| Step | Hyp | Ref
| Expression |
| 1 | | df-rab 3421 |
. . 3
⊢ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} = {𝑦 ∣ (𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹)} |
| 2 | | psrbag.d |
. . . . . . . 8
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 3 | 2 | psrbagf 21883 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐷 → 𝑦:𝐼⟶ℕ0) |
| 4 | 3 | a1i 11 |
. . . . . 6
⊢ (𝐹 ∈ 𝐷 → (𝑦 ∈ 𝐷 → 𝑦:𝐼⟶ℕ0)) |
| 5 | 4 | adantrd 491 |
. . . . 5
⊢ (𝐹 ∈ 𝐷 → ((𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹) → 𝑦:𝐼⟶ℕ0)) |
| 6 | | ss2ixp 8929 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐼 (0...(𝐹‘𝑥)) ⊆ ℕ0 → X𝑥 ∈
𝐼 (0...(𝐹‘𝑥)) ⊆ X𝑥 ∈ 𝐼 ℕ0) |
| 7 | | fz0ssnn0 13644 |
. . . . . . . . . 10
⊢
(0...(𝐹‘𝑥)) ⊆
ℕ0 |
| 8 | 7 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐼 → (0...(𝐹‘𝑥)) ⊆
ℕ0) |
| 9 | 6, 8 | mprg 3058 |
. . . . . . . 8
⊢ X𝑥 ∈
𝐼 (0...(𝐹‘𝑥)) ⊆ X𝑥 ∈ 𝐼 ℕ0 |
| 10 | 9 | sseli 3959 |
. . . . . . 7
⊢ (𝑦 ∈ X𝑥 ∈
𝐼 (0...(𝐹‘𝑥)) → 𝑦 ∈ X𝑥 ∈ 𝐼 ℕ0) |
| 11 | | vex 3468 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 12 | 11 | elixpconst 8924 |
. . . . . . 7
⊢ (𝑦 ∈ X𝑥 ∈
𝐼 ℕ0
↔ 𝑦:𝐼⟶ℕ0) |
| 13 | 10, 12 | sylib 218 |
. . . . . 6
⊢ (𝑦 ∈ X𝑥 ∈
𝐼 (0...(𝐹‘𝑥)) → 𝑦:𝐼⟶ℕ0) |
| 14 | 13 | a1i 11 |
. . . . 5
⊢ (𝐹 ∈ 𝐷 → (𝑦 ∈ X𝑥 ∈ 𝐼 (0...(𝐹‘𝑥)) → 𝑦:𝐼⟶ℕ0)) |
| 15 | | ffn 6711 |
. . . . . . . . 9
⊢ (𝑦:𝐼⟶ℕ0 → 𝑦 Fn 𝐼) |
| 16 | 15 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) → 𝑦 Fn 𝐼) |
| 17 | 11 | elixp 8923 |
. . . . . . . . 9
⊢ (𝑦 ∈ X𝑥 ∈
𝐼 (0...(𝐹‘𝑥)) ↔ (𝑦 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ (0...(𝐹‘𝑥)))) |
| 18 | 17 | baib 535 |
. . . . . . . 8
⊢ (𝑦 Fn 𝐼 → (𝑦 ∈ X𝑥 ∈ 𝐼 (0...(𝐹‘𝑥)) ↔ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ (0...(𝐹‘𝑥)))) |
| 19 | 16, 18 | syl 17 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) → (𝑦 ∈ X𝑥 ∈
𝐼 (0...(𝐹‘𝑥)) ↔ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ (0...(𝐹‘𝑥)))) |
| 20 | | ffvelcdm 7076 |
. . . . . . . . . . . 12
⊢ ((𝑦:𝐼⟶ℕ0 ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) ∈
ℕ0) |
| 21 | 20 | adantll 714 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) ∈
ℕ0) |
| 22 | | nn0uz 12899 |
. . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) |
| 23 | 21, 22 | eleqtrdi 2845 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) ∈
(ℤ≥‘0)) |
| 24 | 2 | psrbagf 21883 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
| 25 | 24 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) → 𝐹:𝐼⟶ℕ0) |
| 26 | 25 | ffvelcdmda 7079 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈
ℕ0) |
| 27 | 26 | nn0zd 12619 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ ℤ) |
| 28 | | elfz5 13538 |
. . . . . . . . . 10
⊢ (((𝑦‘𝑥) ∈ (ℤ≥‘0)
∧ (𝐹‘𝑥) ∈ ℤ) → ((𝑦‘𝑥) ∈ (0...(𝐹‘𝑥)) ↔ (𝑦‘𝑥) ≤ (𝐹‘𝑥))) |
| 29 | 23, 27, 28 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥 ∈ 𝐼) → ((𝑦‘𝑥) ∈ (0...(𝐹‘𝑥)) ↔ (𝑦‘𝑥) ≤ (𝐹‘𝑥))) |
| 30 | 29 | ralbidva 3162 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) →
(∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ (0...(𝐹‘𝑥)) ↔ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ≤ (𝐹‘𝑥))) |
| 31 | 24 | ffnd 6712 |
. . . . . . . . . 10
⊢ (𝐹 ∈ 𝐷 → 𝐹 Fn 𝐼) |
| 32 | 31 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) → 𝐹 Fn 𝐼) |
| 33 | 11 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) → 𝑦 ∈ V) |
| 34 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) → 𝐹 ∈ 𝐷) |
| 35 | | inidm 4207 |
. . . . . . . . 9
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
| 36 | | eqidd 2737 |
