| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsnfv | Structured version Visualization version GIF version | ||
| Description: Singleton of function value. (Contributed by NM, 22-May-1998.) (Proof shortened by Scott Fenton, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| fnsnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasng 6045 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) |
| 3 | velsn 4601 | . . . . 5 ⊢ (𝑦 ∈ {(𝐹‘𝐵)} ↔ 𝑦 = (𝐹‘𝐵)) | |
| 4 | eqcom 2736 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝐵) ↔ (𝐹‘𝐵) = 𝑦) | |
| 5 | 3, 4 | bitri 275 | . . . 4 ⊢ (𝑦 ∈ {(𝐹‘𝐵)} ↔ (𝐹‘𝐵) = 𝑦) |
| 6 | fnbrfvb 6894 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑦 ↔ 𝐵𝐹𝑦)) | |
| 7 | 5, 6 | bitr2id 284 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵𝐹𝑦 ↔ 𝑦 ∈ {(𝐹‘𝐵)})) |
| 8 | 7 | eqabcdv 2862 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑦 ∣ 𝐵𝐹𝑦} = {(𝐹‘𝐵)}) |
| 9 | 2, 8 | eqtr2d 2765 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {csn 4585 class class class wbr 5102 “ cima 5634 Fn wfn 6495 ‘cfv 6500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6453 df-fun 6502 df-fn 6503 df-fv 6508 |
| This theorem is referenced by: fnimapr 6927 fnimatpd 6928 funfv 6931 fvco2 6941 fvimacnvi 7007 fvimacnvALT 7012 fsn2 7091 fnimasnd 7323 fparlem3 8071 fparlem4 8072 suppval1 8123 suppsnop 8135 domunsncan 9019 phplem2 9147 imafiOLD 9242 domunfican 9249 fiint 9254 fiintOLD 9255 infdifsn 9589 cantnfp1lem3 9612 resunimafz0 14389 symgfixelsi 19351 dprdf1o 19950 frlmlbs 21741 f1lindf 21766 cnt1 23272 xkohaus 23575 xkoptsub 23576 ustuqtop3 24166 bday1s 27782 old1 27826 madeoldsuc 27836 n0sbday 28286 zscut 28337 zs12bday 28398 cyclnumvtx 29782 eulerpartlemmf 34361 poimirlem4 37613 poimirlem6 37615 poimirlem7 37616 poimirlem9 37618 poimirlem13 37622 poimirlem14 37623 poimirlem16 37625 poimirlem19 37628 grpokerinj 37882 k0004lem3 44133 funcoressn 47038 cycl3grtri 47941 imaf1homlem 49091 |
| Copyright terms: Public domain | W3C validator |