| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsnfv | Structured version Visualization version GIF version | ||
| Description: Singleton of function value. (Contributed by NM, 22-May-1998.) (Proof shortened by Scott Fenton, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| fnsnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasng 6076 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) |
| 3 | velsn 4622 | . . . . 5 ⊢ (𝑦 ∈ {(𝐹‘𝐵)} ↔ 𝑦 = (𝐹‘𝐵)) | |
| 4 | eqcom 2743 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝐵) ↔ (𝐹‘𝐵) = 𝑦) | |
| 5 | 3, 4 | bitri 275 | . . . 4 ⊢ (𝑦 ∈ {(𝐹‘𝐵)} ↔ (𝐹‘𝐵) = 𝑦) |
| 6 | fnbrfvb 6934 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑦 ↔ 𝐵𝐹𝑦)) | |
| 7 | 5, 6 | bitr2id 284 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵𝐹𝑦 ↔ 𝑦 ∈ {(𝐹‘𝐵)})) |
| 8 | 7 | eqabcdv 2870 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑦 ∣ 𝐵𝐹𝑦} = {(𝐹‘𝐵)}) |
| 9 | 2, 8 | eqtr2d 2772 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 {csn 4606 class class class wbr 5124 “ cima 5662 Fn wfn 6531 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 |
| This theorem is referenced by: fnimapr 6967 fnimatpd 6968 funfv 6971 fvco2 6981 fvimacnvi 7047 fvimacnvALT 7052 fsn2 7131 fnimasnd 7363 fparlem3 8118 fparlem4 8119 suppval1 8170 suppsnop 8182 domunsncan 9091 phplem2 9224 imafiOLD 9331 domunfican 9338 fiint 9343 fiintOLD 9344 infdifsn 9676 cantnfp1lem3 9699 resunimafz0 14468 symgfixelsi 19421 dprdf1o 20020 frlmlbs 21762 f1lindf 21787 cnt1 23293 xkohaus 23596 xkoptsub 23597 ustuqtop3 24187 bday1s 27800 old1 27844 madeoldsuc 27853 n0sbday 28301 zscut 28352 zs12bday 28400 cyclnumvtx 29787 eulerpartlemmf 34412 poimirlem4 37653 poimirlem6 37655 poimirlem7 37656 poimirlem9 37658 poimirlem13 37662 poimirlem14 37663 poimirlem16 37665 poimirlem19 37668 grpokerinj 37922 k0004lem3 44140 funcoressn 47038 cycl3grtri 47926 imaf1homlem 49033 |
| Copyright terms: Public domain | W3C validator |