MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnfv Structured version   Visualization version   GIF version

Theorem fnsnfv 6847
Description: Singleton of function value. (Contributed by NM, 22-May-1998.) (Proof shortened by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
fnsnfv ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))

Proof of Theorem fnsnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 imasng 5991 . . 3 (𝐵𝐴 → (𝐹 “ {𝐵}) = {𝑦𝐵𝐹𝑦})
21adantl 482 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 “ {𝐵}) = {𝑦𝐵𝐹𝑦})
3 velsn 4577 . . . . 5 (𝑦 ∈ {(𝐹𝐵)} ↔ 𝑦 = (𝐹𝐵))
4 eqcom 2745 . . . . 5 (𝑦 = (𝐹𝐵) ↔ (𝐹𝐵) = 𝑦)
53, 4bitri 274 . . . 4 (𝑦 ∈ {(𝐹𝐵)} ↔ (𝐹𝐵) = 𝑦)
6 fnbrfvb 6822 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑦𝐵𝐹𝑦))
75, 6bitr2id 284 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐵𝐹𝑦𝑦 ∈ {(𝐹𝐵)}))
87abbi1dv 2878 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → {𝑦𝐵𝐹𝑦} = {(𝐹𝐵)})
92, 8eqtr2d 2779 1 ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  {csn 4561   class class class wbr 5074  cima 5592   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  fnimapr  6852  funfv  6855  fvco2  6865  fvimacnvi  6929  fvimacnvALT  6934  fsn2  7008  fparlem3  7954  fparlem4  7955  suppval1  7983  suppsnop  7994  domunsncan  8859  imafi  8958  phplem2  8991  phplem4OLD  9003  domunfican  9087  fiint  9091  infdifsn  9415  cantnfp1lem3  9438  resunimafz0  14157  symgfixelsi  19043  dprdf1o  19635  frlmlbs  21004  f1lindf  21029  cnt1  22501  xkohaus  22804  xkoptsub  22805  ustuqtop3  23395  fnimatp  31014  eulerpartlemmf  32342  bday1s  34025  madeoldsuc  34067  poimirlem4  35781  poimirlem6  35783  poimirlem7  35784  poimirlem9  35786  poimirlem13  35790  poimirlem14  35791  poimirlem16  35793  poimirlem19  35796  grpokerinj  36051  fnimasnd  40209  k0004lem3  41759  funcoressn  44536
  Copyright terms: Public domain W3C validator