![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epne3 | Structured version Visualization version GIF version |
Description: A set well-founded by epsilon contains no 3-cycle loops. (Contributed by NM, 19-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
epne3 | ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fr3nr 7211 | . 2 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵)) | |
2 | epelg 5224 | . . . . 5 ⊢ (𝐶 ∈ 𝐴 → (𝐵 E 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | 2 | 3ad2ant2 1165 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐵 E 𝐶 ↔ 𝐵 ∈ 𝐶)) |
4 | epelg 5224 | . . . . 5 ⊢ (𝐷 ∈ 𝐴 → (𝐶 E 𝐷 ↔ 𝐶 ∈ 𝐷)) | |
5 | 4 | 3ad2ant3 1166 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐶 E 𝐷 ↔ 𝐶 ∈ 𝐷)) |
6 | epelg 5224 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → (𝐷 E 𝐵 ↔ 𝐷 ∈ 𝐵)) | |
7 | 6 | 3ad2ant1 1164 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐷 E 𝐵 ↔ 𝐷 ∈ 𝐵)) |
8 | 3, 5, 7 | 3anbi123d 1561 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → ((𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵))) |
9 | 8 | adantl 474 | . 2 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵))) |
10 | 1, 9 | mtbid 316 | 1 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 ∈ wcel 2157 class class class wbr 4841 E cep 5222 Fr wfr 5266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-eprel 5223 df-fr 5269 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |