| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqer | Structured version Visualization version GIF version | ||
| Description: Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.) |
| Ref | Expression |
|---|---|
| eqer.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| eqer.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} |
| Ref | Expression |
|---|---|
| eqer | ⊢ 𝑅 Er V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqer.2 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} | |
| 2 | 1 | relopabiv 5830 | . 2 ⊢ Rel 𝑅 |
| 3 | id 22 | . . . 4 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | |
| 4 | 3 | eqcomd 2743 | . . 3 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
| 5 | eqer.1 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 6 | 5, 1 | eqerlem 8780 | . . 3 ⊢ (𝑧𝑅𝑤 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
| 7 | 5, 1 | eqerlem 8780 | . . 3 ⊢ (𝑤𝑅𝑧 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
| 8 | 4, 6, 7 | 3imtr4i 292 | . 2 ⊢ (𝑧𝑅𝑤 → 𝑤𝑅𝑧) |
| 9 | eqtr 2760 | . . 3 ⊢ ((⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) | |
| 10 | 5, 1 | eqerlem 8780 | . . . 4 ⊢ (𝑤𝑅𝑣 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
| 11 | 6, 10 | anbi12i 628 | . . 3 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) ↔ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴)) |
| 12 | 5, 1 | eqerlem 8780 | . . 3 ⊢ (𝑧𝑅𝑣 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
| 13 | 9, 11, 12 | 3imtr4i 292 | . 2 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) → 𝑧𝑅𝑣) |
| 14 | vex 3484 | . . 3 ⊢ 𝑧 ∈ V | |
| 15 | eqid 2737 | . . . 4 ⊢ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 | |
| 16 | 5, 1 | eqerlem 8780 | . . . 4 ⊢ (𝑧𝑅𝑧 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
| 17 | 15, 16 | mpbir 231 | . . 3 ⊢ 𝑧𝑅𝑧 |
| 18 | 14, 17 | 2th 264 | . 2 ⊢ (𝑧 ∈ V ↔ 𝑧𝑅𝑧) |
| 19 | 2, 8, 13, 18 | iseri 8772 | 1 ⊢ 𝑅 Er V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ⦋csb 3899 class class class wbr 5143 {copab 5205 Er wer 8742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-er 8745 |
| This theorem is referenced by: ider 8782 frgpuplem 19790 fneer 36354 |
| Copyright terms: Public domain | W3C validator |