MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglefi Structured version   Visualization version   GIF version

Theorem psrbaglefi 20071
Description: There are finitely many bags dominated by a given bag. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 25-Jan-2015.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglefi ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Distinct variable groups:   𝑦,𝑓,𝐹   𝑦,𝑉   𝑓,𝐼,𝑦   𝑦,𝐷
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbaglefi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3152 . . 3 {𝑦𝐷𝑦r𝐹} = {𝑦 ∣ (𝑦𝐷𝑦r𝐹)}
2 psrbag.d . . . . . . . . 9 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbag 20063 . . . . . . . 8 (𝐼𝑉 → (𝑦𝐷 ↔ (𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin)))
43adantr 481 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → (𝑦𝐷 ↔ (𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin)))
5 simpl 483 . . . . . . 7 ((𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin) → 𝑦:𝐼⟶ℕ0)
64, 5syl6bi 254 . . . . . 6 ((𝐼𝑉𝐹𝐷) → (𝑦𝐷𝑦:𝐼⟶ℕ0))
76adantrd 492 . . . . 5 ((𝐼𝑉𝐹𝐷) → ((𝑦𝐷𝑦r𝐹) → 𝑦:𝐼⟶ℕ0))
8 ss2ixp 8463 . . . . . . . . 9 (∀𝑥𝐼 (0...(𝐹𝑥)) ⊆ ℕ0X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0)
9 fz0ssnn0 12992 . . . . . . . . . 10 (0...(𝐹𝑥)) ⊆ ℕ0
109a1i 11 . . . . . . . . 9 (𝑥𝐼 → (0...(𝐹𝑥)) ⊆ ℕ0)
118, 10mprg 3157 . . . . . . . 8 X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0
1211sseli 3967 . . . . . . 7 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦X𝑥𝐼0)
13 vex 3503 . . . . . . . 8 𝑦 ∈ V
1413elixpconst 8458 . . . . . . 7 (𝑦X𝑥𝐼0𝑦:𝐼⟶ℕ0)
1512, 14sylib 219 . . . . . 6 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0)
1615a1i 11 . . . . 5 ((𝐼𝑉𝐹𝐷) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0))
17 ffn 6511 . . . . . . . . 9 (𝑦:𝐼⟶ℕ0𝑦 Fn 𝐼)
1817adantl 482 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝑦 Fn 𝐼)
1913elixp 8457 . . . . . . . . 9 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ (𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
2019baib 536 . . . . . . . 8 (𝑦 Fn 𝐼 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
2118, 20syl 17 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
22 ffvelrn 6845 . . . . . . . . . . . 12 ((𝑦:𝐼⟶ℕ0𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
2322adantll 710 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
24 nn0uz 12269 . . . . . . . . . . 11 0 = (ℤ‘0)
2523, 24syl6eleq 2928 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (ℤ‘0))
262psrbagf 20064 . . . . . . . . . . . . 13 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
2726adantr 481 . . . . . . . . . . . 12 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐹:𝐼⟶ℕ0)
2827ffvelrnda 6847 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
2928nn0zd 12074 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℤ)
30 elfz5 12890 . . . . . . . . . 10 (((𝑦𝑥) ∈ (ℤ‘0) ∧ (𝐹𝑥) ∈ ℤ) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3125, 29, 30syl2anc 584 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3231ralbidva 3201 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3327ffnd 6512 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐹 Fn 𝐼)
34 simpll 763 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐼𝑉)
35 inidm 4199 . . . . . . . . 9 (𝐼𝐼) = 𝐼
36 eqidd 2827 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
