /L 𝑃) ∈ {-1, 0, 1})
9 ovex 7189 . . . 4 (2 /L 𝑃) ∈ V
109eltp 4586 . . 3 ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1))
11 gausslemma2dlem0.m . . . . . . . . 9 𝑀 = (⌊‘(𝑃 / 4))
12 gausslemma2dlem0.h . . . . . . . . 9 𝐻 = ((𝑃 − 1) / 2)
13 gausslemma2dlem0.n . . . . . . . . 9 𝑁 = (𝐻𝑀)
142, 11, 12, 13gausslemma2dlem0h 26059 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
1514nn0zd 12137 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
16 m1expcl2 13514 . . . . . . 7 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
1715, 16syl 17 . . . . . 6 (𝜑 → (-1↑𝑁) ∈ {-1, 1})
18 ovex 7189 . . . . . . . 8 (-1↑𝑁) ∈ V
1918elpr 4548 . . . . . . 7 ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1))
20 eqcom 2765 . . . . . . . . . 10 ((-1↑𝑁) = -1 ↔ -1 = (-1↑𝑁))
2120biimpi 219 . . . . . . . . 9 ((-1↑𝑁) = -1 → -1 = (-1↑𝑁))
22212a1d 26 . . . . . . . 8 ((-1↑𝑁) = -1 → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
23 eldifi 4034 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
24 prmnn 16083 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2524nnred 11702 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
26 prmgt1 16106 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 1 < 𝑃)
2725, 26jca 515 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
2823, 27syl 17 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
29 1mod 13333 . . . . . . . . . . . 12 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
302, 28, 293syl 18 . . . . . . . . . . 11 (𝜑 → (1 mod 𝑃) = 1)
3130eqeq2d 2769 . . . . . . . . . 10 (𝜑 → ((-1 mod 𝑃) = (1 mod 𝑃) ↔ (-1 mod 𝑃) = 1))
32 oddprmge3 16109 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
33 m1modge3gt1 13348 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘3) → 1 < (-1 mod 𝑃))
34 breq2 5040 . . . . . . . . . . . . 13 ((-1 mod 𝑃) = 1 → (1 < (-1 mod 𝑃) ↔ 1 < 1))
35 1re 10692 . . . . . . . . . . . . . . 15 1 ∈ ℝ
3635ltnri 10800 . . . . . . . . . . . . . 14 ¬ 1 < 1
3736pm2.21i 119 . . . . . . . . . . . . 13 (1 < 1 → -1 = 1)
3834, 37syl6bi 256 . . . . . . . . . . . 12 ((-1 mod 𝑃) = 1 → (1 < (-1 mod 𝑃) → -1 = 1))
3933, 38syl5com 31 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘3) → ((-1 mod 𝑃) = 1 → -1 = 1))
402, 32, 393syl 18 . . . . . . . . . 10 (𝜑 → ((-1 mod 𝑃) = 1 → -1 = 1))
4131, 40sylbid 243 . . . . . . . . 9 (𝜑 → ((-1 mod 𝑃) = (1 mod 𝑃) → -1 = 1))
42 oveq1 7163 . . . . . . . . . . 11 ((-1↑𝑁) = 1 → ((-1↑𝑁) mod 𝑃) = (1 mod 𝑃))
4342eqeq2d 2769 . . . . . . . . . 10 ((-1↑𝑁) = 1 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (-1 mod 𝑃) = (1 mod 𝑃)))
44 eqeq2 2770 . . . . . . . . . 10 ((-1↑𝑁) = 1 → (-1 = (-1↑𝑁) ↔ -1 = 1))
4543, 44imbi12d 348 . . . . . . . . 9 ((-1↑𝑁) = 1 → (((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁)) ↔ ((-1 mod 𝑃) = (1 mod 𝑃) → -1 = 1)))
4641, 45syl5ibr 249 . . . . . . . 8 ((-1↑𝑁) = 1 → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
4722, 46jaoi 854 . . . . . . 7 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
4819, 47sylbi 220 . . . . . 6 ((-1↑𝑁) ∈ {-1, 1} → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
4917, 48mpcom 38 . . . . 5 (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁)))
50 oveq1 7163 . . . . . . 7 ((2 /L 𝑃) = -1 → ((2 /L 𝑃) mod 𝑃) = (-1 mod 𝑃))
5150eqeq1d 2760 . . . . . 6 ((2 /L 𝑃) = -1 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
52 eqeq1 2762 . . . . . 6 ((2 /L 𝑃) = -1 → ((2 /L 𝑃) = (-1↑𝑁) ↔ -1 = (-1↑𝑁)))
