MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnfv Structured version   Visualization version   GIF version

Theorem fnsnfv 6829
Description: Singleton of function value. (Contributed by NM, 22-May-1998.) (Proof shortened by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
fnsnfv ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))

Proof of Theorem fnsnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 imasng 5980 . . 3 (𝐵𝐴 → (𝐹 “ {𝐵}) = {𝑦𝐵𝐹𝑦})
21adantl 481 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 “ {𝐵}) = {𝑦𝐵𝐹𝑦})
3 velsn 4574 . . . . 5 (𝑦 ∈ {(𝐹𝐵)} ↔ 𝑦 = (𝐹𝐵))
4 eqcom 2745 . . . . 5 (𝑦 = (𝐹𝐵) ↔ (𝐹𝐵) = 𝑦)
53, 4bitri 274 . . . 4 (𝑦 ∈ {(𝐹𝐵)} ↔ (𝐹𝐵) = 𝑦)
6 fnbrfvb 6804 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑦𝐵𝐹𝑦))
75, 6bitr2id 283 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐵𝐹𝑦𝑦 ∈ {(𝐹𝐵)}))
87abbi1dv 2877 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → {𝑦𝐵𝐹𝑦} = {(𝐹𝐵)})
92, 8eqtr2d 2779 1 ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  {csn 4558   class class class wbr 5070  cima 5583   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  fnimapr  6834  funfv  6837  fvco2  6847  fvimacnvi  6911  fvimacnvALT  6916  fsn2  6990  fparlem3  7925  fparlem4  7926  suppval1  7954  suppsnop  7965  domunsncan  8812  phplem4  8895  imafi  8920  domunfican  9017  fiint  9021  infdifsn  9345  cantnfp1lem3  9368  resunimafz0  14085  symgfixelsi  18958  dprdf1o  19550  frlmlbs  20914  f1lindf  20939  cnt1  22409  xkohaus  22712  xkoptsub  22713  ustuqtop3  23303  fnimatp  30916  eulerpartlemmf  32242  bday1s  33952  madeoldsuc  33994  poimirlem4  35708  poimirlem6  35710  poimirlem7  35711  poimirlem9  35713  poimirlem13  35717  poimirlem14  35718  poimirlem16  35720  poimirlem19  35723  grpokerinj  35978  fnimasnd  40135  k0004lem3  41648  funcoressn  44423
  Copyright terms: Public domain W3C validator