MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustsym Structured version   Visualization version   GIF version

Theorem metustsym 24589
Description: Elements of the filter base generated by the metric 𝐷 are symmetric. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustsym ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 = 𝐴)
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustsym
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . 4 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21metustss 24585 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
3 cnvss 5897 . . . 4 (𝐴 ⊆ (𝑋 × 𝑋) → 𝐴(𝑋 × 𝑋))
4 cnvxp 6188 . . . 4 (𝑋 × 𝑋) = (𝑋 × 𝑋)
53, 4sseqtrdi 4059 . . 3 (𝐴 ⊆ (𝑋 × 𝑋) → 𝐴 ⊆ (𝑋 × 𝑋))
62, 5syl 17 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
7 simp-4l 782 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐷 ∈ (PsMet‘𝑋))
8 simpr1r 1231 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ((𝑝𝑋𝑞𝑋) ∧ 𝑎 ∈ ℝ+𝐴 = (𝐷 “ (0[,)𝑎)))) → 𝑞𝑋)
983anassrs 1360 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝑞𝑋)
10 simpr1l 1230 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ((𝑝𝑋𝑞𝑋) ∧ 𝑎 ∈ ℝ+𝐴 = (𝐷 “ (0[,)𝑎)))) → 𝑝𝑋)
11103anassrs 1360 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝑝𝑋)
12 psmetsym 24341 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑞𝑋𝑝𝑋) → (𝑞𝐷𝑝) = (𝑝𝐷𝑞))
137, 9, 11, 12syl3anc 1371 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑞𝐷𝑝) = (𝑝𝐷𝑞))
14 df-ov 7451 . . . . . . . . 9 (𝑞𝐷𝑝) = (𝐷‘⟨𝑞, 𝑝⟩)
15 df-ov 7451 . . . . . . . . 9 (𝑝𝐷𝑞) = (𝐷‘⟨𝑝, 𝑞⟩)
1613, 14, 153eqtr3g 2803 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝐷‘⟨𝑞, 𝑝⟩) = (𝐷‘⟨𝑝, 𝑞⟩))
1716eleq1d 2829 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷‘⟨𝑞, 𝑝⟩) ∈ (0[,)𝑎) ↔ (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎)))
18 psmetf 24337 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
19 ffun 6750 . . . . . . . . 9 (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun 𝐷)
207, 18, 193syl 18 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → Fun 𝐷)
21 simpllr 775 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑝𝑋𝑞𝑋))
2221ancomd 461 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑞𝑋𝑝𝑋))
23 opelxpi 5737 . . . . . . . . . 10 ((𝑞𝑋𝑝𝑋) → ⟨𝑞, 𝑝⟩ ∈ (𝑋 × 𝑋))
2422, 23syl 17 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑞, 𝑝⟩ ∈ (𝑋 × 𝑋))
25 fdm 6756 . . . . . . . . . 10 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
267, 18, 253syl 18 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → dom 𝐷 = (𝑋 × 𝑋))
2724, 26eleqtrrd 2847 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑞, 𝑝⟩ ∈ dom 𝐷)
28 fvimacnv 7086 . . . . . . . 8 ((Fun 𝐷 ∧ ⟨𝑞, 𝑝⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑞, 𝑝⟩) ∈ (0[,)𝑎) ↔ ⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎))))
2920, 27, 28syl2anc 583 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷‘⟨𝑞, 𝑝⟩) ∈ (0[,)𝑎) ↔ ⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎))))
30 opelxpi 5737 . . . . . . . . . 10 ((𝑝𝑋𝑞𝑋) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
3121, 30syl 17 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
3231, 26eleqtrrd 2847 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ dom 𝐷)
33 fvimacnv 7086 . . . . . . . 8 ((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3420, 32, 33syl2anc 583 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3517, 29, 343bitr3d 309 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎)) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
36 simpr 484 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐴 = (𝐷 “ (0[,)𝑎)))
3736eleq2d 2830 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑞, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎))))
3836eleq2d 2830 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑝, 𝑞⟩ ∈ 𝐴 ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3935, 37, 383bitr4d 311 . . . . 5 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑞, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴))
40 eqid 2740 . . . . . . . . 9 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
4140elrnmpt 5981 . . . . . . . 8 (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4241ibi 267 . . . . . . 7 (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4342, 1eleq2s 2862 . . . . . 6 (𝐴𝐹 → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4443ad2antlr 726 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4539, 44r19.29a 3168 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) → (⟨𝑞, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴))
46 df-br 5167 . . . . 5 (𝑝𝐴𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴)
47 vex 3492 . . . . . 6 𝑝 ∈ V
48 vex 3492 . . . . . 6 𝑞 ∈ V
4947, 48opelcnv 5906 . . . . 5 (⟨𝑝, 𝑞⟩ ∈ 𝐴 ↔ ⟨𝑞, 𝑝⟩ ∈ 𝐴)
5046, 49bitri 275 . . . 4 (𝑝𝐴𝑞 ↔ ⟨𝑞, 𝑝⟩ ∈ 𝐴)
51 df-br 5167 . . . 4 (𝑝𝐴𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴)
5245, 50, 513bitr4g 314 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) → (𝑝𝐴𝑞𝑝𝐴𝑞))
53523impb 1115 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑝𝑋𝑞𝑋) → (𝑝𝐴𝑞𝑝𝐴𝑞))
546, 2, 53eqbrrdva 5894 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  wss 3976  cop 4654   class class class wbr 5166  cmpt 5249   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  *cxr 11323  +crp 13057  [,)cico 13409  PsMetcpsmet 21371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-xadd 13176  df-psmet 21379
This theorem is referenced by:  metust  24592
  Copyright terms: Public domain W3C validator