![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > shftuz | Structured version Visualization version GIF version |
Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftuz | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3098 | . 2 ⊢ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))} | |
2 | simp2 1168 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ ℂ) | |
3 | zcn 11671 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
4 | 3 | 3ad2ant1 1164 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝐴 ∈ ℂ) |
5 | 2, 4 | npcand 10688 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
6 | eluzadd 11959 | . . . . . . . . 9 ⊢ (((𝑥 − 𝐴) ∈ (ℤ≥‘𝐵) ∧ 𝐴 ∈ ℤ) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) | |
7 | 6 | ancoms 451 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) |
8 | 7 | 3adant2 1162 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) |
9 | 5, 8 | eqeltrrd 2879 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴))) |
10 | 9 | 3expib 1153 | . . . . 5 ⊢ (𝐴 ∈ ℤ → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
11 | 10 | adantr 473 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
12 | eluzelcn 11942 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → 𝑥 ∈ ℂ) | |
13 | 12 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → 𝑥 ∈ ℂ)) |
14 | eluzsub 11960 | . . . . . . 7 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴))) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) | |
15 | 14 | 3expia 1151 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))) |
16 | 15 | ancoms 451 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))) |
17 | 13, 16 | jcad 509 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)))) |
18 | 11, 17 | impbid 204 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) ↔ 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
19 | 18 | abbi1dv 2920 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))} = (ℤ≥‘(𝐵 + 𝐴))) |
20 | 1, 19 | syl5eq 2845 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 {cab 2785 {crab 3093 ‘cfv 6101 (class class class)co 6878 ℂcc 10222 + caddc 10227 − cmin 10556 ℤcz 11666 ℤ≥cuz 11930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-n0 11581 df-z 11667 df-uz 11931 |
This theorem is referenced by: seqshft 14166 uzmptshftfval 39327 |
Copyright terms: Public domain | W3C validator |