MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0i Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0i 26417
Description: Auxiliary lemma 9 for gausslemma2d 26427. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2dlem0.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2dlem0.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem0i (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))

Proof of Theorem gausslemma2dlem0i
StepHypRef Expression
1 2z 12282 . . 3 2 ∈ ℤ
2 gausslemma2dlem0.p . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
3 id 22 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℙ ∖ {2}))
43gausslemma2dlem0a 26409 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
54nnzd 12354 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
62, 5syl 17 . . 3 (𝜑𝑃 ∈ ℤ)
7 lgscl1 26373 . . 3 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (2 /L 𝑃) ∈ {-1, 0, 1})
81, 6, 7sylancr 586 . 2 (𝜑 → (2 /L 𝑃) ∈ {-1, 0, 1})
9 ovex 7288 . . . 4 (2 /L 𝑃) ∈ V
109eltp 4621 . . 3 ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1))
11 gausslemma2dlem0.m . . . . . . . . 9 𝑀 = (⌊‘(𝑃 / 4))
12 gausslemma2dlem0.h . . . . . . . . 9 𝐻 = ((𝑃 − 1) / 2)
13 gausslemma2dlem0.n . . . . . . . . 9 𝑁 = (𝐻𝑀)
142, 11, 12, 13gausslemma2dlem0h 26416 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
1514nn0zd 12353 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
16 m1expcl2 13732 . . . . . . 7 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
1715, 16syl 17 . . . . . 6 (𝜑 → (-1↑𝑁) ∈ {-1, 1})
18 ovex 7288 . . . . . . . 8 (-1↑𝑁) ∈ V
1918elpr 4581 . . . . . . 7 ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1))
20 eqcom 2745 . . . . . . . . . 10 ((-1↑𝑁) = -1 ↔ -1 = (-1↑𝑁))
2120biimpi 215 . . . . . . . . 9 ((-1↑𝑁) = -1 → -1 = (-1↑𝑁))
22212a1d 26 . . . . . . . 8 ((-1↑𝑁) = -1 → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
23 eldifi 4057 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
24 prmnn 16307 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2524nnred 11918 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
26 prmgt1 16330 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 1 < 𝑃)
2725, 26jca 511 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
2823, 27syl 17 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
29 1mod 13551 . . . . . . . . . . . 12 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
302, 28, 293syl 18 . . . . . . . . . . 11 (𝜑 → (1 mod 𝑃) = 1)
3130eqeq2d 2749 . . . . . . . . . 10 (𝜑 → ((-1 mod 𝑃) = (1 mod 𝑃) ↔ (-1 mod 𝑃) = 1))
32 oddprmge3 16333 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
33 m1modge3gt1 13566 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘3) → 1 < (-1 mod 𝑃))
34 breq2 5074 . . . . . . . . . . . . 13 ((-1 mod 𝑃) = 1 → (1 < (-1 mod 𝑃) ↔ 1 < 1))
35 1re 10906 . . . . . . . . . . . . . . 15 1 ∈ ℝ
3635ltnri 11014 . . . . . . . . . . . . . 14 ¬ 1 < 1
3736pm2.21i 119 . . . . . . . . . . . . 13 (1 < 1 → -1 = 1)
3834, 37syl6bi 252 . . . . . . . . . . . 12 ((-1 mod 𝑃) = 1 → (1 < (-1 mod 𝑃) → -1 = 1))
3933, 38syl5com 31 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘3) → ((-1 mod 𝑃) = 1 → -1 = 1))
402, 32, 393syl 18 . . . . . . . . . 10 (𝜑 → ((-1 mod 𝑃) = 1 → -1 = 1))
4131, 40sylbid 239 . . . . . . . . 9 (𝜑 → ((-1 mod 𝑃) = (1 mod 𝑃) → -1 = 1))
42 oveq1 7262 . . . . . . . . . . 11 ((-1↑𝑁) = 1 → ((-1↑𝑁) mod 𝑃) = (1 mod 𝑃))
4342eqeq2d 2749 . . . . . . . . . 10 ((-1↑𝑁) = 1 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (-1 mod 𝑃) = (1 mod 𝑃)))
44 eqeq2 2750 . . . . . . . . . 10 ((-1↑𝑁) = 1 → (-1 = (-1↑𝑁) ↔ -1 = 1))
