Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wzel Structured version   Visualization version   GIF version

Theorem wzel 35098
Description: The zero of a well-founded set is a member of that set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.)
Assertion
Ref Expression
wzel ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → inf(𝐴, 𝐴, 𝑅) ∈ 𝐴)

Proof of Theorem wzel
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 weso 5668 . . 3 (𝑅 We 𝐴𝑅 Or 𝐴)
213ad2ant1 1131 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝑅 Or 𝐴)
3 simp1 1134 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝑅 We 𝐴)
4 simp2 1135 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝑅 Se 𝐴)
5 ssidd 4006 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝐴𝐴)
6 simp3 1136 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → 𝐴 ≠ ∅)
7 tz6.26 6349 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐴𝐴𝐴 ≠ ∅)) → ∃𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) = ∅)
83, 4, 5, 6, 7syl22anc 835 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) = ∅)
9 vex 3476 . . . . . . . . . . . . 13 𝑦 ∈ V
109elpred 6318 . . . . . . . . . . . 12 (𝑥 ∈ V → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ (𝑦𝐴𝑦𝑅𝑥)))
1110elv 3478 . . . . . . . . . . 11 (𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ (𝑦𝐴𝑦𝑅𝑥))
1211notbii 319 . . . . . . . . . 10 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ ¬ (𝑦𝐴𝑦𝑅𝑥))
13 imnan 398 . . . . . . . . . 10 ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) ↔ ¬ (𝑦𝐴𝑦𝑅𝑥))
1412, 13bitr4i 277 . . . . . . . . 9 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ (𝑦𝐴 → ¬ 𝑦𝑅𝑥))
15 pm2.27 42 . . . . . . . . . . 11 (𝑦𝐴 → ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) → ¬ 𝑦𝑅𝑥))
1615ad2antll 725 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) → ¬ 𝑦𝑅𝑥))
17 breq1 5152 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧𝑅𝑦𝑥𝑅𝑦))
1817rspcev 3613 . . . . . . . . . . . 12 ((𝑥𝐴𝑥𝑅𝑦) → ∃𝑧𝐴 𝑧𝑅𝑦)
1918ex 411 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
2019ad2antrl 724 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
2116, 20jctird 525 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑦𝐴 → ¬ 𝑦𝑅𝑥) → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
2214, 21biimtrid 241 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
2322expr 455 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑦𝐴 → (¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))))
2423com23 86 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → (𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))))
2524alimdv 1917 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (∀𝑦 ¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥) → ∀𝑦(𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))))
26 eq0 4344 . . . . 5 (Pred(𝑅, 𝐴, 𝑥) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑥))
27 r19.26 3109 . . . . . 6 (∀𝑦𝐴𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))
28 df-ral 3060 . . . . . 6 (∀𝑦𝐴𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)) ↔ ∀𝑦(𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
2927, 28bitr3i 276 . . . . 5 ((∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)) ↔ ∀𝑦(𝑦𝐴 → (¬ 𝑦𝑅𝑥 ∧ (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
3025, 26, 293imtr4g 295 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) ∧ 𝑥𝐴) → (Pred(𝑅, 𝐴, 𝑥) = ∅ → (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
3130reximdva 3166 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → (∃𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) = ∅ → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
328, 31mpd 15 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))
332, 32infcl 9487 1 ((𝑅 We 𝐴𝑅 Se 𝐴𝐴 ≠ ∅) → inf(𝐴, 𝐴, 𝑅) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1085  wal 1537   = wceq 1539  wcel 2104  wne 2938  wral 3059  wrex 3068  Vcvv 3472  wss 3949  c0 4323   class class class wbr 5149   Or wor 5588   Se wse 5630   We wwe 5631  Predcpred 6300  infcinf 9440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-iota 6496  df-riota 7369  df-sup 9441  df-inf 9442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator