MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epne3 Structured version   Visualization version   GIF version

Theorem epne3 7601
Description: A well-founded class contains no 3-cycle loops. (Contributed by NM, 19-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epne3 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝐶𝐶𝐷𝐷𝐵))

Proof of Theorem epne3
StepHypRef Expression
1 fr3nr 7600 . 2 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵 E 𝐶𝐶 E 𝐷𝐷 E 𝐵))
2 epelg 5487 . . . . 5 (𝐶𝐴 → (𝐵 E 𝐶𝐵𝐶))
323ad2ant2 1132 . . . 4 ((𝐵𝐴𝐶𝐴𝐷𝐴) → (𝐵 E 𝐶𝐵𝐶))
4 epelg 5487 . . . . 5 (𝐷𝐴 → (𝐶 E 𝐷𝐶𝐷))
543ad2ant3 1133 . . . 4 ((𝐵𝐴𝐶𝐴𝐷𝐴) → (𝐶 E 𝐷𝐶𝐷))
6 epelg 5487 . . . . 5 (𝐵𝐴 → (𝐷 E 𝐵𝐷𝐵))
763ad2ant1 1131 . . . 4 ((𝐵𝐴𝐶𝐴𝐷𝐴) → (𝐷 E 𝐵𝐷𝐵))
83, 5, 73anbi123d 1434 . . 3 ((𝐵𝐴𝐶𝐴𝐷𝐴) → ((𝐵 E 𝐶𝐶 E 𝐷𝐷 E 𝐵) ↔ (𝐵𝐶𝐶𝐷𝐷𝐵)))
98adantl 481 . 2 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵 E 𝐶𝐶 E 𝐷𝐷 E 𝐵) ↔ (𝐵𝐶𝐶𝐷𝐷𝐵)))
101, 9mtbid 323 1 (( E Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝐶𝐶𝐷𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085  wcel 2108   class class class wbr 5070   E cep 5485   Fr wfr 5532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-eprel 5486  df-fr 5535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator