MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqer Structured version   Visualization version   GIF version

Theorem eqer 8491
Description: Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.)
Hypotheses
Ref Expression
eqer.1 (𝑥 = 𝑦𝐴 = 𝐵)
eqer.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
Assertion
Ref Expression
eqer 𝑅 Er V
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem eqer
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqer.2 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
21relopabiv 5719 . 2 Rel 𝑅
3 id 22 . . . 4 (𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
43eqcomd 2744 . . 3 (𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑤 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
5 eqer.1 . . . 4 (𝑥 = 𝑦𝐴 = 𝐵)
65, 1eqerlem 8490 . . 3 (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
75, 1eqerlem 8490 . . 3 (𝑤𝑅𝑧𝑤 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
84, 6, 73imtr4i 291 . 2 (𝑧𝑅𝑤𝑤𝑅𝑧)
9 eqtr 2761 . . 3 ((𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑤 / 𝑥𝐴 = 𝑣 / 𝑥𝐴) → 𝑧 / 𝑥𝐴 = 𝑣 / 𝑥𝐴)
105, 1eqerlem 8490 . . . 4 (𝑤𝑅𝑣𝑤 / 𝑥𝐴 = 𝑣 / 𝑥𝐴)
116, 10anbi12i 626 . . 3 ((𝑧𝑅𝑤𝑤𝑅𝑣) ↔ (𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑤 / 𝑥𝐴 = 𝑣 / 𝑥𝐴))
125, 1eqerlem 8490 . . 3 (𝑧𝑅𝑣𝑧 / 𝑥𝐴 = 𝑣 / 𝑥𝐴)
139, 11, 123imtr4i 291 . 2 ((𝑧𝑅𝑤𝑤𝑅𝑣) → 𝑧𝑅𝑣)
14 vex 3426 . . 3 𝑧 ∈ V
15 eqid 2738 . . . 4 𝑧 / 𝑥𝐴 = 𝑧 / 𝑥𝐴
165, 1eqerlem 8490 . . . 4 (𝑧𝑅𝑧𝑧 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
1715, 16mpbir 230 . . 3 𝑧𝑅𝑧
1814, 172th 263 . 2 (𝑧 ∈ V ↔ 𝑧𝑅𝑧)
192, 8, 13, 18iseri 8483 1 𝑅 Er V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  csb 3828   class class class wbr 5070  {copab 5132   Er wer 8453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-er 8456
This theorem is referenced by:  ider  8492  frgpuplem  19293  fneer  34469
  Copyright terms: Public domain W3C validator