![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epne3 | Structured version Visualization version GIF version |
Description: A well-founded class contains no 3-cycle loops. (Contributed by NM, 19-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
epne3 | ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fr3nr 7711 | . 2 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵)) | |
2 | epelg 5543 | . . . . 5 ⊢ (𝐶 ∈ 𝐴 → (𝐵 E 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | 2 | 3ad2ant2 1135 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐵 E 𝐶 ↔ 𝐵 ∈ 𝐶)) |
4 | epelg 5543 | . . . . 5 ⊢ (𝐷 ∈ 𝐴 → (𝐶 E 𝐷 ↔ 𝐶 ∈ 𝐷)) | |
5 | 4 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐶 E 𝐷 ↔ 𝐶 ∈ 𝐷)) |
6 | epelg 5543 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → (𝐷 E 𝐵 ↔ 𝐷 ∈ 𝐵)) | |
7 | 6 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐷 E 𝐵 ↔ 𝐷 ∈ 𝐵)) |
8 | 3, 5, 7 | 3anbi123d 1437 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → ((𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵))) |
9 | 8 | adantl 483 | . 2 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵))) |
10 | 1, 9 | mtbid 324 | 1 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5110 E cep 5541 Fr wfr 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-eprel 5542 df-fr 5593 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |