| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqer | Structured version Visualization version GIF version | ||
| Description: Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.) |
| Ref | Expression |
|---|---|
| eqer.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| eqer.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} |
| Ref | Expression |
|---|---|
| eqer | ⊢ 𝑅 Er V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqer.2 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} | |
| 2 | 1 | relopabiv 5786 | . 2 ⊢ Rel 𝑅 |
| 3 | id 22 | . . . 4 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | |
| 4 | 3 | eqcomd 2736 | . . 3 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
| 5 | eqer.1 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 6 | 5, 1 | eqerlem 8709 | . . 3 ⊢ (𝑧𝑅𝑤 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
| 7 | 5, 1 | eqerlem 8709 | . . 3 ⊢ (𝑤𝑅𝑧 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
| 8 | 4, 6, 7 | 3imtr4i 292 | . 2 ⊢ (𝑧𝑅𝑤 → 𝑤𝑅𝑧) |
| 9 | eqtr 2750 | . . 3 ⊢ ((⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) | |
| 10 | 5, 1 | eqerlem 8709 | . . . 4 ⊢ (𝑤𝑅𝑣 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
| 11 | 6, 10 | anbi12i 628 | . . 3 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) ↔ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴)) |
| 12 | 5, 1 | eqerlem 8709 | . . 3 ⊢ (𝑧𝑅𝑣 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
| 13 | 9, 11, 12 | 3imtr4i 292 | . 2 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) → 𝑧𝑅𝑣) |
| 14 | vex 3454 | . . 3 ⊢ 𝑧 ∈ V | |
| 15 | eqid 2730 | . . . 4 ⊢ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 | |
| 16 | 5, 1 | eqerlem 8709 | . . . 4 ⊢ (𝑧𝑅𝑧 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
| 17 | 15, 16 | mpbir 231 | . . 3 ⊢ 𝑧𝑅𝑧 |
| 18 | 14, 17 | 2th 264 | . 2 ⊢ (𝑧 ∈ V ↔ 𝑧𝑅𝑧) |
| 19 | 2, 8, 13, 18 | iseri 8701 | 1 ⊢ 𝑅 Er V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⦋csb 3865 class class class wbr 5110 {copab 5172 Er wer 8671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-er 8674 |
| This theorem is referenced by: ider 8711 frgpuplem 19709 fneer 36348 |
| Copyright terms: Public domain | W3C validator |