MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglefi Structured version   Visualization version   GIF version

Theorem psrbaglefi 21045
Description: There are finitely many bags dominated by a given bag. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 25-Jan-2015.) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglefi (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Distinct variable groups:   𝑦,𝑓,𝐹   𝑓,𝐼,𝑦   𝑦,𝐷
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbaglefi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3072 . . 3 {𝑦𝐷𝑦r𝐹} = {𝑦 ∣ (𝑦𝐷𝑦r𝐹)}
2 psrbag.d . . . . . . . 8 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbagf 21031 . . . . . . 7 (𝑦𝐷𝑦:𝐼⟶ℕ0)
43a1i 11 . . . . . 6 (𝐹𝐷 → (𝑦𝐷𝑦:𝐼⟶ℕ0))
54adantrd 491 . . . . 5 (𝐹𝐷 → ((𝑦𝐷𝑦r𝐹) → 𝑦:𝐼⟶ℕ0))
6 ss2ixp 8656 . . . . . . . . 9 (∀𝑥𝐼 (0...(𝐹𝑥)) ⊆ ℕ0X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0)
7 fz0ssnn0 13280 . . . . . . . . . 10 (0...(𝐹𝑥)) ⊆ ℕ0
87a1i 11 . . . . . . . . 9 (𝑥𝐼 → (0...(𝐹𝑥)) ⊆ ℕ0)
96, 8mprg 3077 . . . . . . . 8 X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0
109sseli 3913 . . . . . . 7 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦X𝑥𝐼0)
11 vex 3426 . . . . . . . 8 𝑦 ∈ V
1211elixpconst 8651 . . . . . . 7 (𝑦X𝑥𝐼0𝑦:𝐼⟶ℕ0)
1310, 12sylib 217 . . . . . 6 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0)
1413a1i 11 . . . . 5 (𝐹𝐷 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0))
15 ffn 6584 . . . . . . . . 9 (𝑦:𝐼⟶ℕ0𝑦 Fn 𝐼)
1615adantl 481 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝑦 Fn 𝐼)
1711elixp 8650 . . . . . . . . 9 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ (𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
1817baib 535 . . . . . . . 8 (𝑦 Fn 𝐼 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
1916, 18syl 17 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
20 ffvelrn 6941 . . . . . . . . . . . 12 ((𝑦:𝐼⟶ℕ0𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
2120adantll 710 . . . . . . . . . . 11 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
22 nn0uz 12549 . . . . . . . . . . 11 0 = (ℤ‘0)
2321, 22eleqtrdi 2849 . . . . . . . . . 10 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (ℤ‘0))
242psrbagf 21031 . . . . . . . . . . . . 13 (𝐹𝐷𝐹:𝐼⟶ℕ0)
2524adantr 480 . . . . . . . . . . . 12 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹:𝐼⟶ℕ0)
2625ffvelrnda 6943 . . . . . . . . . . 11 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
2726nn0zd 12353 . . . . . . . . . 10 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℤ)
28 elfz5 13177 . . . . . . . . . 10 (((𝑦𝑥) ∈ (ℤ‘0) ∧ (𝐹𝑥) ∈ ℤ) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
2923, 27, 28syl2anc 583 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3029ralbidva 3119 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3124ffnd 6585 . . . . . . . . . 10 (𝐹𝐷𝐹 Fn 𝐼)
3231adantr 480 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹 Fn 𝐼)
3311a1i 11 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝑦 ∈ V)
34 simpl 482 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹𝐷)
35 inidm 4149 . . . . . . . . 9 (𝐼𝐼) = 𝐼
36 eqidd 2739 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
37 eqidd 2739 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3816, 32, 33, 34, 35, 36, 37ofrfvalg 7519 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3930, 38bitr4d 281 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ 𝑦r𝐹))
402psrbaglecl 21039 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0𝑦r𝐹) → 𝑦𝐷)
41403expia 1119 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹𝑦𝐷))
4241pm4.71rd 562 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ (𝑦𝐷𝑦r𝐹)))
4319, 39, 423bitrrd 305 . . . . . 6 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4443ex 412 . . . . 5 (𝐹𝐷 → (𝑦:𝐼⟶ℕ0 → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥)))))
455, 14, 44pm5.21ndd 380 . . . 4 (𝐹𝐷 → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4645abbi1dv 2877 . . 3 (𝐹𝐷 → {𝑦 ∣ (𝑦𝐷𝑦r𝐹)} = X𝑥𝐼 (0...(𝐹𝑥)))
471, 46eqtrid 2790 . 2 (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} = X𝑥𝐼 (0...(𝐹𝑥)))
48 cnveq 5771 . . . . . . 7 (𝑓 = 𝐹𝑓 = 𝐹)
4948imaeq1d 5957 . . . . . 6 (𝑓 = 𝐹 → (𝑓 “ ℕ) = (𝐹 “ ℕ))
5049eleq1d 2823 . . . . 5 (𝑓 = 𝐹 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐹 “ ℕ) ∈ Fin))
5150, 2elrab2 3620 . . . 4 (𝐹𝐷 ↔ (𝐹 ∈ (ℕ0m 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5251simprbi 496 . . 3 (𝐹𝐷 → (𝐹 “ ℕ) ∈ Fin)
53 fzfid 13621 . . 3 ((𝐹𝐷𝑥𝐼) → (0...(𝐹𝑥)) ∈ Fin)
54 frnnn0suppg 12221 . . . . . . . . 9 ((𝐹𝐷𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
5524, 54mpdan 683 . . . . . . . 8 (𝐹𝐷 → (𝐹 supp 0) = (𝐹 “ ℕ))
56 eqimss 3973 . . . . . . . 8 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
5755, 56syl 17 . . . . . . 7 (𝐹𝐷 → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
58 id 22 . . . . . . 7 (𝐹𝐷𝐹𝐷)
59 c0ex 10900 . . . . . . . 8 0 ∈ V
6059a1i 11 . . . . . . 7 (𝐹𝐷 → 0 ∈ V)
6124, 57, 58, 60suppssrg 7984 . . . . . 6 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
6261oveq2d 7271 . . . . 5 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = (0...0))
63 fz0sn 13285 . . . . 5 (0...0) = {0}
6462, 63eqtrdi 2795 . . . 4 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = {0})
65 eqimss 3973 . . . 4 ((0...(𝐹𝑥)) = {0} → (0...(𝐹𝑥)) ⊆ {0})
6664, 65syl 17 . . 3 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) ⊆ {0})
6752, 53, 66ixpfi2 9047 . 2 (𝐹𝐷X𝑥𝐼 (0...(𝐹𝑥)) ∈ Fin)
6847, 67eqeltrd 2839 1 (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  {csn 4558   class class class wbr 5070  ccnv 5579  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  r cofr 7510   supp csupp 7948  m cmap 8573  Xcixp 8643  Fincfn 8691  0cc0 10802  cle 10941  cn 11903  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by:  gsumbagdiag  21055  psrass1lem  21056  psrmulcllem  21066  psrass1  21084  psrdi  21085  psrdir  21086  psrass23l  21087  psrcom  21088  psrass23  21089  resspsrmul  21096  mplsubrglem  21120  mplmonmul  21147  psropprmul  21319
  Copyright terms: Public domain W3C validator