MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglefi Structured version   Visualization version   GIF version

Theorem psrbaglefi 20610
Description: There are finitely many bags dominated by a given bag. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 25-Jan-2015.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglefi ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Distinct variable groups:   𝑦,𝑓,𝐹   𝑦,𝑉   𝑓,𝐼,𝑦   𝑦,𝐷
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbaglefi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3115 . . 3 {𝑦𝐷𝑦r𝐹} = {𝑦 ∣ (𝑦𝐷𝑦r𝐹)}
2 psrbag.d . . . . . . . . 9 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbag 20602 . . . . . . . 8 (𝐼𝑉 → (𝑦𝐷 ↔ (𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin)))
43adantr 484 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → (𝑦𝐷 ↔ (𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin)))
5 simpl 486 . . . . . . 7 ((𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin) → 𝑦:𝐼⟶ℕ0)
64, 5syl6bi 256 . . . . . 6 ((𝐼𝑉𝐹𝐷) → (𝑦𝐷𝑦:𝐼⟶ℕ0))
76adantrd 495 . . . . 5 ((𝐼𝑉𝐹𝐷) → ((𝑦𝐷𝑦r𝐹) → 𝑦:𝐼⟶ℕ0))
8 ss2ixp 8457 . . . . . . . . 9 (∀𝑥𝐼 (0...(𝐹𝑥)) ⊆ ℕ0X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0)
9 fz0ssnn0 12997 . . . . . . . . . 10 (0...(𝐹𝑥)) ⊆ ℕ0
109a1i 11 . . . . . . . . 9 (𝑥𝐼 → (0...(𝐹𝑥)) ⊆ ℕ0)
118, 10mprg 3120 . . . . . . . 8 X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0
1211sseli 3911 . . . . . . 7 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦X𝑥𝐼0)
13 vex 3444 . . . . . . . 8 𝑦 ∈ V
1413elixpconst 8452 . . . . . . 7 (𝑦X𝑥𝐼0𝑦:𝐼⟶ℕ0)
1512, 14sylib 221 . . . . . 6 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0)
1615a1i 11 . . . . 5 ((𝐼𝑉𝐹𝐷) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0))
17 ffn 6487 . . . . . . . . 9 (𝑦:𝐼⟶ℕ0𝑦 Fn 𝐼)
1817adantl 485 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝑦 Fn 𝐼)
1913elixp 8451 . . . . . . . . 9 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ (𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
2019baib 539 . . . . . . . 8 (𝑦 Fn 𝐼 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
2118, 20syl 17 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
22 ffvelrn 6826 . . . . . . . . . . . 12 ((𝑦:𝐼⟶ℕ0𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
2322adantll 713 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
24 nn0uz 12268 . . . . . . . . . . 11 0 = (ℤ‘0)
2523, 24eleqtrdi 2900 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (ℤ‘0))
262psrbagf 20603 . . . . . . . . . . . . 13 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
2726adantr 484 . . . . . . . . . . . 12 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐹:𝐼⟶ℕ0)
2827ffvelrnda 6828 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
2928nn0zd 12073 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℤ)
30 elfz5 12894 . . . . . . . . . 10 (((𝑦𝑥) ∈ (ℤ‘0) ∧ (𝐹𝑥) ∈ ℤ) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3125, 29, 30syl2anc 587 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3231ralbidva 3161 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3327ffnd 6488 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐹 Fn 𝐼)
34 simpll 766 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐼𝑉)
35 inidm 4145 . . . . . . . . 9 (𝐼𝐼) = 𝐼
