MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglefi Structured version   Visualization version   GIF version

Theorem psrbaglefi 21969
Description: There are finitely many bags dominated by a given bag. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 25-Jan-2015.) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglefi (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑦,𝐷   𝑦,𝐹,𝑓   𝑦,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbaglefi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3444 . . 3 {𝑦𝐷𝑦r𝐹} = {𝑦 ∣ (𝑦𝐷𝑦r𝐹)}
2 psrbag.d . . . . . . . 8 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbagf 21961 . . . . . . 7 (𝑦𝐷𝑦:𝐼⟶ℕ0)
43a1i 11 . . . . . 6 (𝐹𝐷 → (𝑦𝐷𝑦:𝐼⟶ℕ0))
54adantrd 491 . . . . 5 (𝐹𝐷 → ((𝑦𝐷𝑦r𝐹) → 𝑦:𝐼⟶ℕ0))
6 ss2ixp 8968 . . . . . . . . 9 (∀𝑥𝐼 (0...(𝐹𝑥)) ⊆ ℕ0X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0)
7 fz0ssnn0 13679 . . . . . . . . . 10 (0...(𝐹𝑥)) ⊆ ℕ0
87a1i 11 . . . . . . . . 9 (𝑥𝐼 → (0...(𝐹𝑥)) ⊆ ℕ0)
96, 8mprg 3073 . . . . . . . 8 X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0
109sseli 4004 . . . . . . 7 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦X𝑥𝐼0)
11 vex 3492 . . . . . . . 8 𝑦 ∈ V
1211elixpconst 8963 . . . . . . 7 (𝑦X𝑥𝐼0𝑦:𝐼⟶ℕ0)
1310, 12sylib 218 . . . . . 6 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0)
1413a1i 11 . . . . 5 (𝐹𝐷 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0))
15 ffn 6747 . . . . . . . . 9 (𝑦:𝐼⟶ℕ0𝑦 Fn 𝐼)
1615adantl 481 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝑦 Fn 𝐼)
1711elixp 8962 . . . . . . . . 9 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ (𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
1817baib 535 . . . . . . . 8 (𝑦 Fn 𝐼 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
1916, 18syl 17 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
20 ffvelcdm 7115 . . . . . . . . . . . 12 ((𝑦:𝐼⟶ℕ0𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
2120adantll 713 . . . . . . . . . . 11 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
22 nn0uz 12945 . . . . . . . . . . 11 0 = (ℤ‘0)
2321, 22eleqtrdi 2854 . . . . . . . . . 10 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (ℤ‘0))
242psrbagf 21961 . . . . . . . . . . . . 13 (𝐹𝐷𝐹:𝐼⟶ℕ0)
2524adantr 480 . . . . . . . . . . . 12 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹:𝐼⟶ℕ0)
2625ffvelcdmda 7118 . . . . . . . . . . 11 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
2726nn0zd 12665 . . . . . . . . . 10 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℤ)
28 elfz5 13576 . . . . . . . . . 10 (((𝑦𝑥) ∈ (ℤ‘0) ∧ (𝐹𝑥) ∈ ℤ) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
2923, 27, 28syl2anc 583 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3029ralbidva 3182 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3124ffnd 6748 . . . . . . . . . 10 (𝐹𝐷𝐹 Fn 𝐼)
3231adantr 480 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹 Fn 𝐼)
3311a1i 11 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝑦 ∈ V)
34 simpl 482 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹𝐷)
35 inidm 4248 . . . . . . . . 9 (𝐼𝐼) = 𝐼
36 eqidd 2741 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
37 eqidd 2741 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3816, 32, 33, 34, 35, 36, 37ofrfvalg 7722 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3930, 38bitr4d 282 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ 𝑦r𝐹))
402psrbaglecl 21966 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0𝑦r𝐹) → 𝑦𝐷)
41403expia 1121 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹𝑦𝐷))
4241pm4.71rd 562 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ (𝑦𝐷𝑦r𝐹)))
4319, 39, 423bitrrd 306 . . . . . 6 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4443ex 412 . . . . 5 (𝐹𝐷 → (𝑦:𝐼⟶ℕ0 → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥)))))
455, 14, 44pm5.21ndd 379 . . . 4 (𝐹𝐷 → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4645eqabcdv 2879 . . 3 (𝐹𝐷 → {𝑦 ∣ (𝑦𝐷𝑦r𝐹)} = X𝑥𝐼 (0...(𝐹𝑥)))
471, 46eqtrid 2792 . 2 (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} = X𝑥𝐼 (0...(𝐹𝑥)))
48 cnveq 5898 . . . . . . 7 (𝑓 = 𝐹𝑓 = 𝐹)
4948imaeq1d 6088 . . . . . 6 (𝑓 = 𝐹 → (𝑓 “ ℕ) = (𝐹 “ ℕ))
5049eleq1d 2829 . . . . 5 (𝑓 = 𝐹 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐹 “ ℕ) ∈ Fin))
5150, 2elrab2 3711 . . . 4 (𝐹𝐷 ↔ (𝐹 ∈ (ℕ0m 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5251simprbi 496 . . 3 (𝐹𝐷 → (𝐹 “ ℕ) ∈ Fin)
53 fzfid 14024 . . 3 ((𝐹𝐷𝑥𝐼) → (0...(𝐹𝑥)) ∈ Fin)
54 fcdmnn0suppg 12611 . . . . . . . . 9 ((𝐹𝐷𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
5524, 54mpdan 686 . . . . . . . 8 (𝐹𝐷 → (𝐹 supp 0) = (𝐹 “ ℕ))
56 eqimss 4067 . . . . . . . 8 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
5755, 56syl 17 . . . . . . 7 (𝐹𝐷 → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
58 id 22 . . . . . . 7 (𝐹𝐷𝐹𝐷)
59 c0ex 11284 . . . . . . . 8 0 ∈ V
6059a1i 11 . . . . . . 7 (𝐹𝐷 → 0 ∈ V)
6124, 57, 58, 60suppssrg 8237 . . . . . 6 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
6261oveq2d 7464 . . . . 5 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = (0...0))
63 fz0sn 13684 . . . . 5 (0...0) = {0}
6462, 63eqtrdi 2796 . . . 4 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = {0})
65 eqimss 4067 . . . 4 ((0...(𝐹𝑥)) = {0} → (0...(𝐹𝑥)) ⊆ {0})
6664, 65syl 17 . . 3 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) ⊆ {0})
6752, 53, 66ixpfi2 9420 . 2 (𝐹𝐷X𝑥𝐼 (0...(𝐹𝑥)) ∈ Fin)
6847, 67eqeltrd 2844 1 (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  {crab 3443  Vcvv 3488  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  r cofr 7713   supp csupp 8201  m cmap 8884  Xcixp 8955  Fincfn 9003  0cc0 11184  cle 11325  cn 12293  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  gsumbagdiag  21974  psrass1lem  21975  rhmpsrlem1  21983  rhmpsrlem2  21984  psrass1  22007  psrdi  22008  psrdir  22009  psrass23l  22010  psrcom  22011  psrass23  22012  resspsrmul  22019  mplsubrglem  22047  mplmonmul  22077  psdmul  22193  psropprmul  22260
  Copyright terms: Public domain W3C validator