![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqer | Structured version Visualization version GIF version |
Description: Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.) |
Ref | Expression |
---|---|
eqer.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
eqer.2 | ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵} |
Ref | Expression |
---|---|
eqer | ⊢ 𝑅 Er V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.2 | . . 3 ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵} | |
2 | 1 | relopabiv 5777 | . 2 ⊢ Rel 𝑅 |
3 | id 22 | . . . 4 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | |
4 | 3 | eqcomd 2743 | . . 3 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
5 | eqer.1 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
6 | 5, 1 | eqerlem 8683 | . . 3 ⊢ (𝑧𝑅𝑤 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
7 | 5, 1 | eqerlem 8683 | . . 3 ⊢ (𝑤𝑅𝑧 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
8 | 4, 6, 7 | 3imtr4i 292 | . 2 ⊢ (𝑧𝑅𝑤 → 𝑤𝑅𝑧) |
9 | eqtr 2760 | . . 3 ⊢ ((⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) | |
10 | 5, 1 | eqerlem 8683 | . . . 4 ⊢ (𝑤𝑅𝑣 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
11 | 6, 10 | anbi12i 628 | . . 3 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) ↔ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴)) |
12 | 5, 1 | eqerlem 8683 | . . 3 ⊢ (𝑧𝑅𝑣 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
13 | 9, 11, 12 | 3imtr4i 292 | . 2 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) → 𝑧𝑅𝑣) |
14 | vex 3450 | . . 3 ⊢ 𝑧 ∈ V | |
15 | eqid 2737 | . . . 4 ⊢ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 | |
16 | 5, 1 | eqerlem 8683 | . . . 4 ⊢ (𝑧𝑅𝑧 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
17 | 15, 16 | mpbir 230 | . . 3 ⊢ 𝑧𝑅𝑧 |
18 | 14, 17 | 2th 264 | . 2 ⊢ (𝑧 ∈ V ↔ 𝑧𝑅𝑧) |
19 | 2, 8, 13, 18 | iseri 8676 | 1 ⊢ 𝑅 Er V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3446 ⦋csb 3856 class class class wbr 5106 {copab 5168 Er wer 8646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-er 8649 |
This theorem is referenced by: ider 8685 frgpuplem 19555 fneer 34828 |
Copyright terms: Public domain | W3C validator |