| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsnfv | Structured version Visualization version GIF version | ||
| Description: Singleton of function value. (Contributed by NM, 22-May-1998.) (Proof shortened by Scott Fenton, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| fnsnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasng 6055 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) |
| 3 | velsn 4605 | . . . . 5 ⊢ (𝑦 ∈ {(𝐹‘𝐵)} ↔ 𝑦 = (𝐹‘𝐵)) | |
| 4 | eqcom 2736 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝐵) ↔ (𝐹‘𝐵) = 𝑦) | |
| 5 | 3, 4 | bitri 275 | . . . 4 ⊢ (𝑦 ∈ {(𝐹‘𝐵)} ↔ (𝐹‘𝐵) = 𝑦) |
| 6 | fnbrfvb 6911 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑦 ↔ 𝐵𝐹𝑦)) | |
| 7 | 5, 6 | bitr2id 284 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵𝐹𝑦 ↔ 𝑦 ∈ {(𝐹‘𝐵)})) |
| 8 | 7 | eqabcdv 2862 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑦 ∣ 𝐵𝐹𝑦} = {(𝐹‘𝐵)}) |
| 9 | 2, 8 | eqtr2d 2765 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {csn 4589 class class class wbr 5107 “ cima 5641 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: fnimapr 6944 fnimatpd 6945 funfv 6948 fvco2 6958 fvimacnvi 7024 fvimacnvALT 7029 fsn2 7108 fnimasnd 7340 fparlem3 8093 fparlem4 8094 suppval1 8145 suppsnop 8157 domunsncan 9041 phplem2 9169 imafiOLD 9265 domunfican 9272 fiint 9277 fiintOLD 9278 infdifsn 9610 cantnfp1lem3 9633 resunimafz0 14410 symgfixelsi 19365 dprdf1o 19964 frlmlbs 21706 f1lindf 21731 cnt1 23237 xkohaus 23540 xkoptsub 23541 ustuqtop3 24131 bday1s 27743 old1 27787 madeoldsuc 27796 n0sbday 28244 zscut 28295 zs12bday 28343 cyclnumvtx 29730 eulerpartlemmf 34366 poimirlem4 37618 poimirlem6 37620 poimirlem7 37621 poimirlem9 37623 poimirlem13 37627 poimirlem14 37628 poimirlem16 37630 poimirlem19 37633 grpokerinj 37887 k0004lem3 44138 funcoressn 47040 cycl3grtri 47943 imaf1homlem 49093 |
| Copyright terms: Public domain | W3C validator |