36 eqidd 2799 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
37 eqidd 2799 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3818, 33, 34, 34, 35, 36, 37ofrfval 7397 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3932, 38bitr4d 285 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ 𝑦r𝐹))
402psrbaglecl 20607 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝐹𝐷𝑦:𝐼⟶ℕ0𝑦r𝐹)) → 𝑦𝐷)
41403exp2 1351 . . . . . . . . 9 (𝐼𝑉 → (𝐹𝐷 → (𝑦:𝐼⟶ℕ0 → (𝑦r𝐹𝑦𝐷))))
4241imp31 421 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦r𝐹𝑦𝐷))
4342pm4.71rd 566 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ (𝑦𝐷𝑦r𝐹)))
4421, 39, 433bitrrd 309 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4544ex 416 . . . . 5 ((𝐼𝑉𝐹𝐷) → (𝑦:𝐼⟶ℕ0 → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥)))))
467, 16, 45pm5.21ndd 384 . . . 4 ((𝐼𝑉𝐹𝐷) → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4746abbi1dv 2928 . . 3 ((𝐼𝑉𝐹𝐷) → {𝑦 ∣ (𝑦𝐷𝑦r𝐹)} = X𝑥𝐼 (0...(𝐹𝑥)))
481, 47syl5eq 2845 . 2 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} = X𝑥𝐼 (0...(𝐹𝑥)))
49 simpr 488 . . . . 5 ((𝐼𝑉𝐹𝐷) → 𝐹𝐷)
50 cnveq 5708 . . . . . . . 8 (𝑓 = 𝐹𝑓 = 𝐹)
5150imaeq1d 5895 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 “ ℕ) = (𝐹 “ ℕ))
5251eleq1d 2874 . . . . . 6 (𝑓 = 𝐹 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐹 “ ℕ) ∈ Fin))
5352, 2elrab2 3631 . . . . 5 (𝐹𝐷 ↔ (𝐹 ∈ (ℕ0m 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5449, 53sylib 221 . . . 4 ((𝐼𝑉𝐹𝐷) → (𝐹 ∈ (ℕ0m 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5554simprd 499 . . 3 ((𝐼𝑉𝐹𝐷) → (𝐹 “ ℕ) ∈ Fin)
56 fzfid 13336 . . 3 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝐼) → (0...(𝐹𝑥)) ∈ Fin)
57 simpl 486 . . . . . . . . 9 ((𝐼𝑉𝐹𝐷) → 𝐼𝑉)
5857, 26jca 515 . . . . . . . 8 ((𝐼𝑉𝐹𝐷) → (𝐼𝑉𝐹:𝐼⟶ℕ0))
59 frnnn0supp 11941 . . . . . . . 8 ((𝐼𝑉𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
60 eqimss 3971 . . . . . . . 8 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
6158, 59, 603syl 18 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
62 c0ex 10624 . . . . . . . 8 0 ∈ V
6362a1i 11 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → 0 ∈ V)
6426, 61, 57, 63suppssr 7844 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
6564oveq2d 7151 . . . . 5 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = (0...0))
66 fz0sn 13002 . . . . 5 (0...0) = {0}
6765, 66eqtrdi 2849 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = {0})
68 eqimss 3971 . . . 4 ((0...(𝐹𝑥)) = {0} → (0...(𝐹𝑥)) ⊆ {0})
6967, 68syl 17 . . 3 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) ⊆ {0})
7055, 56, 69ixpfi2 8806 . 2 ((𝐼𝑉𝐹𝐷) → X𝑥𝐼 (0...(𝐹𝑥)) ∈ Fin)
7148, 70eqeltrd 2890 1 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  {crab 3110  Vcvv 3441  cdif 3878  wss 3881  {csn 4525   class class class wbr 5030  ccnv 5518  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  r cofr 7388   supp csupp 7813  m cmap 8389  Xcixp 8444  Fincfn 8492  0cc0 10526  cle 10665  cn 11625  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886
This theorem is referenced by:  gsumbagdiag  20614  psrass1lem  20615  psrmulcllem  20625  psrass1  20643  psrdi  20644  psrdir  20645  psrass23l  20646  psrcom  20647  psrass23  20648  resspsrmul  20655  mplsubrglem  20677  mplmonmul  20704  psropprmul  20867
  Copyright terms: Public domain W3C validator