MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustsym Structured version   Visualization version   GIF version

Theorem metustsym 24450
Description: Elements of the filter base generated by the metric 𝐷 are symmetric. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustsym ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 = 𝐴)
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustsym
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . 4 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21metustss 24446 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
3 cnvss 5839 . . . 4 (𝐴 ⊆ (𝑋 × 𝑋) → 𝐴(𝑋 × 𝑋))
4 cnvxp 6133 . . . 4 (𝑋 × 𝑋) = (𝑋 × 𝑋)
53, 4sseqtrdi 3990 . . 3 (𝐴 ⊆ (𝑋 × 𝑋) → 𝐴 ⊆ (𝑋 × 𝑋))
62, 5syl 17 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
7 simp-4l 782 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐷 ∈ (PsMet‘𝑋))
8 simpr1r 1232 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ((𝑝𝑋𝑞𝑋) ∧ 𝑎 ∈ ℝ+𝐴 = (𝐷 “ (0[,)𝑎)))) → 𝑞𝑋)
983anassrs 1361 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝑞𝑋)
10 simpr1l 1231 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ((𝑝𝑋𝑞𝑋) ∧ 𝑎 ∈ ℝ+𝐴 = (𝐷 “ (0[,)𝑎)))) → 𝑝𝑋)
11103anassrs 1361 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝑝𝑋)
12 psmetsym 24205 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑞𝑋𝑝𝑋) → (𝑞𝐷𝑝) = (𝑝𝐷𝑞))
137, 9, 11, 12syl3anc 1373 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑞𝐷𝑝) = (𝑝𝐷𝑞))
14 df-ov 7393 . . . . . . . . 9 (𝑞𝐷𝑝) = (𝐷‘⟨𝑞, 𝑝⟩)
15 df-ov 7393 . . . . . . . . 9 (𝑝𝐷𝑞) = (𝐷‘⟨𝑝, 𝑞⟩)
1613, 14, 153eqtr3g 2788 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝐷‘⟨𝑞, 𝑝⟩) = (𝐷‘⟨𝑝, 𝑞⟩))
1716eleq1d 2814 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷‘⟨𝑞, 𝑝⟩) ∈ (0[,)𝑎) ↔ (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎)))
18 psmetf 24201 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
19 ffun 6694 . . . . . . . . 9 (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun 𝐷)
207, 18, 193syl 18 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → Fun 𝐷)
21 simpllr 775 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑝𝑋𝑞𝑋))
2221ancomd 461 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑞𝑋𝑝𝑋))
23 opelxpi 5678 . . . . . . . . . 10 ((𝑞𝑋𝑝𝑋) → ⟨𝑞, 𝑝⟩ ∈ (𝑋 × 𝑋))
2422, 23syl 17 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑞, 𝑝⟩ ∈ (𝑋 × 𝑋))
25 fdm 6700 . . . . . . . . . 10 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
267, 18, 253syl 18 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → dom 𝐷 = (𝑋 × 𝑋))
2724, 26eleqtrrd 2832 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑞, 𝑝⟩ ∈ dom 𝐷)
28 fvimacnv 7028 . . . . . . . 8 ((Fun 𝐷 ∧ ⟨𝑞, 𝑝⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑞, 𝑝⟩) ∈ (0[,)𝑎) ↔ ⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎))))
2920, 27, 28syl2anc 584 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷‘⟨𝑞, 𝑝⟩) ∈ (0[,)𝑎) ↔ ⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎))))
30 opelxpi 5678 . . . . . . . . . 10 ((𝑝𝑋𝑞𝑋) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
3121, 30syl 17 . . . . . . . . 9 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
3231, 26eleqtrrd 2832 . . . . . . . 8 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ dom 𝐷)
33 fvimacnv 7028 . . . . . . . 8 ((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3420, 32, 33syl2anc 584 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3517, 29, 343bitr3d 309 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎)) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
36 simpr 484 . . . . . . 7 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐴 = (𝐷 “ (0[,)𝑎)))
3736eleq2d 2815 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑞, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑞, 𝑝⟩ ∈ (𝐷 “ (0[,)𝑎))))
3836eleq2d 2815 . . . . . 6 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑝, 𝑞⟩ ∈ 𝐴 ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3935, 37, 383bitr4d 311 . . . . 5 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑞, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴))
40 eqid 2730 . . . . . . . . 9 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
4140elrnmpt 5925 . . . . . . . 8 (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4241ibi 267 . . . . . . 7 (𝐴 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4342, 1eleq2s 2847 . . . . . 6 (𝐴𝐹 → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4443ad2antlr 727 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4539, 44r19.29a 3142 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) → (⟨𝑞, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴))
46 df-br 5111 . . . . 5 (𝑝𝐴𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴)
47 vex 3454 . . . . . 6 𝑝 ∈ V
48 vex 3454 . . . . . 6 𝑞 ∈ V
4947, 48opelcnv 5848 . . . . 5 (⟨𝑝, 𝑞⟩ ∈ 𝐴 ↔ ⟨𝑞, 𝑝⟩ ∈ 𝐴)
5046, 49bitri 275 . . . 4 (𝑝𝐴𝑞 ↔ ⟨𝑞, 𝑝⟩ ∈ 𝐴)
51 df-br 5111 . . . 4 (𝑝𝐴𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴)
5245, 50, 513bitr4g 314 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ (𝑝𝑋𝑞𝑋)) → (𝑝𝐴𝑞𝑝𝐴𝑞))
53523impb 1114 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑝𝑋𝑞𝑋) → (𝑝𝐴𝑞𝑝𝐴𝑞))
546, 2, 53eqbrrdva 5836 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  wss 3917  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  *cxr 11214  +crp 12958  [,)cico 13315  PsMetcpsmet 21255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-xadd 13080  df-psmet 21263
This theorem is referenced by:  metust  24453
  Copyright terms: Public domain W3C validator