MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglefiOLD Structured version   Visualization version   GIF version

Theorem psrbaglefiOLD 20700
Description: Obsolete version of psrbaglefi 20699 as of 6-Aug-2024. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 25-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglefiOLD ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Distinct variable groups:   𝑦,𝑓,𝐹   𝑦,𝑉   𝑓,𝐼,𝑦   𝑦,𝐷
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbaglefiOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3079 . . 3 {𝑦𝐷𝑦r𝐹} = {𝑦 ∣ (𝑦𝐷𝑦r𝐹)}
2 psrbag.d . . . . . . . . 9 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbag 20684 . . . . . . . 8 (𝐼𝑉 → (𝑦𝐷 ↔ (𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin)))
43adantr 484 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → (𝑦𝐷 ↔ (𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin)))
5 simpl 486 . . . . . . 7 ((𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin) → 𝑦:𝐼⟶ℕ0)
64, 5syl6bi 256 . . . . . 6 ((𝐼𝑉𝐹𝐷) → (𝑦𝐷𝑦:𝐼⟶ℕ0))
76adantrd 495 . . . . 5 ((𝐼𝑉𝐹𝐷) → ((𝑦𝐷𝑦r𝐹) → 𝑦:𝐼⟶ℕ0))
8 ss2ixp 8497 . . . . . . . . 9 (∀𝑥𝐼 (0...(𝐹𝑥)) ⊆ ℕ0X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0)
9 fz0ssnn0 13056 . . . . . . . . . 10 (0...(𝐹𝑥)) ⊆ ℕ0
109a1i 11 . . . . . . . . 9 (𝑥𝐼 → (0...(𝐹𝑥)) ⊆ ℕ0)
118, 10mprg 3084 . . . . . . . 8 X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0
1211sseli 3890 . . . . . . 7 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦X𝑥𝐼0)
13 vex 3413 . . . . . . . 8 𝑦 ∈ V
1413elixpconst 8492 . . . . . . 7 (𝑦X𝑥𝐼0𝑦:𝐼⟶ℕ0)
1512, 14sylib 221 . . . . . 6 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0)
1615a1i 11 . . . . 5 ((𝐼𝑉𝐹𝐷) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0))
17 ffn 6502 . . . . . . . . 9 (𝑦:𝐼⟶ℕ0𝑦 Fn 𝐼)
1817adantl 485 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝑦 Fn 𝐼)
1913elixp 8491 . . . . . . . . 9 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ (𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
2019baib 539 . . . . . . . 8 (𝑦 Fn 𝐼 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
2118, 20syl 17 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
22 ffvelrn 6845 . . . . . . . . . . . 12 ((𝑦:𝐼⟶ℕ0𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
2322adantll 713 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
24 nn0uz 12325 . . . . . . . . . . 11 0 = (ℤ‘0)
2523, 24eleqtrdi 2862 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (ℤ‘0))
262psrbagfOLD 20686 . . . . . . . . . . . . 13 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
2726adantr 484 . . . . . . . . . . . 12 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐹:𝐼⟶ℕ0)
2827ffvelrnda 6847 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
2928nn0zd 12129 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℤ)
30 elfz5 12953 . . . . . . . . . 10 (((𝑦𝑥) ∈ (ℤ‘0) ∧ (𝐹𝑥) ∈ ℤ) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3125, 29, 30syl2anc 587 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3231ralbidva 3125 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3327ffnd 6503 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐹 Fn 𝐼)
34 simpll 766 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐼𝑉)
35 inidm 4125 . . . . . . . . 9 (𝐼𝐼) = 𝐼
