MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustsym Structured version   Visualization version   GIF version

Theorem metustsym 22580
Description: Elements of the filter base generated by the metric 𝐷 are symmetric. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustsym ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 = 𝐴)
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustsym
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . 4 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21metustss 22576 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
3 cnvss 5433 . . . 4 (𝐴 ⊆ (𝑋 × 𝑋) → 𝐴(𝑋 × 𝑋))
4 cnvxp 5692 . . . 4 (𝑋 × 𝑋) = (𝑋 × 𝑋)
53, 4syl6sseq 3800 . . 3 (𝐴 ⊆ (𝑋 × 𝑋) → 𝐴 ⊆ (𝑋 × 𝑋))
62, 5syl 17 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
7 simp-4l 760 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐷 ∈ (PsMet‘𝑋))
8 simpr1r 1292 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ((𝑝𝑋𝑞𝑋) ∧ 𝑎 ∈ ℝ+𝐴 = (𝐷 “ (0[,)𝑎)))) → 𝑞𝑋)
983anassrs 1453 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝑞𝑋)
10 simpr1l 1290 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ((𝑝𝑋𝑞𝑋) ∧ 𝑎 ∈ ℝ+𝐴 = (𝐷 “ (0[,)𝑎)))) → 𝑝𝑋)
11103anassrs 1453 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝑝𝑋)
12 psmetsym 22335 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑞𝑋𝑝𝑋) → (𝑞𝐷𝑝) = (𝑝𝐷𝑞))
137, 9, 11, 12syl3anc 1476 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑞𝐷𝑝) = (𝑝𝐷𝑞))
14 df-ov 6796 . . . . . . . . 9 (𝑞𝐷𝑝) = (𝐷‘⟨𝑞, 𝑝⟩)
15 df-ov 6796 . . . . . . . . 9 (𝑝𝐷𝑞) = (𝐷‘⟨𝑝, 𝑞⟩)
1613, 14, 153eqtr3g 2828 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝐷‘⟨𝑞, 𝑝⟩) = (𝐷‘⟨𝑝, 𝑞⟩))
1716eleq1d 2835 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷‘⟨𝑞, 𝑝⟩) ∈ (0[,)𝑎) ↔ (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎)))
18 psmetf 22331 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
19 ffun 6188 . . . . . . . . 9 (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun 𝐷)
207, 18, 193syl 18 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → Fun 𝐷)
21 simpllr 752 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑝𝑋𝑞𝑋))
2221ancomd 453 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑞𝑋𝑝𝑋))
23 opelxpi 5288 . . . . . . . . . 10 ((𝑞𝑋𝑝𝑋) → ⟨𝑞, 𝑝⟩ ∈ (𝑋 × 𝑋))
2422, 23syl 17 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑞, 𝑝⟩ ∈ (𝑋 × 𝑋))
25 fdm 6191 . . . . . . . . . 10 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
267, 18, 253syl 18 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → dom 𝐷 = (𝑋 × 𝑋))
2724, 26eleqtrrd 2853 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑞, 𝑝⟩ ∈ dom 𝐷)
28 fvimacnv 6475 . . . . . . . 8 ((Fun 𝐷 ∧ ⟨𝑞, 𝑝⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑞, 𝑝⟩) ∈ (0[,)𝑎) ↔ ⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎))))
2920, 27, 28syl2anc 565 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷‘⟨𝑞, 𝑝⟩) ∈ (0[,)𝑎) ↔ ⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎))))
30 opelxpi 5288 . . . . . . . . . 10 ((𝑝𝑋𝑞𝑋) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
3121, 30syl 17 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
3231, 26eleqtrrd 2853 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ dom 𝐷)
33 fvimacnv 6475 . . . . . . . 8 ((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3420, 32, 33syl2anc 565 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3517, 29, 343bitr3d 298 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎)) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
36 simpr 471 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐴 = (𝐷 “ (0[,)𝑎)))
3736eleq2d 2836 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑞, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎))))
3836eleq2d 2836 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑝, 𝑞⟩ ∈ 𝐴 ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3935, 37, 383bitr4d 300 . . . . 5 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑞, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴))
40 eqid 2771 . . . . . . . . 9 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
4140elrnmpt 5510 . . . . . . . 8 (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4241ibi 256 . . . . . . 7 (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4342, 1eleq2s 2868 . . . . . 6 (𝐴𝐹 → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4443ad2antlr 698 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4539, 44r19.29a 3226 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) → (⟨𝑞, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴))
46 df-br 4787 . . . . 5 (𝑝𝐴𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴)
47 vex 3354 . . . . . 6 𝑝 ∈ V
48 vex 3354 . . . . . 6 𝑞 ∈ V
4947, 48opelcnv 5442 . . . . 5 (⟨𝑝, 𝑞⟩ ∈ 𝐴 ↔ ⟨𝑞, 𝑝⟩ ∈ 𝐴)
5046, 49bitri 264 . . . 4 (𝑝𝐴𝑞 ↔ ⟨𝑞, 𝑝⟩ ∈ 𝐴)
51 df-br 4787 . . . 4 (𝑝𝐴𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴)
5245, 50, 513bitr4g 303 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) → (𝑝𝐴𝑞𝑝𝐴𝑞))
53523impb 1107 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑝𝑋𝑞𝑋) → (𝑝𝐴𝑞𝑝𝐴𝑞))
546, 2, 53eqbrrdva 5430 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wrex 3062  wss 3723  cop 4322   class class class wbr 4786  cmpt 4863   × cxp 5247  ccnv 5248  dom cdm 5249  ran crn 5250  cima 5252  Fun wfun 6025  wf 6027  cfv 6031  (class class class)co 6793  0cc0 10138  *cxr 10275  +crp 12035  [,)cico 12382  PsMetcpsmet 19945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-xadd 12152  df-psmet 19953
This theorem is referenced by:  metust  22583
  Copyright terms: Public domain W3C validator