| Step | Hyp | Ref
| Expression |
| 1 | | metust.1 |
. . . 4
⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| 2 | 1 | metustss 24564 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ (𝑋 × 𝑋)) |
| 3 | | cnvss 5883 |
. . . 4
⊢ (𝐴 ⊆ (𝑋 × 𝑋) → ◡𝐴 ⊆ ◡(𝑋 × 𝑋)) |
| 4 | | cnvxp 6177 |
. . . 4
⊢ ◡(𝑋 × 𝑋) = (𝑋 × 𝑋) |
| 5 | 3, 4 | sseqtrdi 4024 |
. . 3
⊢ (𝐴 ⊆ (𝑋 × 𝑋) → ◡𝐴 ⊆ (𝑋 × 𝑋)) |
| 6 | 2, 5 | syl 17 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ◡𝐴 ⊆ (𝑋 × 𝑋)) |
| 7 | | simp-4l 783 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 𝐷 ∈ (PsMet‘𝑋)) |
| 8 | | simpr1r 1232 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ ((𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑎 ∈ ℝ+ ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) → 𝑞 ∈ 𝑋) |
| 9 | 8 | 3anassrs 1361 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 𝑞 ∈ 𝑋) |
| 10 | | simpr1l 1231 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ ((𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑎 ∈ ℝ+ ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) → 𝑝 ∈ 𝑋) |
| 11 | 10 | 3anassrs 1361 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 𝑝 ∈ 𝑋) |
| 12 | | psmetsym 24320 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑞 ∈ 𝑋 ∧ 𝑝 ∈ 𝑋) → (𝑞𝐷𝑝) = (𝑝𝐷𝑞)) |
| 13 | 7, 9, 11, 12 | syl3anc 1373 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (𝑞𝐷𝑝) = (𝑝𝐷𝑞)) |
| 14 | | df-ov 7434 |
. . . . . . . . 9
⊢ (𝑞𝐷𝑝) = (𝐷‘〈𝑞, 𝑝〉) |
| 15 | | df-ov 7434 |
. . . . . . . . 9
⊢ (𝑝𝐷𝑞) = (𝐷‘〈𝑝, 𝑞〉) |
| 16 | 13, 14, 15 | 3eqtr3g 2800 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (𝐷‘〈𝑞, 𝑝〉) = (𝐷‘〈𝑝, 𝑞〉)) |
| 17 | 16 | eleq1d 2826 |
. . . . . . 7
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → ((𝐷‘〈𝑞, 𝑝〉) ∈ (0[,)𝑎) ↔ (𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎))) |
| 18 | | psmetf 24316 |
. . . . . . . . 9
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 19 | | ffun 6739 |
. . . . . . . . 9
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun
𝐷) |
| 20 | 7, 18, 19 | 3syl 18 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → Fun 𝐷) |
| 21 | | simpllr 776 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) |
| 22 | 21 | ancomd 461 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (𝑞 ∈ 𝑋 ∧ 𝑝 ∈ 𝑋)) |
| 23 | | opelxpi 5722 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ 𝑋 ∧ 𝑝 ∈ 𝑋) → 〈𝑞, 𝑝〉 ∈ (𝑋 × 𝑋)) |
| 24 | 22, 23 | syl 17 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 〈𝑞, 𝑝〉 ∈ (𝑋 × 𝑋)) |
| 25 | | fdm 6745 |
. . . . . . . . . 10
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom
𝐷 = (𝑋 × 𝑋)) |
| 26 | 7, 18, 25 | 3syl 18 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → dom 𝐷 = (𝑋 × 𝑋)) |
| 27 | 24, 26 | eleqtrrd 2844 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 〈𝑞, 𝑝〉 ∈ dom 𝐷) |
| 28 | | fvimacnv 7073 |
. . . . . . . 8
⊢ ((Fun
𝐷 ∧ 〈𝑞, 𝑝〉 ∈ dom 𝐷) → ((𝐷‘〈𝑞, 𝑝〉) ∈ (0[,)𝑎) ↔ 〈𝑞, 𝑝〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
| 29 | 20, 27, 28 | syl2anc 584 |
. . . . . . 7