37 eqidd 2827 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3818, 33, 34, 34, 35, 36, 37ofrfval 7407 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3932, 38bitr4d 283 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ 𝑦r𝐹))
402psrbaglecl 20068 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝐹𝐷𝑦:𝐼⟶ℕ0𝑦r𝐹)) → 𝑦𝐷)
41403exp2 1348 . . . . . . . . 9 (𝐼𝑉 → (𝐹𝐷 → (𝑦:𝐼⟶ℕ0 → (𝑦r𝐹𝑦𝐷))))
4241imp31 418 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦r𝐹𝑦𝐷))
4342pm4.71rd 563 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ (𝑦𝐷𝑦r𝐹)))
4421, 39, 433bitrrd 307 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4544ex 413 . . . . 5 ((𝐼𝑉𝐹𝐷) → (𝑦:𝐼⟶ℕ0 → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥)))))
467, 16, 45pm5.21ndd 381 . . . 4 ((𝐼𝑉𝐹𝐷) → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4746abbi1dv 2957 . . 3 ((𝐼𝑉𝐹𝐷) → {𝑦 ∣ (𝑦𝐷𝑦r𝐹)} = X𝑥𝐼 (0...(𝐹𝑥)))
481, 47syl5eq 2873 . 2 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} = X𝑥𝐼 (0...(𝐹𝑥)))
49 simpr 485 . . . . 5 ((𝐼𝑉𝐹𝐷) → 𝐹𝐷)
50 cnveq 5743 . . . . . . . 8 (𝑓 = 𝐹𝑓 = 𝐹)
5150imaeq1d 5926 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 “ ℕ) = (𝐹 “ ℕ))
5251eleq1d 2902 . . . . . 6 (𝑓 = 𝐹 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐹 “ ℕ) ∈ Fin))
5352, 2elrab2 3687 . . . . 5 (𝐹𝐷 ↔ (𝐹 ∈ (ℕ0m 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5449, 53sylib 219 . . . 4 ((𝐼𝑉𝐹𝐷) → (𝐹 ∈ (ℕ0m 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5554simprd 496 . . 3 ((𝐼𝑉𝐹𝐷) → (𝐹 “ ℕ) ∈ Fin)
56 fzfid 13331 . . 3 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝐼) → (0...(𝐹𝑥)) ∈ Fin)
57 simpl 483 . . . . . . . . 9 ((𝐼𝑉𝐹𝐷) → 𝐼𝑉)
5857, 26jca 512 . . . . . . . 8 ((𝐼𝑉𝐹𝐷) → (𝐼𝑉𝐹:𝐼⟶ℕ0))
59 frnnn0supp 11942 . . . . . . . 8 ((𝐼𝑉𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
60 eqimss 4027 . . . . . . . 8 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
6158, 59, 603syl 18 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
62 c0ex 10624 . . . . . . . 8 0 ∈ V
6362a1i 11 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → 0 ∈ V)
6426, 61, 57, 63suppssr 7852 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
6564oveq2d 7164 . . . . 5 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = (0...0))
66 fz0sn 12997 . . . . 5 (0...0) = {0}
6765, 66syl6eq 2877 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = {0})
68 eqimss 4027 . . . 4 ((0...(𝐹𝑥)) = {0} → (0...(𝐹𝑥)) ⊆ {0})
6967, 68syl 17 . . 3 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) ⊆ {0})
7055, 56, 69ixpfi2 8811 . 2 ((𝐼𝑉𝐹𝐷) → X𝑥𝐼 (0...(𝐹𝑥)) ∈ Fin)
7148, 70eqeltrd 2918 1 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  {cab 2804  wral 3143  {crab 3147  Vcvv 3500  cdif 3937  wss 3940  {csn 4564   class class class wbr 5063  ccnv 5553  cima 5557   Fn wfn 6347  wf 6348  cfv 6352  (class class class)co 7148  r cofr 7398   supp csupp 7821  m cmap 8396  Xcixp 8450  Fincfn 8498  0cc0 10526  cle 10665  cn 11627  0cn0 11886  cz 11970  cuz 12232  ...cfz 12882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-ofr 7400  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883
This theorem is referenced by:  gsumbagdiag  20075  psrass1lem  20076  psrmulcllem  20086  psrass1  20104  psrdi  20105  psrdir  20106  psrass23l  20107  psrcom  20108  psrass23  20109  resspsrmul  20116  mplsubrglem  20138  mplmonmul  20164  psropprmul  20325
  Copyright terms: Public domain W3C validator