Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wzel Structured version   Visualization version   GIF version

Theorem wzel 32720
Description: The zero of a well-founded set is a member of that set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.)
Assertion
Ref Expression
wzel ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → inf(𝐴, 𝐴, 𝑅) ∈ 𝐴)

Proof of Theorem wzel
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 weso 5434 . . 3 (𝑅 We 𝐴𝑅 Or 𝐴)
213ad2ant1 1126 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝑅 Or 𝐴)
3 simp1 1129 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝑅 We 𝐴)
4 simp2 1130 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝑅 Se 𝐴)
5 ssidd 3911 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝐴𝐴)
6 simp3 1131 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝐴 ≠ ∅)
7 tz6.26 6054 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐴𝐴𝐴 ≠ ∅)) → ∃𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) = ∅)
83, 4, 5, 6, 7syl22anc 835 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) = ∅)
9 vex 3440 . . . . . . . . . . . . 13 𝑦 ∈ V
109elpred 6036 . . . . . . . . . . . 12 (𝑥 ∈ V → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ (𝑦𝐴𝑦𝑅𝑥)))
1110elv 3442 . . . . . . . . . . 11 (𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ (𝑦𝐴𝑦𝑅𝑥))
1211notbii 321 . . . . . . . . . 10 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ ¬ (𝑦𝐴𝑦𝑅𝑥))
13 imnan 400 . . . . . . . . . 10 ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) ↔ ¬ (𝑦𝐴𝑦𝑅𝑥))
1412, 13bitr4i 279 . . . . . . . . 9 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ (𝑦𝐴 → ¬ 𝑦𝑅𝑥))
15 pm2.27 42 . . . . . . . . . . 11 (𝑦𝐴 → ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) → ¬ 𝑦𝑅𝑥))
1615ad2antll 725 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) → ¬ 𝑦𝑅𝑥))
17 breq1 4965 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧𝑅𝑦𝑥𝑅𝑦))
1817rspcev 3559 . . . . . . . . . . . 12 ((𝑥𝐴𝑥𝑅𝑦) → ∃𝑧𝐴 𝑧𝑅𝑦)
1918ex 413 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
2019ad2antrl 724 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
2116, 20jctird 527 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
2214, 21syl5bi 243 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
2322expr 457 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑦𝐴 → (¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))))
2423com23 86 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → (𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))))
2524alimdv 1894 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (∀𝑦 ¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → ∀𝑦(𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))))
26 eq0 4228 . . . . 5 (Pred(𝑅, 𝐴, 𝑥) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥))
27 r19.26 3137 . . . . . 6 (∀𝑦𝐴𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))
28 df-ral 3110 . . . . . 6 (∀𝑦𝐴𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)) ↔ ∀𝑦(𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
2927, 28bitr3i 278 . . . . 5 ((∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)) ↔ ∀𝑦(𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
3025, 26, 293imtr4g 297 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (Pred(𝑅, 𝐴, 𝑥) = ∅ → (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
3130reximdva 3237 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → (∃𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) = ∅ → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
328, 31mpd 15 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))
332, 32infcl 8798 1 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → inf(𝐴, 𝐴, 𝑅) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080  wal 1520   = wceq 1522  wcel 2081  wne 2984  wral 3105  wrex 3106  Vcvv 3437  wss 3859  c0 4211   class class class wbr 4962   Or wor 5361   Se wse 5400   We wwe 5401  Predcpred 6022  infcinf 8751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-cnv 5451  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-iota 6189  df-riota 6977  df-sup 8752  df-inf 8753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator