MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqer Structured version   Visualization version   GIF version

Theorem eqer 8313
Description: Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.)
Hypotheses
Ref Expression
eqer.1 (𝑥 = 𝑦𝐴 = 𝐵)
eqer.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
Assertion
Ref Expression
eqer 𝑅 Er V
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem eqer
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqer.2 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
21relopabi 5687 . 2 Rel 𝑅
3 id 22 . . . 4 (𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
43eqcomd 2824 . . 3 (𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑤 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
5 eqer.1 . . . 4 (𝑥 = 𝑦𝐴 = 𝐵)
65, 1eqerlem 8312 . . 3 (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
75, 1eqerlem 8312 . . 3 (𝑤𝑅𝑧𝑤 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
84, 6, 73imtr4i 293 . 2 (𝑧𝑅𝑤𝑤𝑅𝑧)
9 eqtr 2838 . . 3 ((𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑤 / 𝑥𝐴 = 𝑣 / 𝑥𝐴) → 𝑧 / 𝑥𝐴 = 𝑣 / 𝑥𝐴)
105, 1eqerlem 8312 . . . 4 (𝑤𝑅𝑣𝑤 / 𝑥𝐴 = 𝑣 / 𝑥𝐴)
116, 10anbi12i 626 . . 3 ((𝑧𝑅𝑤𝑤𝑅𝑣) ↔ (𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑤 / 𝑥𝐴 = 𝑣 / 𝑥𝐴))
125, 1eqerlem 8312 . . 3 (𝑧𝑅𝑣𝑧 / 𝑥𝐴 = 𝑣 / 𝑥𝐴)
139, 11, 123imtr4i 293 . 2 ((𝑧𝑅𝑤𝑤𝑅𝑣) → 𝑧𝑅𝑣)
14 vex 3495 . . 3 𝑧 ∈ V
15 eqid 2818 . . . 4 𝑧 / 𝑥𝐴 = 𝑧 / 𝑥𝐴
165, 1eqerlem 8312 . . . 4 (𝑧𝑅𝑧𝑧 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
1715, 16mpbir 232 . . 3 𝑧𝑅𝑧
1814, 172th 265 . 2 (𝑧 ∈ V ↔ 𝑧𝑅𝑧)
192, 8, 13, 18iseri 8305 1 𝑅 Er V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  csb 3880   class class class wbr 5057  {copab 5119   Er wer 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-br 5058  df-opab 5120  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-er 8278
This theorem is referenced by:  ider  8314  frgpuplem  18827  fneer  33598
  Copyright terms: Public domain W3C validator