![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsnfv | Structured version Visualization version GIF version |
Description: Singleton of function value. (Contributed by NM, 22-May-1998.) (Proof shortened by Scott Fenton, 8-Aug-2024.) |
Ref | Expression |
---|---|
fnsnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasng 6104 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) |
3 | velsn 4647 | . . . . 5 ⊢ (𝑦 ∈ {(𝐹‘𝐵)} ↔ 𝑦 = (𝐹‘𝐵)) | |
4 | eqcom 2742 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝐵) ↔ (𝐹‘𝐵) = 𝑦) | |
5 | 3, 4 | bitri 275 | . . . 4 ⊢ (𝑦 ∈ {(𝐹‘𝐵)} ↔ (𝐹‘𝐵) = 𝑦) |
6 | fnbrfvb 6960 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑦 ↔ 𝐵𝐹𝑦)) | |
7 | 5, 6 | bitr2id 284 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵𝐹𝑦 ↔ 𝑦 ∈ {(𝐹‘𝐵)})) |
8 | 7 | eqabcdv 2874 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑦 ∣ 𝐵𝐹𝑦} = {(𝐹‘𝐵)}) |
9 | 2, 8 | eqtr2d 2776 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 {csn 4631 class class class wbr 5148 “ cima 5692 Fn wfn 6558 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: fnimapr 6992 fnimatpd 6993 funfv 6996 fvco2 7006 fvimacnvi 7072 fvimacnvALT 7077 fsn2 7156 fparlem3 8138 fparlem4 8139 suppval1 8190 suppsnop 8202 domunsncan 9111 phplem2 9243 phplem4OLD 9255 imafiOLD 9352 domunfican 9359 fiint 9364 fiintOLD 9365 infdifsn 9695 cantnfp1lem3 9718 resunimafz0 14481 symgfixelsi 19468 dprdf1o 20067 frlmlbs 21835 f1lindf 21860 cnt1 23374 xkohaus 23677 xkoptsub 23678 ustuqtop3 24268 bday1s 27891 old1 27929 madeoldsuc 27938 n0sbday 28369 zscut 28408 pw2bday 28433 zs12bday 28439 eulerpartlemmf 34357 poimirlem4 37611 poimirlem6 37613 poimirlem7 37614 poimirlem9 37616 poimirlem13 37620 poimirlem14 37621 poimirlem16 37623 poimirlem19 37626 grpokerinj 37880 fnimasnd 42251 k0004lem3 44139 funcoressn 46992 |
Copyright terms: Public domain | W3C validator |