MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglefi Structured version   Visualization version   GIF version

Theorem psrbaglefi 21833
Description: There are finitely many bags dominated by a given bag. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 25-Jan-2015.) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglefi (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑦,𝐷   𝑦,𝐹,𝑓   𝑦,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbaglefi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3395 . . 3 {𝑦𝐷𝑦r𝐹} = {𝑦 ∣ (𝑦𝐷𝑦r𝐹)}
2 psrbag.d . . . . . . . 8 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbagf 21825 . . . . . . 7 (𝑦𝐷𝑦:𝐼⟶ℕ0)
43a1i 11 . . . . . 6 (𝐹𝐷 → (𝑦𝐷𝑦:𝐼⟶ℕ0))
54adantrd 491 . . . . 5 (𝐹𝐷 → ((𝑦𝐷𝑦r𝐹) → 𝑦:𝐼⟶ℕ0))
6 ss2ixp 8837 . . . . . . . . 9 (∀𝑥𝐼 (0...(𝐹𝑥)) ⊆ ℕ0X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0)
7 fz0ssnn0 13525 . . . . . . . . . 10 (0...(𝐹𝑥)) ⊆ ℕ0
87a1i 11 . . . . . . . . 9 (𝑥𝐼 → (0...(𝐹𝑥)) ⊆ ℕ0)
96, 8mprg 3050 . . . . . . . 8 X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0
109sseli 3931 . . . . . . 7 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦X𝑥𝐼0)
11 vex 3440 . . . . . . . 8 𝑦 ∈ V
1211elixpconst 8832 . . . . . . 7 (𝑦X𝑥𝐼0𝑦:𝐼⟶ℕ0)
1310, 12sylib 218 . . . . . 6 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0)
1413a1i 11 . . . . 5 (𝐹𝐷 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0))
15 ffn 6652 . . . . . . . . 9 (𝑦:𝐼⟶ℕ0𝑦 Fn 𝐼)
1615adantl 481 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝑦 Fn 𝐼)
1711elixp 8831 . . . . . . . . 9 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ (𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
1817baib 535 . . . . . . . 8 (𝑦 Fn 𝐼 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
1916, 18syl 17 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
20 ffvelcdm 7015 . . . . . . . . . . . 12 ((𝑦:𝐼⟶ℕ0𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
2120adantll 714 . . . . . . . . . . 11 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
22 nn0uz 12777 . . . . . . . . . . 11 0 = (ℤ‘0)
2321, 22eleqtrdi 2838 . . . . . . . . . 10 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (ℤ‘0))
242psrbagf 21825 . . . . . . . . . . . . 13 (𝐹𝐷𝐹:𝐼⟶ℕ0)
2524adantr 480 . . . . . . . . . . . 12 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹:𝐼⟶ℕ0)
2625ffvelcdmda 7018 . . . . . . . . . . 11 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
2726nn0zd 12497 . . . . . . . . . 10 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℤ)
28 elfz5 13419 . . . . . . . . . 10 (((𝑦𝑥) ∈ (ℤ‘0) ∧ (𝐹𝑥) ∈ ℤ) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
2923, 27, 28syl2anc 584 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3029ralbidva 3150 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3124ffnd 6653 . . . . . . . . . 10 (𝐹𝐷𝐹 Fn 𝐼)
3231adantr 480 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹 Fn 𝐼)
3311a1i 11 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝑦 ∈ V)
34 simpl 482 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → 𝐹𝐷)
35 inidm 4178 . . . . . . . . 9 (𝐼𝐼) = 𝐼
36 eqidd 2730 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
37 eqidd 2730 . . . . . . . . 9 (((𝐹𝐷𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3816, 32, 33, 34, 35, 36, 37ofrfvalg 7621 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3930, 38bitr4d 282 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ 𝑦r𝐹))
402psrbaglecl 21830 . . . . . . . . 9 ((𝐹𝐷𝑦:𝐼⟶ℕ0𝑦r𝐹) → 𝑦𝐷)
41403expia 1121 . . . . . . . 8 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹𝑦𝐷))
4241pm4.71rd 562 . . . . . . 7 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → (𝑦r𝐹 ↔ (𝑦𝐷𝑦r𝐹)))
4319, 39, 423bitrrd 306 . . . . . 6 ((𝐹𝐷𝑦:𝐼⟶ℕ0) → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4443ex 412 . . . . 5 (𝐹𝐷 → (𝑦:𝐼⟶ℕ0 → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥)))))
455, 14, 44pm5.21ndd 379 . . . 4 (𝐹𝐷 → ((𝑦𝐷𝑦r𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4645eqabcdv 2862 . . 3 (𝐹𝐷 → {𝑦 ∣ (𝑦𝐷𝑦r𝐹)} = X𝑥𝐼 (0...(𝐹𝑥)))
471, 46eqtrid 2776 . 2 (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} = X𝑥𝐼 (0...(𝐹𝑥)))
48 cnveq 5816 . . . . . . 7 (𝑓 = 𝐹𝑓 = 𝐹)
4948imaeq1d 6010 . . . . . 6 (𝑓 = 𝐹 → (𝑓 “ ℕ) = (𝐹 “ ℕ))
5049eleq1d 2813 . . . . 5 (𝑓 = 𝐹 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐹 “ ℕ) ∈ Fin))
5150, 2elrab2 3651 . . . 4 (𝐹𝐷 ↔ (𝐹 ∈ (ℕ0m 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5251simprbi 496 . . 3 (𝐹𝐷 → (𝐹 “ ℕ) ∈ Fin)
53 fzfid 13880 . . 3 ((𝐹𝐷𝑥𝐼) → (0...(𝐹𝑥)) ∈ Fin)
54 fcdmnn0suppg 12443 . . . . . . . . 9 ((𝐹𝐷𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
5524, 54mpdan 687 . . . . . . . 8 (𝐹𝐷 → (𝐹 supp 0) = (𝐹 “ ℕ))
56 eqimss 3994 . . . . . . . 8 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
5755, 56syl 17 . . . . . . 7 (𝐹𝐷 → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
58 id 22 . . . . . . 7 (𝐹𝐷𝐹𝐷)
59 c0ex 11109 . . . . . . . 8 0 ∈ V
6059a1i 11 . . . . . . 7 (𝐹𝐷 → 0 ∈ V)
6124, 57, 58, 60suppssrg 8129 . . . . . 6 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
6261oveq2d 7365 . . . . 5 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = (0...0))
63 fz0sn 13530 . . . . 5 (0...0) = {0}
6462, 63eqtrdi 2780 . . . 4 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = {0})
65 eqimss 3994 . . . 4 ((0...(𝐹𝑥)) = {0} → (0...(𝐹𝑥)) ⊆ {0})
6664, 65syl 17 . . 3 ((𝐹𝐷𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) ⊆ {0})
6752, 53, 66ixpfi2 9240 . 2 (𝐹𝐷X𝑥𝐼 (0...(𝐹𝑥)) ∈ Fin)
6847, 67eqeltrd 2828 1 (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  {crab 3394  Vcvv 3436  cdif 3900  wss 3903  {csn 4577   class class class wbr 5092  ccnv 5618  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  r cofr 7612   supp csupp 8093  m cmap 8753  Xcixp 8824  Fincfn 8872  0cc0 11009  cle 11150  cn 12128  0cn0 12384  cz 12471  cuz 12735  ...cfz 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411
This theorem is referenced by:  gsumbagdiag  21838  psrass1lem  21839  rhmpsrlem1  21847  rhmpsrlem2  21848  psrass1  21871  psrdi  21872  psrdir  21873  psrass23l  21874  psrcom  21875  psrass23  21876  resspsrmul  21883  mplsubrglem  21911  mplmonmul  21941  psdmul  22051  psropprmul  22120
  Copyright terms: Public domain W3C validator