| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsnfv | Structured version Visualization version GIF version | ||
| Description: Singleton of function value. (Contributed by NM, 22-May-1998.) (Proof shortened by Scott Fenton, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| fnsnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasng 6032 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) |
| 3 | velsn 4589 | . . . . 5 ⊢ (𝑦 ∈ {(𝐹‘𝐵)} ↔ 𝑦 = (𝐹‘𝐵)) | |
| 4 | eqcom 2738 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝐵) ↔ (𝐹‘𝐵) = 𝑦) | |
| 5 | 3, 4 | bitri 275 | . . . 4 ⊢ (𝑦 ∈ {(𝐹‘𝐵)} ↔ (𝐹‘𝐵) = 𝑦) |
| 6 | fnbrfvb 6872 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑦 ↔ 𝐵𝐹𝑦)) | |
| 7 | 5, 6 | bitr2id 284 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵𝐹𝑦 ↔ 𝑦 ∈ {(𝐹‘𝐵)})) |
| 8 | 7 | eqabcdv 2865 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑦 ∣ 𝐵𝐹𝑦} = {(𝐹‘𝐵)}) |
| 9 | 2, 8 | eqtr2d 2767 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 {csn 4573 class class class wbr 5089 “ cima 5617 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: fnimapr 6905 fnimatpd 6906 funfv 6909 fvco2 6919 fvimacnvi 6985 fvimacnvALT 6990 fsn2 7069 fnimasnd 7299 fparlem3 8044 fparlem4 8045 suppval1 8096 suppsnop 8108 domunsncan 8990 phplem2 9114 imafiOLD 9200 domunfican 9206 fiint 9211 infdifsn 9547 cantnfp1lem3 9570 resunimafz0 14352 symgfixelsi 19347 dprdf1o 19946 frlmlbs 21734 f1lindf 21759 cnt1 23265 xkohaus 23568 xkoptsub 23569 ustuqtop3 24158 bday1s 27775 old1 27820 madeoldsuc 27830 n0sbday 28280 zscut 28331 zs12bday 28394 cyclnumvtx 29778 eulerpartlemmf 34388 poimirlem4 37663 poimirlem6 37665 poimirlem7 37666 poimirlem9 37668 poimirlem13 37672 poimirlem14 37673 poimirlem16 37675 poimirlem19 37678 grpokerinj 37932 k0004lem3 44241 funcoressn 47141 cycl3grtri 48046 imaf1homlem 49207 |
| Copyright terms: Public domain | W3C validator |