![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vmappw | Structured version Visualization version GIF version |
Description: Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
Ref | Expression |
---|---|
vmappw | ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = (log‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 16607 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
2 | nnnn0 12475 | . . . 4 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0) | |
3 | nnexpcl 14036 | . . . 4 ⊢ ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑃↑𝐾) ∈ ℕ) | |
4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑𝐾) ∈ ℕ) |
5 | eqid 2732 | . . . 4 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} | |
6 | 5 | vmaval 26606 | . . 3 ⊢ ((𝑃↑𝐾) ∈ ℕ → (Λ‘(𝑃↑𝐾)) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}), 0)) |
7 | 4, 6 | syl 17 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}), 0)) |
8 | df-rab 3433 | . . . . . 6 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾))} | |
9 | prmdvdsexpb 16649 | . . . . . . . . . . . . 13 ⊢ ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃↑𝐾) ↔ 𝑝 = 𝑃)) | |
10 | 9 | biimpd 228 | . . . . . . . . . . . 12 ⊢ ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃↑𝐾) → 𝑝 = 𝑃)) |
11 | 10 | 3coml 1127 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃↑𝐾) → 𝑝 = 𝑃)) |
12 | 11 | 3expa 1118 | . . . . . . . . . 10 ⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃↑𝐾) → 𝑝 = 𝑃)) |
13 | 12 | expimpd 454 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) → 𝑝 = 𝑃)) |
14 | simpl 483 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℙ) | |
15 | prmz 16608 | . . . . . . . . . . . 12 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
16 | iddvdsexp 16219 | . . . . . . . . . . . 12 ⊢ ((𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃↑𝐾)) | |
17 | 15, 16 | sylan 580 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃↑𝐾)) |
18 | 14, 17 | jca 512 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃↑𝐾))) |
19 | eleq1 2821 | . . . . . . . . . . 11 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ ℙ ↔ 𝑃 ∈ ℙ)) | |
20 | breq1 5150 | . . . . . . . . . . 11 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ (𝑃↑𝐾) ↔ 𝑃 ∥ (𝑃↑𝐾))) | |
21 | 19, 20 | anbi12d 631 | . . . . . . . . . 10 ⊢ (𝑝 = 𝑃 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃↑𝐾)))) |
22 | 18, 21 | syl5ibrcom 246 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 = 𝑃 → (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)))) |
23 | 13, 22 | impbid 211 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) ↔ 𝑝 = 𝑃)) |
24 | velsn 4643 | . . . . . . . 8 ⊢ (𝑝 ∈ {𝑃} ↔ 𝑝 = 𝑃) | |
25 | 23, 24 | bitr4di 288 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) ↔ 𝑝 ∈ {𝑃})) |
26 | 25 | eqabcdv 2868 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾))} = {𝑃}) |
27 | 8, 26 | eqtrid 2784 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = {𝑃}) |
28 | 27 | fveq2d 6892 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = (♯‘{𝑃})) |
29 | hashsng 14325 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (♯‘{𝑃}) = 1) | |
30 | 29 | adantr 481 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑃}) = 1) |
31 | 28, 30 | eqtrd 2772 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1) |
32 | 31 | iftrued 4535 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}), 0) = (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)})) |
33 | 27 | unieqd 4921 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = ∪ {𝑃}) |
34 | unisng 4928 | . . . . 5 ⊢ (𝑃 ∈ ℙ → ∪ {𝑃} = 𝑃) | |
35 | 34 | adantr 481 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∪ {𝑃} = 𝑃) |
36 | 33, 35 | eqtrd 2772 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = 𝑃) |
37 | 36 | fveq2d 6892 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = (log‘𝑃)) |
38 | 7, 32, 37 | 3eqtrd 2776 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = (log‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {cab 2709 {crab 3432 ifcif 4527 {csn 4627 ∪ cuni 4907 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 0cc0 11106 1c1 11107 ℕcn 12208 ℕ0cn0 12468 ℤcz 12554 ↑cexp 14023 ♯chash 14286 ∥ cdvds 16193 ℙcprime 16604 logclog 26054 Λcvma 26585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-dvds 16194 df-gcd 16432 df-prm 16605 df-vma 26591 |
This theorem is referenced by: vmaprm 26610 vmacl 26611 efvmacl 26613 vmalelog 26697 vmasum 26708 chpval2 26710 rplogsumlem2 26977 rpvmasumlem 26979 |
Copyright terms: Public domain | W3C validator |