| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vmappw | Structured version Visualization version GIF version | ||
| Description: Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| Ref | Expression |
|---|---|
| vmappw | ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = (log‘𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 16693 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 2 | nnnn0 12508 | . . . 4 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0) | |
| 3 | nnexpcl 14092 | . . . 4 ⊢ ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑃↑𝐾) ∈ ℕ) | |
| 4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑𝐾) ∈ ℕ) |
| 5 | eqid 2735 | . . . 4 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} | |
| 6 | 5 | vmaval 27075 | . . 3 ⊢ ((𝑃↑𝐾) ∈ ℕ → (Λ‘(𝑃↑𝐾)) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}), 0)) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}), 0)) |
| 8 | df-rab 3416 | . . . . . 6 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾))} | |
| 9 | prmdvdsexpb 16735 | . . . . . . . . . . . . 13 ⊢ ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃↑𝐾) ↔ 𝑝 = 𝑃)) | |
| 10 | 9 | biimpd 229 | . . . . . . . . . . . 12 ⊢ ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃↑𝐾) → 𝑝 = 𝑃)) |
| 11 | 10 | 3coml 1127 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃↑𝐾) → 𝑝 = 𝑃)) |
| 12 | 11 | 3expa 1118 | . . . . . . . . . 10 ⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃↑𝐾) → 𝑝 = 𝑃)) |
| 13 | 12 | expimpd 453 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) → 𝑝 = 𝑃)) |
| 14 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℙ) | |
| 15 | prmz 16694 | . . . . . . . . . . . 12 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 16 | iddvdsexp 16299 | . . . . . . . . . . . 12 ⊢ ((𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃↑𝐾)) | |
| 17 | 15, 16 | sylan 580 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃↑𝐾)) |
| 18 | 14, 17 | jca 511 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃↑𝐾))) |
| 19 | eleq1 2822 | . . . . . . . . . . 11 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ ℙ ↔ 𝑃 ∈ ℙ)) | |
| 20 | breq1 5122 | . . . . . . . . . . 11 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ (𝑃↑𝐾) ↔ 𝑃 ∥ (𝑃↑𝐾))) | |
| 21 | 19, 20 | anbi12d 632 | . . . . . . . . . 10 ⊢ (𝑝 = 𝑃 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃↑𝐾)))) |
| 22 | 18, 21 | syl5ibrcom 247 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 = 𝑃 → (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)))) |
| 23 | 13, 22 | impbid 212 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) ↔ 𝑝 = 𝑃)) |
| 24 | velsn 4617 | . . . . . . . 8 ⊢ (𝑝 ∈ {𝑃} ↔ 𝑝 = 𝑃) | |
| 25 | 23, 24 | bitr4di 289 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) ↔ 𝑝 ∈ {𝑃})) |
| 26 | 25 | eqabcdv 2869 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾))} = {𝑃}) |
| 27 | 8, 26 | eqtrid 2782 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = {𝑃}) |
| 28 | 27 | fveq2d 6880 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = (♯‘{𝑃})) |
| 29 | hashsng 14387 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (♯‘{𝑃}) = 1) | |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑃}) = 1) |
| 31 | 28, 30 | eqtrd 2770 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1) |
| 32 | 31 | iftrued 4508 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}), 0) = (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)})) |
| 33 | 27 | unieqd 4896 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = ∪ {𝑃}) |
| 34 | unisng 4901 | . . . . 5 ⊢ (𝑃 ∈ ℙ → ∪ {𝑃} = 𝑃) | |
| 35 | 34 | adantr 480 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∪ {𝑃} = 𝑃) |
| 36 | 33, 35 | eqtrd 2770 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = 𝑃) |
| 37 | 36 | fveq2d 6880 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = (log‘𝑃)) |
| 38 | 7, 32, 37 | 3eqtrd 2774 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = (log‘𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {cab 2713 {crab 3415 ifcif 4500 {csn 4601 ∪ cuni 4883 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 ℕcn 12240 ℕ0cn0 12501 ℤcz 12588 ↑cexp 14079 ♯chash 14348 ∥ cdvds 16272 ℙcprime 16690 logclog 26515 Λcvma 27054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-gcd 16514 df-prm 16691 df-vma 27060 |
| This theorem is referenced by: vmaprm 27079 vmacl 27080 efvmacl 27082 vmalelog 27168 vmasum 27179 chpval2 27181 rplogsumlem2 27448 rpvmasumlem 27450 |
| Copyright terms: Public domain | W3C validator |