36 eqidd 2759 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
37 eqidd 2759 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3818, 33, 34, 34, 35, 36, 37ofrfval 7419 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3932, 38bitr4d 285 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ 𝑦r𝐹))
402psrbagleclOLD 20694 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝐹𝐷𝑦:𝐼⟶ℕ0𝑦r𝐹)) → 𝑦𝐷)
41403exp2 1351 . . . . . . . . 9 (𝐼𝑉 → (𝐹𝐷 → (𝑦:𝐼⟶ℕ0 → (𝑦r𝐹𝑦𝐷))))
4241imp31 421 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦r𝐹𝑦𝐷))
4342pm4.71rd 566 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ (𝑦𝐷𝑦r𝐹)))
4421, 39, 433bitrrd 309 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4544ex 416 . . . . 5 ((𝐼𝑉𝐹𝐷) → (𝑦:𝐼⟶ℕ0 → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥)))))
467, 16, 45pm5.21ndd 384 . . . 4 ((𝐼𝑉𝐹𝐷) → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4746abbi1dv 2890 . . 3 ((𝐼𝑉𝐹𝐷) → {𝑦 ∣ (𝑦𝐷𝑦r𝐹)} = X𝑥𝐼 (0...(𝐹𝑥)))
481, 47syl5eq 2805 . 2 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} = X𝑥𝐼 (0...(𝐹𝑥)))
49 simpr 488 . . . . 5 ((𝐼𝑉𝐹𝐷) → 𝐹𝐷)
50 cnveq 5718 . . . . . . . 8 (𝑓 = 𝐹𝑓 = 𝐹)
5150imaeq1d 5904 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 “ ℕ) = (𝐹 “ ℕ))
5251eleq1d 2836 . . . . . 6 (𝑓 = 𝐹 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐹 “ ℕ) ∈ Fin))
5352, 2elrab2 3607 . . . . 5 (𝐹𝐷 ↔ (𝐹 ∈ (ℕ0m 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5449, 53sylib 221 . . . 4 ((𝐼𝑉𝐹𝐷) → (𝐹 ∈ (ℕ0m 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5554simprd 499 . . 3 ((𝐼𝑉𝐹𝐷) → (𝐹 “ ℕ) ∈ Fin)
56 fzfid 13395 . . 3 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝐼) → (0...(𝐹𝑥)) ∈ Fin)
57 simpl 486 . . . . . . . . 9 ((𝐼𝑉𝐹𝐷) → 𝐼𝑉)
5857, 26jca 515 . . . . . . . 8 ((𝐼𝑉𝐹𝐷) → (𝐼𝑉𝐹:𝐼⟶ℕ0))
59 frnnn0supp 11995 . . . . . . . 8 ((𝐼𝑉𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
60 eqimss 3950 . . . . . . . 8 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
6158, 59, 603syl 18 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
62 c0ex 10678 . . . . . . . 8 0 ∈ V
6362a1i 11 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → 0 ∈ V)
6426, 61, 57, 63suppssr 7875 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
6564oveq2d 7171 . . . . 5 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = (0...0))
66 fz0sn 13061 . . . . 5 (0...0) = {0}
6765, 66eqtrdi 2809 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = {0})
68 eqimss 3950 . . . 4 ((0...(𝐹𝑥)) = {0} → (0...(𝐹𝑥)) ⊆ {0})
6967, 68syl 17 . . 3 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) ⊆ {0})
7055, 56, 69ixpfi2 8860 . 2 ((𝐼𝑉𝐹𝐷) → X𝑥𝐼 (0...(𝐹𝑥)) ∈ Fin)
7148, 70eqeltrd 2852 1 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2735  wral 3070  {crab 3074  Vcvv 3409  cdif 3857  wss 3860  {csn 4525   class class class wbr 5035  ccnv 5526  cima 5530   Fn wfn 6334  wf 6335  cfv 6339  (class class class)co 7155  r cofr 7409   supp csupp 7840  m cmap 8421  Xcixp 8484  Fincfn 8532  0cc0 10580  cle 10719  cn 11679  0cn0 11939  cz 12025  cuz 12287  ...cfz 12944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-ofr 7411  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-pm 8424  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945
This theorem is referenced by:  gsumbagdiagOLD  20706  psrass1lemOLD  20707
  Copyright terms: Public domain W3C validator