. . . . . . . . 9
⊢ (((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) = (𝑦‘𝑥)) |
| 37 | | eqidd 2737 |
. . . . . . . . 9
⊢ (((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
| 38 | 16, 32, 33, 34, 35, 36, 37 | ofrfvalg 7684 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) → (𝑦 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ≤ (𝐹‘𝑥))) |
| 39 | 30, 38 | bitr4d 282 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) →
(∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ (0...(𝐹‘𝑥)) ↔ 𝑦 ∘r ≤ 𝐹)) |
| 40 | 2 | psrbaglecl 21888 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0 ∧ 𝑦 ∘r ≤ 𝐹) → 𝑦 ∈ 𝐷) |
| 41 | 40 | 3expia 1121 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) → (𝑦 ∘r ≤ 𝐹 → 𝑦 ∈ 𝐷)) |
| 42 | 41 | pm4.71rd 562 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) → (𝑦 ∘r ≤ 𝐹 ↔ (𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹))) |
| 43 | 19, 39, 42 | 3bitrrd 306 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0) → ((𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹) ↔ 𝑦 ∈ X𝑥 ∈ 𝐼 (0...(𝐹‘𝑥)))) |
| 44 | 43 | ex 412 |
. . . . 5
⊢ (𝐹 ∈ 𝐷 → (𝑦:𝐼⟶ℕ0 → ((𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹) ↔ 𝑦 ∈ X𝑥 ∈ 𝐼 (0...(𝐹‘𝑥))))) |
| 45 | 5, 14, 44 | pm5.21ndd 379 |
. . . 4
⊢ (𝐹 ∈ 𝐷 → ((𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹) ↔ 𝑦 ∈ X𝑥 ∈ 𝐼 (0...(𝐹‘𝑥)))) |
| 46 | 45 | eqabcdv 2870 |
. . 3
⊢ (𝐹 ∈ 𝐷 → {𝑦 ∣ (𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹)} = X𝑥 ∈ 𝐼 (0...(𝐹‘𝑥))) |
| 47 | 1, 46 | eqtrid 2783 |
. 2
⊢ (𝐹 ∈ 𝐷 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} = X𝑥 ∈ 𝐼 (0...(𝐹‘𝑥))) |
| 48 | | cnveq 5858 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) |
| 49 | 48 | imaeq1d 6051 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (◡𝑓 “ ℕ) = (◡𝐹 “ ℕ)) |
| 50 | 49 | eleq1d 2820 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐹 “ ℕ) ∈
Fin)) |
| 51 | 50, 2 | elrab2 3679 |
. . . 4
⊢ (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ (ℕ0
↑m 𝐼) ∧
(◡𝐹 “ ℕ) ∈
Fin)) |
| 52 | 51 | simprbi 496 |
. . 3
⊢ (𝐹 ∈ 𝐷 → (◡𝐹 “ ℕ) ∈
Fin) |
| 53 | | fzfid 13996 |
. . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑥 ∈ 𝐼) → (0...(𝐹‘𝑥)) ∈ Fin) |
| 54 | | fcdmnn0suppg 12565 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) |
| 55 | 24, 54 | mpdan 687 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝐷 → (𝐹 supp 0) = (◡𝐹 “ ℕ)) |
| 56 | | eqimss 4022 |
. . . . . . . 8
⊢ ((𝐹 supp 0) = (◡𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (◡𝐹 “ ℕ)) |
| 57 | 55, 56 | syl 17 |
. . . . . . 7
⊢ (𝐹 ∈ 𝐷 → (𝐹 supp 0) ⊆ (◡𝐹 “ ℕ)) |
| 58 | | id 22 |
. . . . . . 7
⊢ (𝐹 ∈ 𝐷 → 𝐹 ∈ 𝐷) |
| 59 | | c0ex 11234 |
. . . . . . . 8
⊢ 0 ∈
V |
| 60 | 59 | a1i 11 |
. . . . . . 7
⊢ (𝐹 ∈ 𝐷 → 0 ∈ V) |
| 61 | 24, 57, 58, 60 | suppssrg 8200 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (𝐹‘𝑥) = 0) |
| 62 | 61 | oveq2d 7426 |
. . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (0...(𝐹‘𝑥)) = (0...0)) |
| 63 | | fz0sn 13649 |
. . . . 5
⊢ (0...0) =
{0} |
| 64 | 62, 63 | eqtrdi 2787 |
. . . 4
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (0...(𝐹‘𝑥)) = {0}) |
| 65 | | eqimss 4022 |
. . . 4
⊢
((0...(𝐹‘𝑥)) = {0} → (0...(𝐹‘𝑥)) ⊆ {0}) |
| 66 | 64, 65 | syl 17 |
. . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (0...(𝐹‘𝑥)) ⊆ {0}) |
| 67 | 52, 53, 66 | ixpfi2 9367 |
. 2
⊢ (𝐹 ∈ 𝐷 → X𝑥 ∈ 𝐼 (0...(𝐹‘𝑥)) ∈ Fin) |
| 68 | 47, 67 | eqeltrd 2835 |
1
⊢ (𝐹 ∈ 𝐷 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ Fin) |