5351, 52imbi12d 348 . . . . 5 ((2 /L 𝑃) = -1 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
5449, 53syl5ibr 249 . . . 4 ((2 /L 𝑃) = -1 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
552gausslemma2dlem0a 26052 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
5655nnrpd 12483 . . . . . . . 8 (𝜑𝑃 ∈ ℝ+)
57 0mod 13332 . . . . . . . 8 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
5856, 57syl 17 . . . . . . 7 (𝜑 → (0 mod 𝑃) = 0)
5958eqeq1d 2760 . . . . . 6 (𝜑 → ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ 0 = ((-1↑𝑁) mod 𝑃)))
60 oveq1 7163 . . . . . . . . . . . . 13 ((-1↑𝑁) = -1 → ((-1↑𝑁) mod 𝑃) = (-1 mod 𝑃))
6160eqeq2d 2769 . . . . . . . . . . . 12 ((-1↑𝑁) = -1 → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (-1 mod 𝑃)))
6261adantr 484 . . . . . . . . . . 11 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (-1 mod 𝑃)))
63 negmod0 13308 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((1 mod 𝑃) = 0 ↔ (-1 mod 𝑃) = 0))
64 eqcom 2765 . . . . . . . . . . . . . . 15 ((-1 mod 𝑃) = 0 ↔ 0 = (-1 mod 𝑃))
6563, 64bitrdi 290 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((1 mod 𝑃) = 0 ↔ 0 = (-1 mod 𝑃)))
6635, 56, 65sylancr 590 . . . . . . . . . . . . 13 (𝜑 → ((1 mod 𝑃) = 0 ↔ 0 = (-1 mod 𝑃)))
6730eqeq1d 2760 . . . . . . . . . . . . . 14 (𝜑 → ((1 mod 𝑃) = 0 ↔ 1 = 0))
68 ax-1ne0 10657 . . . . . . . . . . . . . . 15 1 ≠ 0
69 eqneqall 2962 . . . . . . . . . . . . . . 15 (1 = 0 → (1 ≠ 0 → 0 = (-1↑𝑁)))
7068, 69mpi 20 . . . . . . . . . . . . . 14 (1 = 0 → 0 = (-1↑𝑁))
7167, 70syl6bi 256 . . . . . . . . . . . . 13 (𝜑 → ((1 mod 𝑃) = 0 → 0 = (-1↑𝑁)))
7266, 71sylbird 263 . . . . . . . . . . . 12 (𝜑 → (0 = (-1 mod 𝑃) → 0 = (-1↑𝑁)))
7372adantl 485 . . . . . . . . . . 11 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = (-1 mod 𝑃) → 0 = (-1↑𝑁)))
7462, 73sylbid 243 . . . . . . . . . 10 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
7574ex 416 . . . . . . . . 9 ((-1↑𝑁) = -1 → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
7642eqeq2d 2769 . . . . . . . . . . . 12 ((-1↑𝑁) = 1 → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (1 mod 𝑃)))
7776adantr 484 . . . . . . . . . . 11 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (1 mod 𝑃)))
78 eqcom 2765 . . . . . . . . . . . . . 14 (0 = (1 mod 𝑃) ↔ (1 mod 𝑃) = 0)
7978, 67syl5bb 286 . . . . . . . . . . . . 13 (𝜑 → (0 = (1 mod 𝑃) ↔ 1 = 0))
8079, 70syl6bi 256 . . . . . . . . . . . 12 (𝜑 → (0 = (1 mod 𝑃) → 0 = (-1↑𝑁)))
8180adantl 485 . . . . . . . . . . 11 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = (1 mod 𝑃) → 0 = (-1↑𝑁)))
8277, 81sylbid 243 . . . . . . . . . 10 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
8382ex 416 . . . . . . . . 9 ((-1↑𝑁) = 1 → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
8475, 83jaoi 854 . . . . . . . 8 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
8519, 84sylbi 220 . . . . . . 7 ((-1↑𝑁) ∈ {-1, 1} → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
8617, 85mpcom 38 . . . . . 6 (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
8759, 86sylbid 243 . . . . 5 (𝜑 → ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
88 oveq1 7163 . . . . . . 7 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) mod 𝑃) = (0 mod 𝑃))
8988eqeq1d 2760 . . . . . 6 ((2 /L 𝑃) = 0 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (0 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
