MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglefi Structured version   Visualization version   GIF version

Theorem psrbaglefi 21947
Description: There are finitely many bags dominated by a given bag. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 25-Jan-2015.) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglefi (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑦,𝐷   𝑦,𝐹,𝑓   𝑦,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbaglefi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3436 . . 3 {𝑦𝐷𝑦r𝐹} = {𝑦 ∣ (𝑦𝐷𝑦r𝐹)}
2 psrbag.d . . . . . . . 8 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbagf 21939 . . . . . . 7 (𝑦𝐷𝑦:𝐼⟶ℕ0)
43a1i 11 . . . . . 6 (𝐹𝐷 → (𝑦𝐷𝑦:𝐼⟶ℕ0))
54adantrd 491 . . . . 5 (𝐹𝐷 → ((𝑦𝐷𝑦r𝐹) → 𝑦:𝐼⟶ℕ0))
6 ss2ixp 8951 . . . . . . . . 9 (∀𝑥𝐼 (0...(𝐹𝑥)) ⊆ ℕ0X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0)
7 fz0ssnn0 13663 . . . . . . . . . 10 (0...(𝐹𝑥)) ⊆ ℕ0
87a1i 11 . . . . . . . . 9 (𝑥𝐼 → (0...(𝐹𝑥)) ⊆ ℕ0)
96, 8mprg 3066 . . . . . . . 8 X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0
109sseli 3978 . . . . . . 7 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦X𝑥𝐼0)
11 vex 3483 . . . . . . . 8 𝑦 ∈ V
1211elixpconst 8946 . . . . . . 7 (𝑦X𝑥𝐼0𝑦:𝐼⟶ℕ0)
1310, 12sylib 218 . . . . . 6 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0)
1413a1i 11 . . . . 5 (𝐹𝐷 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0))
15 ffn 6735 . . . . . . . . 9 (𝑦:𝐼⟶ℕ0𝑦 Fn 𝐼)
1615adantl 481 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝑦 Fn 𝐼)
1711elixp 8945 . . . . . . . . 9 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ (𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
1817baib 535 . . . . . . . 8 (𝑦 Fn 𝐼 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
1916, 18syl 17 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
20 ffvelcdm 7100 . . . . . . . . . . . 12 ((𝑦:𝐼⟶ℕ0𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
2120adantll 714 . . . . . . . . . . 11 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
22 nn0uz 12921 . . . . . . . . . . 11 0 = (ℤ‘0)
2321, 22eleqtrdi 2850 . . . . . . . . . 10 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (ℤ‘0))
242psrbagf 21939 . . . . . . . . . . . . 13 (𝐹𝐷𝐹:𝐼⟶ℕ0)
2524adantr 480 . . . . . . . . . . . 12 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹:𝐼⟶ℕ0)
2625ffvelcdmda 7103 . . . . . . . . . . 11 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
2726nn0zd 12641 . . . . . . . . . 10 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℤ)
28 elfz5 13557 . . . . . . . . . 10 (((𝑦𝑥) ∈ (ℤ‘0) ∧ (𝐹𝑥) ∈ ℤ) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
2923, 27, 28syl2anc 584 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3029ralbidva 3175 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3124ffnd 6736 . . . . . . . . . 10 (𝐹𝐷𝐹 Fn 𝐼)
3231adantr 480 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹 Fn 𝐼)
3311a1i 11 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝑦 ∈ V)
34 simpl 482 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹𝐷)
35 inidm 4226 . . . . . . . . 9 (𝐼𝐼) = 𝐼
36 eqidd 2737 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
37 eqidd 2737 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3816, 32, 33, 34, 35, 36, 37ofrfvalg 7706 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3930, 38bitr4d 282 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ 𝑦r𝐹))
402psrbaglecl 21944 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0𝑦r𝐹) → 𝑦𝐷)
41403expia 1121 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹𝑦𝐷))
4241pm4.71rd 562 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ (𝑦𝐷𝑦r𝐹)))
4319, 39, 423bitrrd 306 . . . . . 6 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4443ex 412 . . . . 5 (𝐹𝐷 → (𝑦:𝐼⟶ℕ0 → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥)))))
455, 14, 44pm5.21ndd 379 . . . 4 (𝐹𝐷 → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4645eqabcdv 2875 . . 3 (𝐹𝐷 → {𝑦 ∣ (𝑦𝐷𝑦r𝐹)} = X𝑥𝐼 (0...(𝐹𝑥)))
471, 46eqtrid 2788 . 2 (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} = X𝑥𝐼 (0...(𝐹𝑥)))
48 cnveq 5883 . . . . . . 7 (𝑓 = 𝐹𝑓 = 𝐹)
4948imaeq1d 6076 . . . . . 6 (𝑓 = 𝐹 → (𝑓 “ ℕ) = (𝐹 “ ℕ))
5049eleq1d 2825 . . . . 5 (𝑓 = 𝐹 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐹 “ ℕ) ∈ Fin))
5150, 2elrab2 3694 . . . 4 (𝐹𝐷 ↔ (𝐹 ∈ (ℕ0m 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5251simprbi 496 . . 3 (𝐹𝐷 → (𝐹 “ ℕ) ∈ Fin)
53 fzfid 14015 . . 3 ((𝐹𝐷𝑥𝐼) → (0...(𝐹𝑥)) ∈ Fin)
54 fcdmnn0suppg 12587 . . . . . . . . 9 ((𝐹𝐷𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
5524, 54mpdan 687 . . . . . . . 8 (𝐹𝐷 → (𝐹 supp 0) = (𝐹 “ ℕ))
56 eqimss 4041 . . . . . . . 8 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
5755, 56syl 17 . . . . . . 7 (𝐹𝐷 → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
58 id 22 . . . . . . 7 (𝐹𝐷𝐹𝐷)
59 c0ex 11256 . . . . . . . 8 0 ∈ V
6059a1i 11 . . . . . . 7 (𝐹𝐷 → 0 ∈ V)
6124, 57, 58, 60suppssrg 8222 . . . . . 6 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
6261oveq2d 7448 . . . . 5 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = (0...0))
63 fz0sn 13668 . . . . 5 (0...0) = {0}
6462, 63eqtrdi 2792 . . . 4 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = {0})
65 eqimss 4041 . . . 4 ((0...(𝐹𝑥)) = {0} → (0...(𝐹𝑥)) ⊆ {0})
6664, 65syl 17 . . 3 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) ⊆ {0})
6752, 53, 66ixpfi2 9391 . 2 (𝐹𝐷X𝑥𝐼 (0...(𝐹𝑥)) ∈ Fin)
6847, 67eqeltrd 2840 1 (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {cab 2713  wral 3060  {crab 3435  Vcvv 3479  cdif 3947  wss 3950  {csn 4625   class class class wbr 5142  ccnv 5683  cima 5687   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  r cofr 7697   supp csupp 8186  m cmap 8867  Xcixp 8938  Fincfn 8986  0cc0 11156  cle 11297  cn 12267  0cn0 12528  cz 12615  cuz 12879  ...cfz 13548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549
This theorem is referenced by:  gsumbagdiag  21952  psrass1lem  21953  rhmpsrlem1  21961  rhmpsrlem2  21962  psrass1  21985  psrdi  21986  psrdir  21987  psrass23l  21988  psrcom  21989  psrass23  21990  resspsrmul  21997  mplsubrglem  22025  mplmonmul  22055  psdmul  22171  psropprmul  22240
  Copyright terms: Public domain W3C validator