MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustsym Structured version   Visualization version   GIF version

Theorem metustsym 24568
Description: Elements of the filter base generated by the metric 𝐷 are symmetric. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustsym ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 = 𝐴)
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustsym
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . 4 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21metustss 24564 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
3 cnvss 5883 . . . 4 (𝐴 ⊆ (𝑋 × 𝑋) → 𝐴(𝑋 × 𝑋))
4 cnvxp 6177 . . . 4 (𝑋 × 𝑋) = (𝑋 × 𝑋)
53, 4sseqtrdi 4024 . . 3 (𝐴 ⊆ (𝑋 × 𝑋) → 𝐴 ⊆ (𝑋 × 𝑋))
62, 5syl 17 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
7 simp-4l 783 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐷 ∈ (PsMet‘𝑋))
8 simpr1r 1232 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ((𝑝𝑋𝑞𝑋) ∧ 𝑎 ∈ ℝ+𝐴 = (𝐷 “ (0[,)𝑎)))) → 𝑞𝑋)
983anassrs 1361 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝑞𝑋)
10 simpr1l 1231 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ((𝑝𝑋𝑞𝑋) ∧ 𝑎 ∈ ℝ+𝐴 = (𝐷 “ (0[,)𝑎)))) → 𝑝𝑋)
11103anassrs 1361 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝑝𝑋)
12 psmetsym 24320 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑞𝑋𝑝𝑋) → (𝑞𝐷𝑝) = (𝑝𝐷𝑞))
137, 9, 11, 12syl3anc 1373 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑞𝐷𝑝) = (𝑝𝐷𝑞))
14 df-ov 7434 . . . . . . . . 9 (𝑞𝐷𝑝) = (𝐷‘⟨𝑞, 𝑝⟩)
15 df-ov 7434 . . . . . . . . 9 (𝑝𝐷𝑞) = (𝐷‘⟨𝑝, 𝑞⟩)
1613, 14, 153eqtr3g 2800 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝐷‘⟨𝑞, 𝑝⟩) = (𝐷‘⟨𝑝, 𝑞⟩))
1716eleq1d 2826 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷‘⟨𝑞, 𝑝⟩) ∈ (0[,)𝑎) ↔ (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎)))
18 psmetf 24316 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
19 ffun 6739 . . . . . . . . 9 (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun 𝐷)
207, 18, 193syl 18 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → Fun 𝐷)
21 simpllr 776 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑝𝑋𝑞𝑋))
2221ancomd 461 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑞𝑋𝑝𝑋))
23 opelxpi 5722 . . . . . . . . . 10 ((𝑞𝑋𝑝𝑋) → ⟨𝑞, 𝑝⟩ ∈ (𝑋 × 𝑋))
2422, 23syl 17 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑞, 𝑝⟩ ∈ (𝑋 × 𝑋))
25 fdm 6745 . . . . . . . . . 10 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
267, 18, 253syl 18 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → dom 𝐷 = (𝑋 × 𝑋))
2724, 26eleqtrrd 2844 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑞, 𝑝⟩ ∈ dom 𝐷)
28 fvimacnv 7073 . . . . . . . 8 ((Fun 𝐷 ∧ ⟨𝑞, 𝑝⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑞, 𝑝⟩) ∈ (0[,)𝑎) ↔ ⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎))))
2920, 27, 28syl2anc 584 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷‘⟨𝑞, 𝑝⟩) ∈ (0[,)𝑎) ↔ ⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎))))
30 opelxpi 5722 . . . . . . . . . 10 ((𝑝𝑋𝑞𝑋) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
3121, 30syl 17 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
3231, 26eleqtrrd 2844 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ dom 𝐷)
33 fvimacnv 7073 . . . . . . . 8 ((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3420, 32, 33syl2anc 584 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3517, 29, 343bitr3d 309 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎)) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
36 simpr 484 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐴 = (𝐷 “ (0[,)𝑎)))
3736eleq2d 2827 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑞, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎))))
3836eleq2d 2827 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑝, 𝑞⟩ ∈ 𝐴 ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3935, 37, 383bitr4d 311 . . . . 5 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑞, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴))
40 eqid 2737 . . . . . . . . 9 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
4140elrnmpt 5969 . . . . . . . 8 (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4241ibi 267 . . . . . . 7 (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4342, 1eleq2s 2859 . . . . . 6 (𝐴𝐹 → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4443ad2antlr 727 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4539, 44r19.29a 3162 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) → (⟨𝑞, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴))
46 df-br 5144 . . . . 5 (𝑝𝐴𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴)
47 vex 3484 . . . . . 6 𝑝 ∈ V
48 vex 3484 . . . . . 6 𝑞 ∈ V
4947, 48opelcnv 5892 . . . . 5 (⟨𝑝, 𝑞⟩ ∈ 𝐴 ↔ ⟨𝑞, 𝑝⟩ ∈ 𝐴)
5046, 49bitri 275 . . . 4 (𝑝𝐴𝑞 ↔ ⟨𝑞, 𝑝⟩ ∈ 𝐴)
51 df-br 5144 . . . 4 (𝑝𝐴𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴)
5245, 50, 513bitr4g 314 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) → (𝑝𝐴𝑞𝑝𝐴𝑞))
53523impb 1115 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑝𝑋𝑞𝑋) → (𝑝𝐴𝑞𝑝𝐴𝑞))
546, 2, 53eqbrrdva 5880 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  wss 3951  cop 4632   class class class wbr 5143  cmpt 5225   × cxp 5683  ccnv 5684  dom cdm 5685  ran crn 5686  cima 5688  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  0cc0 11155  *cxr 11294  +crp 13034  [,)cico 13389  PsMetcpsmet 21348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-xadd 13155  df-psmet 21356
This theorem is referenced by:  metust  24571
  Copyright terms: Public domain W3C validator