Step | Hyp | Ref
| Expression |
1 | | metust.1 |
. . . 4
⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
2 | 1 | metustss 23613 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ (𝑋 × 𝑋)) |
3 | | cnvss 5770 |
. . . 4
⊢ (𝐴 ⊆ (𝑋 × 𝑋) → ◡𝐴 ⊆ ◡(𝑋 × 𝑋)) |
4 | | cnvxp 6049 |
. . . 4
⊢ ◡(𝑋 × 𝑋) = (𝑋 × 𝑋) |
5 | 3, 4 | sseqtrdi 3967 |
. . 3
⊢ (𝐴 ⊆ (𝑋 × 𝑋) → ◡𝐴 ⊆ (𝑋 × 𝑋)) |
6 | 2, 5 | syl 17 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ◡𝐴 ⊆ (𝑋 × 𝑋)) |
7 | | simp-4l 779 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 𝐷 ∈ (PsMet‘𝑋)) |
8 | | simpr1r 1229 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ ((𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑎 ∈ ℝ+ ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) → 𝑞 ∈ 𝑋) |
9 | 8 | 3anassrs 1358 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 𝑞 ∈ 𝑋) |
10 | | simpr1l 1228 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ ((𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑎 ∈ ℝ+ ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) → 𝑝 ∈ 𝑋) |
11 | 10 | 3anassrs 1358 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 𝑝 ∈ 𝑋) |
12 | | psmetsym 23371 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑞 ∈ 𝑋 ∧ 𝑝 ∈ 𝑋) → (𝑞𝐷𝑝) = (𝑝𝐷𝑞)) |
13 | 7, 9, 11, 12 | syl3anc 1369 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (𝑞𝐷𝑝) = (𝑝𝐷𝑞)) |
14 | | df-ov 7258 |
. . . . . . . . 9
⊢ (𝑞𝐷𝑝) = (𝐷‘〈𝑞, 𝑝〉) |
15 | | df-ov 7258 |
. . . . . . . . 9
⊢ (𝑝𝐷𝑞) = (𝐷‘〈𝑝, 𝑞〉) |
16 | 13, 14, 15 | 3eqtr3g 2802 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (𝐷‘〈𝑞, 𝑝〉) = (𝐷‘〈𝑝, 𝑞〉)) |
17 | 16 | eleq1d 2823 |
. . . . . . 7
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → ((𝐷‘〈𝑞, 𝑝〉) ∈ (0[,)𝑎) ↔ (𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎))) |
18 | | psmetf 23367 |
. . . . . . . . 9
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
19 | | ffun 6587 |
. . . . . . . . 9
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun
𝐷) |
20 | 7, 18, 19 | 3syl 18 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → Fun 𝐷) |
21 | | simpllr 772 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) |
22 | 21 | ancomd 461 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (𝑞 ∈ 𝑋 ∧ 𝑝 ∈ 𝑋)) |
23 | | opelxpi 5617 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ 𝑋 ∧ 𝑝 ∈ 𝑋) → 〈𝑞, 𝑝〉 ∈ (𝑋 × 𝑋)) |
24 | 22, 23 | syl 17 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 〈𝑞, 𝑝〉 ∈ (𝑋 × 𝑋)) |
25 | | fdm 6593 |
. . . . . . . . . 10
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom
𝐷 = (𝑋 × 𝑋)) |
26 | 7, 18, 25 | 3syl 18 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → dom 𝐷 = (𝑋 × 𝑋)) |
27 | 24, 26 | eleqtrrd 2842 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 〈𝑞, 𝑝〉 ∈ dom 𝐷) |
28 | | fvimacnv 6912 |
. . . . . . . 8
⊢ ((Fun
𝐷 ∧ 〈𝑞, 𝑝〉 ∈ dom 𝐷) → ((𝐷‘〈𝑞, 𝑝〉) ∈ (0[,)𝑎) ↔ 〈𝑞, 𝑝〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
29 | 20, 27, 28 | syl2anc 583 |
. . . . . . 7
