MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglefi Structured version   Visualization version   GIF version

Theorem psrbaglefi 21891
Description: There are finitely many bags dominated by a given bag. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 25-Jan-2015.) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglefi (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑦,𝐷   𝑦,𝐹,𝑓   𝑦,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbaglefi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3421 . . 3 {𝑦𝐷𝑦r𝐹} = {𝑦 ∣ (𝑦𝐷𝑦r𝐹)}
2 psrbag.d . . . . . . . 8 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbagf 21883 . . . . . . 7 (𝑦𝐷𝑦:𝐼⟶ℕ0)
43a1i 11 . . . . . 6 (𝐹𝐷 → (𝑦𝐷𝑦:𝐼⟶ℕ0))
54adantrd 491 . . . . 5 (𝐹𝐷 → ((𝑦𝐷𝑦r𝐹) → 𝑦:𝐼⟶ℕ0))
6 ss2ixp 8929 . . . . . . . . 9 (∀𝑥𝐼 (0...(𝐹𝑥)) ⊆ ℕ0X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0)
7 fz0ssnn0 13644 . . . . . . . . . 10 (0...(𝐹𝑥)) ⊆ ℕ0
87a1i 11 . . . . . . . . 9 (𝑥𝐼 → (0...(𝐹𝑥)) ⊆ ℕ0)
96, 8mprg 3058 . . . . . . . 8 X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0
109sseli 3959 . . . . . . 7 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦X𝑥𝐼0)
11 vex 3468 . . . . . . . 8 𝑦 ∈ V
1211elixpconst 8924 . . . . . . 7 (𝑦X𝑥𝐼0𝑦:𝐼⟶ℕ0)
1310, 12sylib 218 . . . . . 6 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0)
1413a1i 11 . . . . 5 (𝐹𝐷 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0))
15 ffn 6711 . . . . . . . . 9 (𝑦:𝐼⟶ℕ0𝑦 Fn 𝐼)
1615adantl 481 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝑦 Fn 𝐼)
1711elixp 8923 . . . . . . . . 9 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ (𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
1817baib 535 . . . . . . . 8 (𝑦 Fn 𝐼 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
1916, 18syl 17 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
20 ffvelcdm 7076 . . . . . . . . . . . 12 ((𝑦:𝐼⟶ℕ0𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
2120adantll 714 . . . . . . . . . . 11 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
22 nn0uz 12899 . . . . . . . . . . 11 0 = (ℤ‘0)
2321, 22eleqtrdi 2845 . . . . . . . . . 10 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (ℤ‘0))
242psrbagf 21883 . . . . . . . . . . . . 13 (𝐹𝐷𝐹:𝐼⟶ℕ0)
2524adantr 480 . . . . . . . . . . . 12 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹:𝐼⟶ℕ0)
2625ffvelcdmda 7079 . . . . . . . . . . 11 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
2726nn0zd 12619 . . . . . . . . . 10 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℤ)
28 elfz5 13538 . . . . . . . . . 10 (((𝑦𝑥) ∈ (ℤ‘0) ∧ (𝐹𝑥) ∈ ℤ) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
2923, 27, 28syl2anc 584 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3029ralbidva 3162 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3124ffnd 6712 . . . . . . . . . 10 (𝐹𝐷𝐹 Fn 𝐼)
3231adantr 480 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹 Fn 𝐼)
3311a1i 11 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝑦 ∈ V)
34 simpl 482 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹𝐷)
35 inidm 4207 . . . . . . . . 9 (𝐼𝐼) = 𝐼
36 eqidd 2737 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
37 eqidd 2737 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3816, 32, 33, 34, 35, 36, 37ofrfvalg 7684 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3930, 38bitr4d 282 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ 𝑦r𝐹))
402psrbaglecl 21888 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0𝑦r𝐹) → 𝑦𝐷)
41403expia 1121 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹𝑦𝐷))
4241pm4.71rd 562 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ (𝑦𝐷𝑦r𝐹)))
4319, 39, 423bitrrd 306 . . . . . 6 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4443ex 412 . . . . 5 (𝐹𝐷 → (𝑦:𝐼⟶ℕ0 → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥)))))
455, 14, 44pm5.21ndd 379 . . . 4 (𝐹𝐷 → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4645eqabcdv 2870 . . 3 (𝐹𝐷 → {𝑦 ∣ (𝑦𝐷𝑦r𝐹)} = X𝑥𝐼 (0...(𝐹𝑥)))
471, 46eqtrid 2783 . 2 (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} = X𝑥𝐼 (0...(𝐹𝑥)))
48 cnveq 5858 . . . . . . 7 (𝑓 = 𝐹𝑓 = 𝐹)
4948imaeq1d 6051 . . . . . 6 (𝑓 = 𝐹 → (𝑓 “ ℕ) = (𝐹 “ ℕ))
5049eleq1d 2820 . . . . 5 (𝑓 = 𝐹 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐹 “ ℕ) ∈ Fin))
5150, 2elrab2 3679 . . . 4 (𝐹𝐷 ↔ (𝐹 ∈ (ℕ0m 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5251simprbi 496 . . 3 (𝐹𝐷 → (𝐹 “ ℕ) ∈ Fin)
53 fzfid 13996 . . 3 ((𝐹𝐷𝑥𝐼) → (0...(𝐹𝑥)) ∈ Fin)
54 fcdmnn0suppg 12565 . . . . . . . . 9 ((𝐹𝐷𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
5524, 54mpdan 687 . . . . . . . 8 (𝐹𝐷 → (𝐹 supp 0) = (𝐹 “ ℕ))
56 eqimss 4022 . . . . . . . 8 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
5755, 56syl 17 . . . . . . 7 (𝐹𝐷 → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
58 id 22 . . . . . . 7 (𝐹𝐷𝐹𝐷)
59 c0ex 11234 . . . . . . . 8 0 ∈ V
6059a1i 11 . . . . . . 7 (𝐹𝐷 → 0 ∈ V)
6124, 57, 58, 60suppssrg 8200 . . . . . 6 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
6261oveq2d 7426 . . . . 5 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = (0...0))
63 fz0sn 13649 . . . . 5 (0...0) = {0}
6462, 63eqtrdi 2787 . . . 4 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = {0})
65 eqimss 4022 . . . 4 ((0...(𝐹𝑥)) = {0} → (0...(𝐹𝑥)) ⊆ {0})
6664, 65syl 17 . . 3 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) ⊆ {0})
6752, 53, 66ixpfi2 9367 . 2 (𝐹𝐷X𝑥𝐼 (0...(𝐹𝑥)) ∈ Fin)
6847, 67eqeltrd 2835 1 (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  wral 3052  {crab 3420  Vcvv 3464  cdif 3928  wss 3931  {csn 4606   class class class wbr 5124  ccnv 5658  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  r cofr 7675   supp csupp 8164  m cmap 8845  Xcixp 8916  Fincfn 8964  0cc0 11134  cle 11275  cn 12245  0cn0 12506  cz 12593  cuz 12857  ...cfz 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530
This theorem is referenced by:  gsumbagdiag  21896  psrass1lem  21897  rhmpsrlem1  21905  rhmpsrlem2  21906  psrass1  21929  psrdi  21930  psrdir  21931  psrass23l  21932  psrcom  21933  psrass23  21934  resspsrmul  21941  mplsubrglem  21969  mplmonmul  21999  psdmul  22109  psropprmul  22178
  Copyright terms: Public domain W3C validator