![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsnfv | Structured version Visualization version GIF version |
Description: Singleton of function value. (Contributed by NM, 22-May-1998.) |
Ref | Expression |
---|---|
fnsnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2804 | . . . 4 ⊢ (𝑦 = (𝐹‘𝐵) ↔ (𝐹‘𝐵) = 𝑦) | |
2 | fnbrfvb 6458 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑦 ↔ 𝐵𝐹𝑦)) | |
3 | 1, 2 | syl5bb 275 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑦 = (𝐹‘𝐵) ↔ 𝐵𝐹𝑦)) |
4 | 3 | abbidv 2916 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑦 ∣ 𝑦 = (𝐹‘𝐵)} = {𝑦 ∣ 𝐵𝐹𝑦}) |
5 | df-sn 4367 | . . 3 ⊢ {(𝐹‘𝐵)} = {𝑦 ∣ 𝑦 = (𝐹‘𝐵)} | |
6 | 5 | a1i 11 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = {𝑦 ∣ 𝑦 = (𝐹‘𝐵)}) |
7 | fnrel 6198 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
8 | relimasn 5703 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) |
10 | 9 | adantr 473 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) |
11 | 4, 6, 10 | 3eqtr4d 2841 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {cab 2783 {csn 4366 class class class wbr 4841 “ cima 5313 Rel wrel 5315 Fn wfn 6094 ‘cfv 6099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-fv 6107 |
This theorem is referenced by: fnimapr 6485 funfv 6488 fvco2 6496 fvimacnvi 6555 fvimacnvALT 6560 fsn2 6628 fparlem3 7514 fparlem4 7515 suppval1 7536 suppsnop 7544 domunsncan 8300 phplem4 8382 domunfican 8473 fiint 8477 infdifsn 8802 cantnfp1lem3 8825 resunimafz0 13474 symgfixelsi 18164 dprdf1o 18744 frlmlbs 20458 f1lindf 20483 cnt1 21480 xkohaus 21782 xkoptsub 21783 ustuqtop3 22372 eulerpartlemmf 30945 poimirlem4 33894 poimirlem6 33896 poimirlem7 33897 poimirlem9 33899 poimirlem13 33903 poimirlem14 33904 poimirlem16 33906 poimirlem19 33909 grpokerinj 34171 k0004lem3 39217 funcoressn 41913 |
Copyright terms: Public domain | W3C validator |