MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmappw Structured version   Visualization version   GIF version

Theorem vmappw 25620
Description: Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
vmappw ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃𝐾)) = (log‘𝑃))

Proof of Theorem vmappw
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 prmnn 16006 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 nnnn0 11892 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 nnexpcl 13430 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑃𝐾) ∈ ℕ)
41, 2, 3syl2an 595 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℕ)
5 eqid 2818 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}
65vmaval 25617 . . 3 ((𝑃𝐾) ∈ ℕ → (Λ‘(𝑃𝐾)) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}), 0))
74, 6syl 17 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃𝐾)) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}), 0))
8 df-rab 3144 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾))}
9 prmdvdsexpb 16048 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃𝐾) ↔ 𝑝 = 𝑃))
109biimpd 230 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃𝐾) → 𝑝 = 𝑃))
11103coml 1119 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃𝐾) → 𝑝 = 𝑃))
12113expa 1110 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃𝐾) → 𝑝 = 𝑃))
1312expimpd 454 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) → 𝑝 = 𝑃))
14 simpl 483 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℙ)
15 prmz 16007 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
16 iddvdsexp 15621 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃𝐾))
1715, 16sylan 580 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃𝐾))
1814, 17jca 512 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃𝐾)))
19 eleq1 2897 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝 ∈ ℙ ↔ 𝑃 ∈ ℙ))
20 breq1 5060 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝 ∥ (𝑃𝐾) ↔ 𝑃 ∥ (𝑃𝐾)))
2119, 20anbi12d 630 . . . . . . . . . 10 (𝑝 = 𝑃 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃𝐾))))
2218, 21syl5ibrcom 248 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 = 𝑃 → (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾))))
2313, 22impbid 213 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) ↔ 𝑝 = 𝑃))
24 velsn 4573 . . . . . . . 8 (𝑝 ∈ {𝑃} ↔ 𝑝 = 𝑃)
2523, 24syl6bbr 290 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) ↔ 𝑝 ∈ {𝑃}))
2625abbi1dv 2949 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾))} = {𝑃})
278, 26syl5eq 2865 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑃})
2827fveq2d 6667 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = (♯‘{𝑃}))
29 hashsng 13718 . . . . 5 (𝑃 ∈ ℙ → (♯‘{𝑃}) = 1)
3029adantr 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑃}) = 1)
3128, 30eqtrd 2853 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1)
3231iftrued 4471 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}), 0) = (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}))
3327unieqd 4840 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑃})
34 unisng 4845 . . . . 5 (𝑃 ∈ ℙ → {𝑃} = 𝑃)
3534adantr 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑃} = 𝑃)
3633, 35eqtrd 2853 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = 𝑃)
3736fveq2d 6667 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = (log‘𝑃))
387, 32, 373eqtrd 2857 1 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃𝐾)) = (log‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  {cab 2796  {crab 3139  ifcif 4463  {csn 4557   cuni 4830   class class class wbr 5057  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526  cn 11626  0cn0 11885  cz 11969  cexp 13417  chash 13678  cdvds 15595  cprime 16003  logclog 25065  Λcvma 25596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-gcd 15832  df-prm 16004  df-vma 25602
This theorem is referenced by:  vmaprm  25621  vmacl  25622  efvmacl  25624  vmalelog  25708  vmasum  25719  chpval2  25721  rplogsumlem2  25988  rpvmasumlem  25990
  Copyright terms: Public domain W3C validator