4543, 44imbi12d 344 . . . . . . . . 9 ((-1↑𝑁) = 1 → (((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁)) ↔ ((-1 mod 𝑃) = (1 mod 𝑃) → -1 = 1)))
4641, 45syl5ibr 245 . . . . . . . 8 ((-1↑𝑁) = 1 → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
4722, 46jaoi 853 . . . . . . 7 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
4819, 47sylbi 216 . . . . . 6 ((-1↑𝑁) ∈ {-1, 1} → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
4917, 48mpcom 38 . . . . 5 (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁)))
50 oveq1 7262 . . . . . . 7 ((2 /L 𝑃) = -1 → ((2 /L 𝑃) mod 𝑃) = (-1 mod 𝑃))
5150eqeq1d 2740 . . . . . 6 ((2 /L 𝑃) = -1 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
52 eqeq1 2742 . . . . . 6 ((2 /L 𝑃) = -1 → ((2 /L 𝑃) = (-1↑𝑁) ↔ -1 = (-1↑𝑁)))
5351, 52imbi12d 344 . . . . 5 ((2 /L 𝑃) = -1 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
5449, 53syl5ibr 245 . . . 4 ((2 /L 𝑃) = -1 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
552gausslemma2dlem0a 26409 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
5655nnrpd 12699 . . . . . . . 8 (𝜑𝑃 ∈ ℝ+)
57 0mod 13550 . . . . . . . 8 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
5856, 57syl 17 . . . . . . 7 (𝜑 → (0 mod 𝑃) = 0)
5958eqeq1d 2740 . . . . . 6 (𝜑 → ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ 0 = ((-1↑𝑁) mod 𝑃)))
60 oveq1 7262 . . . . . . . . . . . . 13 ((-1↑𝑁) = -1 → ((-1↑𝑁) mod 𝑃) = (-1 mod 𝑃))
6160eqeq2d 2749 . . . . . . . . . . . 12 ((-1↑𝑁) = -1 → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (-1 mod 𝑃)))
6261adantr 480 . . . . . . . . . . 11 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (-1 mod 𝑃)))
63 negmod0 13526 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((1 mod 𝑃) = 0 ↔ (-1 mod 𝑃) = 0))
64 eqcom 2745 . . . . . . . . . . . . . . 15 ((-1 mod 𝑃) = 0 ↔ 0 = (-1 mod 𝑃))
6563, 64bitrdi 286 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((1 mod 𝑃) = 0 ↔ 0 = (-1 mod 𝑃)))
6635, 56, 65sylancr 586 . . . . . . . . . . . . 13 (𝜑 → ((1 mod 𝑃) = 0 ↔ 0 = (-1 mod 𝑃)))
6730eqeq1d 2740 . . . . . . . . . . . . . 14 (𝜑 → ((1 mod 𝑃) = 0 ↔ 1 = 0))
68 ax-1ne0 10871 . . . . . . . . . . . . . . 15 1 ≠ 0
69 eqneqall 2953 . . . . . . . . . . . . . . 15 (1 = 0 → (1 ≠ 0 → 0 = (-1↑𝑁)))
7068, 69mpi 20 . . . . . . . . . . . . . 14 (1 = 0 → 0 = (-1↑𝑁))
7167, 70syl6bi 252 . . . . . . . . . . . . 13 (𝜑 → ((1 mod 𝑃) = 0 → 0 = (-1↑𝑁)))
7266, 71sylbird 259 . . . . . . . . . . . 12 (𝜑 → (0 = (-1 mod 𝑃) → 0 = (-1↑𝑁)))
7372adantl 481 . . . . . . . . . . 11 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = (-1 mod 𝑃) → 0 = (-1↑𝑁)))
7462, 73sylbid 239 . . . . . . . . . 10 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
7574ex 412 . . . . . . . . 9 ((-1↑𝑁) = -1 → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
7642eqeq2d 2749 . . . . . . . . . . . 12 ((-1↑𝑁) = 1 → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (1 mod 𝑃)))
7776adantr 480 . . . . . . . . . . 11 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (1 mod 𝑃)))
78 eqcom 2745 . . . . . . . . . . . . . 14 (0 = (1 mod 𝑃) ↔ (1 mod 𝑃) = 0)
7978, 67syl5bb 282 . . . . . . . . . . . . 13 (𝜑 → (0 = (1 mod 𝑃) ↔ 1 = 0))
8079, 70syl6bi 252 . . . . . . . . . . . 12 (𝜑 → (0 = (1 mod 𝑃) → 0 = (-1↑𝑁)))
8180adantl 481 . . . . . . . . . . 11 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = (1 mod 𝑃) → 0 = (-1↑𝑁)))
8277, 81sylbid 239 . . . . . . . . . 10 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
8382ex 412 . . . . . . . . 9 ((-1↑𝑁) = 1 → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
8475, 83jaoi 853 . . . . . . . 8 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