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → ((𝐷‘〈𝑞, 𝑝〉) ∈ (0[,)𝑎) ↔ 〈𝑞, 𝑝〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
| 30 | | opelxpi 5722 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) → 〈𝑝, 𝑞〉 ∈ (𝑋 × 𝑋)) |
| 31 | 21, 30 | syl 17 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 〈𝑝, 𝑞〉 ∈ (𝑋 × 𝑋)) |
| 32 | 31, 26 | eleqtrrd 2844 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 〈𝑝, 𝑞〉 ∈ dom 𝐷) |
| 33 | | fvimacnv 7073 |
. . . . . . . 8
⊢ ((Fun
𝐷 ∧ 〈𝑝, 𝑞〉 ∈ dom 𝐷) → ((𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎) ↔ 〈𝑝, 𝑞〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
| 34 | 20, 32, 33 | syl2anc 584 |
. . . . . . 7
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → ((𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎) ↔ 〈𝑝, 𝑞〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
| 35 | 17, 29, 34 | 3bitr3d 309 |
. . . . . 6
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (〈𝑞, 𝑝〉 ∈ (◡𝐷 “ (0[,)𝑎)) ↔ 〈𝑝, 𝑞〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
| 36 | | simpr 484 |
. . . . . . 7
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
| 37 | 36 | eleq2d 2827 |
. . . . . 6
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (〈𝑞, 𝑝〉 ∈ 𝐴 ↔ 〈𝑞, 𝑝〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
| 38 | 36 | eleq2d 2827 |
. . . . . 6
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (〈𝑝, 𝑞〉 ∈ 𝐴 ↔ 〈𝑝, 𝑞〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
| 39 | 35, 37, 38 | 3bitr4d 311 |
. . . . 5
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (〈𝑞, 𝑝〉 ∈ 𝐴 ↔ 〈𝑝, 𝑞〉 ∈ 𝐴)) |
| 40 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑎 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| 41 | 40 | elrnmpt 5969 |
. . . . . . . 8
⊢ (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) → (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) |
| 42 | 41 | ibi 267 |
. . . . . . 7
⊢ (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) → ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
| 43 | 42, 1 | eleq2s 2859 |
. . . . . 6
⊢ (𝐴 ∈ 𝐹 → ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
| 44 | 43 | ad2antlr 727 |
. . . . 5
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
| 45 | 39, 44 | r19.29a 3162 |
. . . 4
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → (〈𝑞, 𝑝〉 ∈ 𝐴 ↔ 〈𝑝, 𝑞〉 ∈ 𝐴)) |
| 46 | | df-br 5144 |
. . . . 5
⊢ (𝑝◡𝐴𝑞 ↔ 〈𝑝, 𝑞〉 ∈ ◡𝐴) |
| 47 | | vex 3484 |
. . . . . 6
⊢ 𝑝 ∈ V |
| 48 | | vex 3484 |
. . . . . 6
⊢ 𝑞 ∈ V |
| 49 | 47, 48 | opelcnv 5892 |
. . . . 5
⊢
(〈𝑝, 𝑞〉 ∈ ◡𝐴 ↔ 〈𝑞, 𝑝〉 ∈ 𝐴) |
| 50 | 46, 49 | bitri 275 |
. . . 4
⊢ (𝑝◡𝐴𝑞 ↔ 〈𝑞, 𝑝〉 ∈ 𝐴) |
| 51 | | df-br 5144 |
. . . 4
⊢ (𝑝𝐴𝑞 ↔ 〈𝑝, 𝑞〉 ∈ 𝐴) |
| 52 | 45, 50, 51 | 3bitr4g 314 |
. . 3
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → (𝑝◡𝐴𝑞 ↔ 𝑝𝐴𝑞)) |
| 53 | 52 | 3impb 1115 |
. 2
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) → (𝑝◡𝐴𝑞 ↔ 𝑝𝐴𝑞)) |
| 54 | 6, 2, 53 | eqbrrdva 5880 |
1
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ◡𝐴 = 𝐴) |