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → ((𝐷‘〈𝑞, 𝑝〉) ∈ (0[,)𝑎) ↔ 〈𝑞, 𝑝〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
30 | | opelxpi 5617 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) → 〈𝑝, 𝑞〉 ∈ (𝑋 × 𝑋)) |
31 | 21, 30 | syl 17 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 〈𝑝, 𝑞〉 ∈ (𝑋 × 𝑋)) |
32 | 31, 26 | eleqtrrd 2842 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 〈𝑝, 𝑞〉 ∈ dom 𝐷) |
33 | | fvimacnv 6912 |
. . . . . . . 8
⊢ ((Fun
𝐷 ∧ 〈𝑝, 𝑞〉 ∈ dom 𝐷) → ((𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎) ↔ 〈𝑝, 𝑞〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
34 | 20, 32, 33 | syl2anc 583 |
. . . . . . 7
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → ((𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎) ↔ 〈𝑝, 𝑞〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
35 | 17, 29, 34 | 3bitr3d 308 |
. . . . . 6
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (〈𝑞, 𝑝〉 ∈ (◡𝐷 “ (0[,)𝑎)) ↔ 〈𝑝, 𝑞〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
36 | | simpr 484 |
. . . . . . 7
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
37 | 36 | eleq2d 2824 |
. . . . . 6
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (〈𝑞, 𝑝〉 ∈ 𝐴 ↔ 〈𝑞, 𝑝〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
38 | 36 | eleq2d 2824 |
. . . . . 6
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (〈𝑝, 𝑞〉 ∈ 𝐴 ↔ 〈𝑝, 𝑞〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
39 | 35, 37, 38 | 3bitr4d 310 |
. . . . 5
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (〈𝑞, 𝑝〉 ∈ 𝐴 ↔ 〈𝑝, 𝑞〉 ∈ 𝐴)) |
40 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑎 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
41 | 40 | elrnmpt 5854 |
. . . . . . . 8
⊢ (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) → (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) |
42 | 41 | ibi 266 |
. . . . . . 7
⊢ (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) → ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
43 | 42, 1 | eleq2s 2857 |
. . . . . 6
⊢ (𝐴 ∈ 𝐹 → ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
44 | 43 | ad2antlr 723 |
. . . . 5
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
45 | 39, 44 | r19.29a 3217 |
. . . 4
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → (〈𝑞, 𝑝〉 ∈ 𝐴 ↔ 〈𝑝, 𝑞〉 ∈ 𝐴)) |
46 | | df-br 5071 |
. . . . 5
⊢ (𝑝◡𝐴𝑞 ↔ 〈𝑝, 𝑞〉 ∈ ◡𝐴) |
47 | | vex 3426 |
. . . . . 6
⊢ 𝑝 ∈ V |
48 | | vex 3426 |
. . . . . 6
⊢ 𝑞 ∈ V |
49 | 47, 48 | opelcnv 5779 |
. . . . 5
⊢
(〈𝑝, 𝑞〉 ∈ ◡𝐴 ↔ 〈𝑞, 𝑝〉 ∈ 𝐴) |
50 | 46, 49 | bitri 274 |
. . . 4
⊢ (𝑝◡𝐴𝑞 ↔ 〈𝑞, 𝑝〉 ∈ 𝐴) |
51 | | df-br 5071 |
. . . 4
⊢ (𝑝𝐴𝑞 ↔ 〈𝑝, 𝑞〉 ∈ 𝐴) |
52 | 45, 50, 51 | 3bitr4g 313 |
. . 3
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → (𝑝◡𝐴𝑞 ↔ 𝑝𝐴𝑞)) |
53 | 52 | 3impb 1113 |
. 2
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) → (𝑝◡𝐴𝑞 ↔ 𝑝𝐴𝑞)) |
54 | 6, 2, 53 | eqbrrdva 5767 |
1
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ◡𝐴 = 𝐴) |