MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmappw Structured version   Visualization version   GIF version

Theorem vmappw 27159
Description: Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
vmappw ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃𝐾)) = (log‘𝑃))

Proof of Theorem vmappw
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 prmnn 16711 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 nnnn0 12533 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 nnexpcl 14115 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑃𝐾) ∈ ℕ)
41, 2, 3syl2an 596 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℕ)
5 eqid 2737 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}
65vmaval 27156 . . 3 ((𝑃𝐾) ∈ ℕ → (Λ‘(𝑃𝐾)) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}), 0))
74, 6syl 17 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃𝐾)) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}), 0))
8 df-rab 3437 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾))}
9 prmdvdsexpb 16753 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃𝐾) ↔ 𝑝 = 𝑃))
109biimpd 229 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 ∥ (𝑃𝐾) → 𝑝 = 𝑃))
11103coml 1128 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃𝐾) → 𝑝 = 𝑃))
12113expa 1119 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃𝐾) → 𝑝 = 𝑃))
1312expimpd 453 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) → 𝑝 = 𝑃))
14 simpl 482 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℙ)
15 prmz 16712 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
16 iddvdsexp 16317 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃𝐾))
1715, 16sylan 580 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∥ (𝑃𝐾))
1814, 17jca 511 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃𝐾)))
19 eleq1 2829 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝 ∈ ℙ ↔ 𝑃 ∈ ℙ))
20 breq1 5146 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝 ∥ (𝑃𝐾) ↔ 𝑃 ∥ (𝑃𝐾)))
2119, 20anbi12d 632 . . . . . . . . . 10 (𝑝 = 𝑃 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝑃𝐾))))
2218, 21syl5ibrcom 247 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑝 = 𝑃 → (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾))))
2313, 22impbid 212 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) ↔ 𝑝 = 𝑃))
24 velsn 4642 . . . . . . . 8 (𝑝 ∈ {𝑃} ↔ 𝑝 = 𝑃)
2523, 24bitr4di 289 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾)) ↔ 𝑝 ∈ {𝑃}))
2625eqabcdv 2876 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑃𝐾))} = {𝑃})
278, 26eqtrid 2789 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑃})
2827fveq2d 6910 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = (♯‘{𝑃}))
29 hashsng 14408 . . . . 5 (𝑃 ∈ ℙ → (♯‘{𝑃}) = 1)
3029adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑃}) = 1)
3128, 30eqtrd 2777 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1)
3231iftrued 4533 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}), 0) = (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}))
3327unieqd 4920 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = {𝑃})
34 unisng 4925 . . . . 5 (𝑃 ∈ ℙ → {𝑃} = 𝑃)
3534adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑃} = 𝑃)
3633, 35eqtrd 2777 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)} = 𝑃)
3736fveq2d 6910 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (log‘ {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝑃𝐾)}) = (log‘𝑃))
387, 32, 373eqtrd 2781 1 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃𝐾)) = (log‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  {crab 3436  ifcif 4525  {csn 4626   cuni 4907   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  cn 12266  0cn0 12526  cz 12613  cexp 14102  chash 14369  cdvds 16290  cprime 16708  logclog 26596  Λcvma 27135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-vma 27141
This theorem is referenced by:  vmaprm  27160  vmacl  27161  efvmacl  27163  vmalelog  27249  vmasum  27260  chpval2  27262  rplogsumlem2  27529  rpvmasumlem  27531
  Copyright terms: Public domain W3C validator