8519, 84sylbi 216 . . . . . . 7 ((-1↑𝑁) ∈ {-1, 1} → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
8617, 85mpcom 38 . . . . . 6 (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
8759, 86sylbid 239 . . . . 5 (𝜑 → ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
88 oveq1 7262 . . . . . . 7 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) mod 𝑃) = (0 mod 𝑃))
8988eqeq1d 2740 . . . . . 6 ((2 /L 𝑃) = 0 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (0 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
90 eqeq1 2742 . . . . . 6 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) = (-1↑𝑁) ↔ 0 = (-1↑𝑁)))
9189, 90imbi12d 344 . . . . 5 ((2 /L 𝑃) = 0 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
9287, 91syl5ibr 245 . . . 4 ((2 /L 𝑃) = 0 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
9330eqeq1d 2740 . . . . . 6 (𝜑 → ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ 1 = ((-1↑𝑁) mod 𝑃)))
94 eqcom 2745 . . . . . . . . . . 11 (1 = (-1 mod 𝑃) ↔ (-1 mod 𝑃) = 1)
95 eqcom 2745 . . . . . . . . . . 11 (1 = -1 ↔ -1 = 1)
9640, 94, 953imtr4g 295 . . . . . . . . . 10 (𝜑 → (1 = (-1 mod 𝑃) → 1 = -1))
9760eqeq2d 2749 . . . . . . . . . . 11 ((-1↑𝑁) = -1 → (1 = ((-1↑𝑁) mod 𝑃) ↔ 1 = (-1 mod 𝑃)))
98 eqeq2 2750 . . . . . . . . . . 11 ((-1↑𝑁) = -1 → (1 = (-1↑𝑁) ↔ 1 = -1))
9997, 98imbi12d 344 . . . . . . . . . 10 ((-1↑𝑁) = -1 → ((1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)) ↔ (1 = (-1 mod 𝑃) → 1 = -1)))
10096, 99syl5ibr 245 . . . . . . . . 9 ((-1↑𝑁) = -1 → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
101 eqcom 2745 . . . . . . . . . . 11 ((-1↑𝑁) = 1 ↔ 1 = (-1↑𝑁))
102101biimpi 215 . . . . . . . . . 10 ((-1↑𝑁) = 1 → 1 = (-1↑𝑁))
1031022a1d 26 . . . . . . . . 9 ((-1↑𝑁) = 1 → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
104100, 103jaoi 853 . . . . . . . 8 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
10519, 104sylbi 216 . . . . . . 7 ((-1↑𝑁) ∈ {-1, 1} → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
10617, 105mpcom 38 . . . . . 6 (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)))
10793, 106sylbid 239 . . . . 5 (𝜑 → ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)))
108 oveq1 7262 . . . . . . 7 ((2 /L 𝑃) = 1 → ((2 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
109108eqeq1d 2740 . . . . . 6 ((2 /L 𝑃) = 1 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (1 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
110 eqeq1 2742 . . . . . 6 ((2 /L 𝑃) = 1 → ((2 /L 𝑃) = (-1↑𝑁) ↔ 1 = (-1↑𝑁)))
111109, 110imbi12d 344 . . . . 5 ((2 /L 𝑃) = 1 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
112107, 111syl5ibr 245 . . . 4 ((2 /L 𝑃) = 1 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
11354, 92, 1123jaoi 1425 . . 3 (((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1) → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
11410, 113sylbi 216 . 2 ((2 /L 𝑃) ∈ {-1, 0, 1} → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
1158, 114mpcom 38 1 (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3o 1084   = wceq 1539  wcel 2108  wne 2942  cdif 3880  {csn 4558  {cpr 4560  {ctp 4562   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   < clt 10940  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  3c3 11959  4c4 11960  cz 12249  cuz 12511  +crp 12659  cfl 13438   mod cmo 13517  cexp 13710  cprime 16304   /L clgs 26347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-phi 16395  df-pc 16466  df-lgs 26348
This theorem is referenced by:  gausslemma2d  26427
  Copyright terms: Public domain W3C validator