MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnfv Structured version   Visualization version   GIF version

Theorem fnsnfv 6901
Description: Singleton of function value. (Contributed by NM, 22-May-1998.) (Proof shortened by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
fnsnfv ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))

Proof of Theorem fnsnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 imasng 6032 . . 3 (𝐵𝐴 → (𝐹 “ {𝐵}) = {𝑦𝐵𝐹𝑦})
21adantl 481 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 “ {𝐵}) = {𝑦𝐵𝐹𝑦})
3 velsn 4589 . . . . 5 (𝑦 ∈ {(𝐹𝐵)} ↔ 𝑦 = (𝐹𝐵))
4 eqcom 2738 . . . . 5 (𝑦 = (𝐹𝐵) ↔ (𝐹𝐵) = 𝑦)
53, 4bitri 275 . . . 4 (𝑦 ∈ {(𝐹𝐵)} ↔ (𝐹𝐵) = 𝑦)
6 fnbrfvb 6872 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑦𝐵𝐹𝑦))
75, 6bitr2id 284 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐵𝐹𝑦𝑦 ∈ {(𝐹𝐵)}))
87eqabcdv 2865 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → {𝑦𝐵𝐹𝑦} = {(𝐹𝐵)})
92, 8eqtr2d 2767 1 ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  {csn 4573   class class class wbr 5089  cima 5617   Fn wfn 6476  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  fnimapr  6905  fnimatpd  6906  funfv  6909  fvco2  6919  fvimacnvi  6985  fvimacnvALT  6990  fsn2  7069  fnimasnd  7299  fparlem3  8044  fparlem4  8045  suppval1  8096  suppsnop  8108  domunsncan  8990  phplem2  9114  imafiOLD  9200  domunfican  9206  fiint  9211  infdifsn  9547  cantnfp1lem3  9570  resunimafz0  14352  symgfixelsi  19347  dprdf1o  19946  frlmlbs  21734  f1lindf  21759  cnt1  23265  xkohaus  23568  xkoptsub  23569  ustuqtop3  24158  bday1s  27775  old1  27820  madeoldsuc  27830  n0sbday  28280  zscut  28331  zs12bday  28394  cyclnumvtx  29778  eulerpartlemmf  34388  poimirlem4  37663  poimirlem6  37665  poimirlem7  37666  poimirlem9  37668  poimirlem13  37672  poimirlem14  37673  poimirlem16  37675  poimirlem19  37678  grpokerinj  37932  k0004lem3  44241  funcoressn  47141  cycl3grtri  48046  imaf1homlem  49207
  Copyright terms: Public domain W3C validator