90 eqeq1 2762 . . . . . 6 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) = (-1↑𝑁) ↔ 0 = (-1↑𝑁)))
9189, 90imbi12d 348 . . . . 5 ((2 /L 𝑃) = 0 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
9287, 91syl5ibr 249 . . . 4 ((2 /L 𝑃) = 0 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
9330eqeq1d 2760 . . . . . 6 (𝜑 → ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ 1 = ((-1↑𝑁) mod 𝑃)))
94 eqcom 2765 . . . . . . . . . . 11 (1 = (-1 mod 𝑃) ↔ (-1 mod 𝑃) = 1)
95 eqcom 2765 . . . . . . . . . . 11 (1 = -1 ↔ -1 = 1)
9640, 94, 953imtr4g 299 . . . . . . . . . 10 (𝜑 → (1 = (-1 mod 𝑃) → 1 = -1))
9760eqeq2d 2769 . . . . . . . . . . 11 ((-1↑𝑁) = -1 → (1 = ((-1↑𝑁) mod 𝑃) ↔ 1 = (-1 mod 𝑃)))
98 eqeq2 2770 . . . . . . . . . . 11 ((-1↑𝑁) = -1 → (1 = (-1↑𝑁) ↔ 1 = -1))
9997, 98imbi12d 348 . . . . . . . . . 10 ((-1↑𝑁) = -1 → ((1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)) ↔ (1 = (-1 mod 𝑃) → 1 = -1)))
10096, 99syl5ibr 249 . . . . . . . . 9 ((-1↑𝑁) = -1 → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
101 eqcom 2765 . . . . . . . . . . 11 ((-1↑𝑁) = 1 ↔ 1 = (-1↑𝑁))
102101biimpi 219 . . . . . . . . . 10 ((-1↑𝑁) = 1 → 1 = (-1↑𝑁))
1031022a1d 26 . . . . . . . . 9 ((-1↑𝑁) = 1 → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
104100, 103jaoi 854 . . . . . . . 8 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
10519, 104sylbi 220 . . . . . . 7 ((-1↑𝑁) ∈ {-1, 1} → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
10617, 105mpcom 38 . . . . . 6 (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)))
10793, 106sylbid 243 . . . . 5 (𝜑 → ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)))
108 oveq1 7163 . . . . . . 7 ((2 /L 𝑃) = 1 → ((2 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
109108eqeq1d 2760 . . . . . 6 ((2 /L 𝑃) = 1 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (1 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
110 eqeq1 2762 . . . . . 6 ((2 /L 𝑃) = 1 → ((2 /L 𝑃) = (-1↑𝑁) ↔ 1 = (-1↑𝑁)))
111109, 110imbi12d 348 . . . . 5 ((2 /L 𝑃) = 1 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
112107, 111syl5ibr 249 . . . 4 ((2 /L 𝑃) = 1 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
11354, 92, 1123jaoi 1424 . . 3 (((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1) → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
11410, 113sylbi 220 . 2 ((2 /L 𝑃) ∈ {-1, 0, 1} → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
1158, 114mpcom 38 1 (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3o 1083   = wceq 1538  wcel 2111  wne 2951  cdif 3857  {csn 4525  {cpr 4527  {ctp 4529   class class class wbr 5036  cfv 6340  (class class class)co 7156  cr 10587  0cc0 10588  1c1 10589   < clt 10726  cmin 10921  -cneg 10922   / cdiv 11348  2c2 11742  3c3 11743  4c4 11744  cz 12033  cuz 12295  +crp 12443  cfl 13222   mod cmo 13299  cexp 13492  cprime 16080   /L clgs 25990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-oadd 8122  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-dju 9376  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-n0 11948  df-xnn0 12020  df-z 12034  df-uz 12296  df-q 12402  df-rp 12444  df-fz 12953  df-fzo 13096  df-fl 13224  df-mod 13300  df-seq 13432  df-exp 13493  df-hash 13754  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-dvds 15669  df-gcd 15907  df-prm 16081  df-phi 16171  df-pc 16242  df-lgs 25991
This theorem is referenced by:  gausslemma2d  26070
  Copyright terms: Public domain W3C validator