Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wzel Structured version   Visualization version   GIF version

Theorem wzel 35819
Description: The zero of a well-founded set is a member of that set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.)
Assertion
Ref Expression
wzel ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → inf(𝐴, 𝐴, 𝑅) ∈ 𝐴)

Proof of Theorem wzel
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 weso 5632 . . 3 (𝑅 We 𝐴𝑅 Or 𝐴)
213ad2ant1 1133 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝑅 Or 𝐴)
3 simp1 1136 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝑅 We 𝐴)
4 simp2 1137 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝑅 Se 𝐴)
5 ssidd 3973 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝐴𝐴)
6 simp3 1138 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝐴 ≠ ∅)
7 tz6.26 6323 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐴𝐴𝐴 ≠ ∅)) → ∃𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) = ∅)
83, 4, 5, 6, 7syl22anc 838 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) = ∅)
9 vex 3454 . . . . . . . . . . . . 13 𝑦 ∈ V
109elpred 6294 . . . . . . . . . . . 12 (𝑥 ∈ V → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ (𝑦𝐴𝑦𝑅𝑥)))
1110elv 3455 . . . . . . . . . . 11 (𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ (𝑦𝐴𝑦𝑅𝑥))
1211notbii 320 . . . . . . . . . 10 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ ¬ (𝑦𝐴𝑦𝑅𝑥))
13 imnan 399 . . . . . . . . . 10 ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) ↔ ¬ (𝑦𝐴𝑦𝑅𝑥))
1412, 13bitr4i 278 . . . . . . . . 9 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ (𝑦𝐴 → ¬ 𝑦𝑅𝑥))
15 pm2.27 42 . . . . . . . . . . 11 (𝑦𝐴 → ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) → ¬ 𝑦𝑅𝑥))
1615ad2antll 729 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) → ¬ 𝑦𝑅𝑥))
17 breq1 5113 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧𝑅𝑦𝑥𝑅𝑦))
1817rspcev 3591 . . . . . . . . . . . 12 ((𝑥𝐴𝑥𝑅𝑦) → ∃𝑧𝐴 𝑧𝑅𝑦)
1918ex 412 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
2019ad2antrl 728 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
2116, 20jctird 526 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
2214, 21biimtrid 242 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
2322expr 456 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑦𝐴 → (¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))))
2423com23 86 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → (𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))))
2524alimdv 1916 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (∀𝑦 ¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → ∀𝑦(𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))))
26 eq0 4316 . . . . 5 (Pred(𝑅, 𝐴, 𝑥) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥))
27 r19.26 3092 . . . . . 6 (∀𝑦𝐴𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))
28 df-ral 3046 . . . . . 6 (∀𝑦𝐴𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)) ↔ ∀𝑦(𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
2927, 28bitr3i 277 . . . . 5 ((∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)) ↔ ∀𝑦(𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
3025, 26, 293imtr4g 296 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (Pred(𝑅, 𝐴, 𝑥) = ∅ → (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
3130reximdva 3147 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → (∃𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) = ∅ → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
328, 31mpd 15 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))
332, 32infcl 9447 1 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → inf(𝐴, 𝐴, 𝑅) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299   class class class wbr 5110   Or wor 5548   Se wse 5592   We wwe 5593  Predcpred 6276  infcinf 9399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-riota 7347  df-sup 9400  df-inf 9401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator