![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vmappw | Structured version Visualization version GIF version |
Description: Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
Ref | Expression |
---|---|
vmappw | ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = (log‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 16550 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
2 | nnnn0 12420 | . . . 4 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0) | |
3 | nnexpcl 13980 | . . . 4 ⊢ ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑃↑𝐾) ∈ ℕ) | |
4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑𝐾) ∈ ℕ) |
5 | eqid 2736 | . . . 4 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} | |
6 | 5 | vmaval 26462 | . . 3 ⊢ ((𝑃↑𝐾) ∈ ℕ → (Λ‘(𝑃↑𝐾)) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}), 0)) |
7 | 4, 6 | syl 17 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}), 0)) |
8 | df-rab 3408 | . . . . . 6 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾))} | |
9 | prmdvdsexpb 16592 | . . . . . . . . . . . . 13 ⊢ ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃↑𝐾) ↔ 𝑝 = 𝑃)) | |
10 | 9 | biimpd 228 | . . . . . . . . . . . 12 ⊢ ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃↑𝐾) → 𝑝 = 𝑃)) |
11 | 10 | 3coml 1127 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃↑𝐾) → 𝑝 = 𝑃)) |
12 | 11 | 3expa 1118 | . . . . . . . . . 10 ⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃↑𝐾) → 𝑝 = 𝑃)) |
13 | 12 | expimpd 454 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) → 𝑝 = 𝑃)) |
14 | simpl 483 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℙ) | |
15 | prmz 16551 | . . . . . . . . . . . 12 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
16 | iddvdsexp 16162 | . . . . . . . . . . . 12 ⊢ ((𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃↑𝐾)) | |
17 | 15, 16 | sylan 580 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃↑𝐾)) |
18 | 14, 17 | jca 512 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃↑𝐾))) |
19 | eleq1 2825 | . . . . . . . . . . 11 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ ℙ ↔ 𝑃 ∈ ℙ)) | |
20 | breq1 5108 | . . . . . . . . . . 11 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ (𝑃↑𝐾) ↔ 𝑃 ∥ (𝑃↑𝐾))) | |
21 | 19, 20 | anbi12d 631 | . . . . . . . . . 10 ⊢ (𝑝 = 𝑃 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃↑𝐾)))) |
22 | 18, 21 | syl5ibrcom 246 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 = 𝑃 → (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)))) |
23 | 13, 22 | impbid 211 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) ↔ 𝑝 = 𝑃)) |
24 | velsn 4602 | . . . . . . . 8 ⊢ (𝑝 ∈ {𝑃} ↔ 𝑝 = 𝑃) | |
25 | 23, 24 | bitr4di 288 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾)) ↔ 𝑝 ∈ {𝑃})) |
26 | 25 | abbi1dv 2872 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃↑𝐾))} = {𝑃}) |
27 | 8, 26 | eqtrid 2788 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = {𝑃}) |
28 | 27 | fveq2d 6846 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = (♯‘{𝑃})) |
29 | hashsng 14269 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (♯‘{𝑃}) = 1) | |
30 | 29 | adantr 481 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑃}) = 1) |
31 | 28, 30 | eqtrd 2776 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1) |
32 | 31 | iftrued 4494 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}), 0) = (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)})) |
33 | 27 | unieqd 4879 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = ∪ {𝑃}) |
34 | unisng 4886 | . . . . 5 ⊢ (𝑃 ∈ ℙ → ∪ {𝑃} = 𝑃) | |
35 | 34 | adantr 481 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∪ {𝑃} = 𝑃) |
36 | 33, 35 | eqtrd 2776 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)} = 𝑃) |
37 | 36 | fveq2d 6846 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃↑𝐾)}) = (log‘𝑃)) |
38 | 7, 32, 37 | 3eqtrd 2780 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = (log‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {cab 2713 {crab 3407 ifcif 4486 {csn 4586 ∪ cuni 4865 class class class wbr 5105 ‘cfv 6496 (class class class)co 7357 0cc0 11051 1c1 11052 ℕcn 12153 ℕ0cn0 12413 ℤcz 12499 ↑cexp 13967 ♯chash 14230 ∥ cdvds 16136 ℙcprime 16547 logclog 25910 Λcvma 26441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-inf 9379 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-fz 13425 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-dvds 16137 df-gcd 16375 df-prm 16548 df-vma 26447 |
This theorem is referenced by: vmaprm 26466 vmacl 26467 efvmacl 26469 vmalelog 26553 vmasum 26564 chpval2 26566 rplogsumlem2 26833 rpvmasumlem 26835 |
Copyright terms: Public domain | W3C validator |