| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epne3 | Structured version Visualization version GIF version | ||
| Description: A well-founded class contains no 3-cycle loops. (Contributed by NM, 19-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| epne3 | ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fr3nr 7774 | . 2 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵)) | |
| 2 | epelg 5565 | . . . . 5 ⊢ (𝐶 ∈ 𝐴 → (𝐵 E 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | 2 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐵 E 𝐶 ↔ 𝐵 ∈ 𝐶)) |
| 4 | epelg 5565 | . . . . 5 ⊢ (𝐷 ∈ 𝐴 → (𝐶 E 𝐷 ↔ 𝐶 ∈ 𝐷)) | |
| 5 | 4 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐶 E 𝐷 ↔ 𝐶 ∈ 𝐷)) |
| 6 | epelg 5565 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → (𝐷 E 𝐵 ↔ 𝐷 ∈ 𝐵)) | |
| 7 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝐷 E 𝐵 ↔ 𝐷 ∈ 𝐵)) |
| 8 | 3, 5, 7 | 3anbi123d 1437 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → ((𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵))) |
| 9 | 8 | adantl 481 | . 2 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵))) |
| 10 | 1, 9 | mtbid 324 | 1 ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5123 E cep 5563 Fr wfr 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-eprel 5564 df-fr 5617 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |