MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epne3 Structured version   Visualization version   GIF version

Theorem epne3 7775
Description: A well-founded class contains no 3-cycle loops. (Contributed by NM, 19-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epne3 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝐶𝐶𝐷𝐷𝐵))

Proof of Theorem epne3
StepHypRef Expression
1 fr3nr 7774 . 2 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵 E 𝐶𝐶 E 𝐷𝐷 E 𝐵))
2 epelg 5565 . . . . 5 (𝐶𝐴 → (𝐵 E 𝐶𝐵𝐶))
323ad2ant2 1134 . . . 4 ((𝐵𝐴𝐶𝐴𝐷𝐴) → (𝐵 E 𝐶𝐵𝐶))
4 epelg 5565 . . . . 5 (𝐷𝐴 → (𝐶 E 𝐷𝐶𝐷))
543ad2ant3 1135 . . . 4 ((𝐵𝐴𝐶𝐴𝐷𝐴) → (𝐶 E 𝐷𝐶𝐷))
6 epelg 5565 . . . . 5 (𝐵𝐴 → (𝐷 E 𝐵𝐷𝐵))
763ad2ant1 1133 . . . 4 ((𝐵𝐴𝐶𝐴𝐷𝐴) → (𝐷 E 𝐵𝐷𝐵))
83, 5, 73anbi123d 1437 . . 3 ((𝐵𝐴𝐶𝐴𝐷𝐴) → ((𝐵 E 𝐶𝐶 E 𝐷𝐷 E 𝐵) ↔ (𝐵𝐶𝐶𝐷𝐷𝐵)))
98adantl 481 . 2 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵 E 𝐶𝐶 E 𝐷𝐷 E 𝐵) ↔ (𝐵𝐶𝐶𝐷𝐷𝐵)))
101, 9mtbid 324 1 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝐶𝐶𝐷𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2107   class class class wbr 5123   E cep 5563   Fr wfr 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-eprel 5564  df-fr 5617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator