MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisumlem2 Structured version   Visualization version   GIF version

Theorem dchrisumlem2 27417
Description: Lemma for dchrisum 27419. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisum.2 (𝑛 = 𝑥𝐴 = 𝐵)
dchrisum.3 (𝜑𝑀 ∈ ℕ)
dchrisum.4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
dchrisum.5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
dchrisum.6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
dchrisum.7 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
dchrisum.9 (𝜑𝑅 ∈ ℝ)
dchrisum.10 (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) ≤ 𝑅)
dchrisumlem2.1 (𝜑𝑈 ∈ ℝ+)
dchrisumlem2.2 (𝜑𝑀𝑈)
dchrisumlem2.3 (𝜑𝑈 ≤ (𝐼 + 1))
dchrisumlem2.4 (𝜑𝐼 ∈ ℕ)
dchrisumlem2.5 (𝜑𝐽 ∈ (ℤ𝐼))
Assertion
Ref Expression
dchrisumlem2 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼))) ≤ ((2 · 𝑅) · 𝑈 / 𝑛𝐴))
Distinct variable groups:   𝑢,𝑛,𝑥   1 ,𝑛,𝑥   𝑛,𝐹,𝑢,𝑥   𝑛,𝐼,𝑢,𝑥   𝑛,𝐽,𝑢,𝑥   𝑥,𝐴   𝑛,𝑁,𝑢,𝑥   𝜑,𝑛,𝑢,𝑥   𝑅,𝑛,𝑢,𝑥   𝑈,𝑛,𝑢,𝑥   𝐵,𝑛   𝑛,𝑍,𝑥   𝐷,𝑛,𝑥   𝑛,𝐿,𝑢,𝑥   𝑛,𝑀,𝑢,𝑥   𝑛,𝑋,𝑢,𝑥
Allowed substitution hints:   𝐴(𝑢,𝑛)   𝐵(𝑥,𝑢)   𝐷(𝑢)   1 (𝑢)   𝐺(𝑥,𝑢,𝑛)   𝑍(𝑢)

Proof of Theorem dchrisumlem2
Dummy variables 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzodisj 13614 . . . . . . . . 9 ((1..^(𝐼 + 1)) ∩ ((𝐼 + 1)..^(𝐽 + 1))) = ∅
21a1i 11 . . . . . . . 8 (𝜑 → ((1..^(𝐼 + 1)) ∩ ((𝐼 + 1)..^(𝐽 + 1))) = ∅)
3 dchrisumlem2.4 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℕ)
43peano2nnd 12163 . . . . . . . . . . 11 (𝜑 → (𝐼 + 1) ∈ ℕ)
5 nnuz 12796 . . . . . . . . . . 11 ℕ = (ℤ‘1)
64, 5eleqtrdi 2838 . . . . . . . . . 10 (𝜑 → (𝐼 + 1) ∈ (ℤ‘1))
7 dchrisumlem2.5 . . . . . . . . . . 11 (𝜑𝐽 ∈ (ℤ𝐼))
8 eluzp1p1 12781 . . . . . . . . . . 11 (𝐽 ∈ (ℤ𝐼) → (𝐽 + 1) ∈ (ℤ‘(𝐼 + 1)))
97, 8syl 17 . . . . . . . . . 10 (𝜑 → (𝐽 + 1) ∈ (ℤ‘(𝐼 + 1)))
10 elfzuzb 13439 . . . . . . . . . 10 ((𝐼 + 1) ∈ (1...(𝐽 + 1)) ↔ ((𝐼 + 1) ∈ (ℤ‘1) ∧ (𝐽 + 1) ∈ (ℤ‘(𝐼 + 1))))
116, 9, 10sylanbrc 583 . . . . . . . . 9 (𝜑 → (𝐼 + 1) ∈ (1...(𝐽 + 1)))
12 fzosplit 13613 . . . . . . . . 9 ((𝐼 + 1) ∈ (1...(𝐽 + 1)) → (1..^(𝐽 + 1)) = ((1..^(𝐼 + 1)) ∪ ((𝐼 + 1)..^(𝐽 + 1))))
1311, 12syl 17 . . . . . . . 8 (𝜑 → (1..^(𝐽 + 1)) = ((1..^(𝐼 + 1)) ∪ ((𝐼 + 1)..^(𝐽 + 1))))
14 fzofi 13899 . . . . . . . . 9 (1..^(𝐽 + 1)) ∈ Fin
1514a1i 11 . . . . . . . 8 (𝜑 → (1..^(𝐽 + 1)) ∈ Fin)
16 elfzouz 13584 . . . . . . . . . 10 (𝑖 ∈ (1..^(𝐽 + 1)) → 𝑖 ∈ (ℤ‘1))
1716, 5eleqtrrdi 2839 . . . . . . . . 9 (𝑖 ∈ (1..^(𝐽 + 1)) → 𝑖 ∈ ℕ)
18 rpvmasum.g . . . . . . . . . . 11 𝐺 = (DChr‘𝑁)
19 rpvmasum.z . . . . . . . . . . 11 𝑍 = (ℤ/nℤ‘𝑁)
20 rpvmasum.d . . . . . . . . . . 11 𝐷 = (Base‘𝐺)
21 rpvmasum.l . . . . . . . . . . 11 𝐿 = (ℤRHom‘𝑍)
22 dchrisum.b . . . . . . . . . . . 12 (𝜑𝑋𝐷)
2322adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 𝑋𝐷)
24 nnz 12510 . . . . . . . . . . . 12 (𝑖 ∈ ℕ → 𝑖 ∈ ℤ)
2524adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
2618, 19, 20, 21, 23, 25dchrzrhcl 27172 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → (𝑋‘(𝐿𝑖)) ∈ ℂ)
27 rpvmasum.a . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
28 rpvmasum.1 . . . . . . . . . . . . . 14 1 = (0g𝐺)
29 dchrisum.n1 . . . . . . . . . . . . . 14 (𝜑𝑋1 )
30 dchrisum.2 . . . . . . . . . . . . . 14 (𝑛 = 𝑥𝐴 = 𝐵)
31 dchrisum.3 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ)
32 dchrisum.4 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
33 dchrisum.5 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
34 dchrisum.6 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
35 dchrisum.7 . . . . . . . . . . . . . 14 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
3619, 21, 27, 18, 20, 28, 22, 29, 30, 31, 32, 33, 34, 35dchrisumlema 27415 . . . . . . . . . . . . 13 (𝜑 → ((𝑖 ∈ ℝ+𝑖 / 𝑛𝐴 ∈ ℝ) ∧ (𝑖 ∈ (𝑀[,)+∞) → 0 ≤ 𝑖 / 𝑛𝐴)))
3736simpld 494 . . . . . . . . . . . 12 (𝜑 → (𝑖 ∈ ℝ+𝑖 / 𝑛𝐴 ∈ ℝ))
38 nnrp 12923 . . . . . . . . . . . 12 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ+)
3937, 38impel 505 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 𝑖 / 𝑛𝐴 ∈ ℝ)
4039recnd 11162 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → 𝑖 / 𝑛𝐴 ∈ ℂ)
4126, 40mulcld 11154 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
4217, 41sylan2 593 . . . . . . . 8 ((𝜑𝑖 ∈ (1..^(𝐽 + 1))) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
432, 13, 15, 42fsumsplit 15666 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = (Σ𝑖 ∈ (1..^(𝐼 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)))
44 eluzelz 12763 . . . . . . . . 9 (𝐽 ∈ (ℤ𝐼) → 𝐽 ∈ ℤ)
45 fzval3 13655 . . . . . . . . 9 (𝐽 ∈ ℤ → (1...𝐽) = (1..^(𝐽 + 1)))
467, 44, 453syl 18 . . . . . . . 8 (𝜑 → (1...𝐽) = (1..^(𝐽 + 1)))
4746sumeq1d 15625 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...𝐽)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = Σ𝑖 ∈ (1..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
483nnzd 12516 . . . . . . . . . 10 (𝜑𝐼 ∈ ℤ)
49 fzval3 13655 . . . . . . . . . 10 (𝐼 ∈ ℤ → (1...𝐼) = (1..^(𝐼 + 1)))
5048, 49syl 17 . . . . . . . . 9 (𝜑 → (1...𝐼) = (1..^(𝐼 + 1)))
5150sumeq1d 15625 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = Σ𝑖 ∈ (1..^(𝐼 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
5251oveq1d 7368 . . . . . . 7 (𝜑 → (Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) = (Σ𝑖 ∈ (1..^(𝐼 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)))
5343, 47, 523eqtr4d 2774 . . . . . 6 (𝜑 → Σ𝑖 ∈ (1...𝐽)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = (Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)))
54 elfznn 13474 . . . . . . . 8 (𝑖 ∈ (1...𝐽) → 𝑖 ∈ ℕ)
55 simpr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
56 nfcv 2891 . . . . . . . . . 10 𝑛𝑖
57 nfcv 2891 . . . . . . . . . . 11 𝑛(𝑋‘(𝐿𝑖))
58 nfcv 2891 . . . . . . . . . . 11 𝑛 ·
59 nfcsb1v 3877 . . . . . . . . . . 11 𝑛𝑖 / 𝑛𝐴
6057, 58, 59nfov 7383 . . . . . . . . . 10 𝑛((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)
61 2fveq3 6831 . . . . . . . . . . 11 (𝑛 = 𝑖 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿𝑖)))
62 csbeq1a 3867 . . . . . . . . . . 11 (𝑛 = 𝑖𝐴 = 𝑖 / 𝑛𝐴)
6361, 62oveq12d 7371 . . . . . . . . . 10 (𝑛 = 𝑖 → ((𝑋‘(𝐿𝑛)) · 𝐴) = ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
6456, 60, 63, 35fvmptf 6955 . . . . . . . . 9 ((𝑖 ∈ ℕ ∧ ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ) → (𝐹𝑖) = ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
6555, 41, 64syl2anc 584 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) = ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
6654, 65sylan2 593 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝐽)) → (𝐹𝑖) = ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
673, 5eleqtrdi 2838 . . . . . . . 8 (𝜑𝐼 ∈ (ℤ‘1))
68 uztrn 12771 . . . . . . . 8 ((𝐽 ∈ (ℤ𝐼) ∧ 𝐼 ∈ (ℤ‘1)) → 𝐽 ∈ (ℤ‘1))
697, 67, 68syl2anc 584 . . . . . . 7 (𝜑𝐽 ∈ (ℤ‘1))
7054, 41sylan2 593 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝐽)) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
7166, 69, 70fsumser 15655 . . . . . 6 (𝜑 → Σ𝑖 ∈ (1...𝐽)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = (seq1( + , 𝐹)‘𝐽))
7253, 71eqtr3d 2766 . . . . 5 (𝜑 → (Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) = (seq1( + , 𝐹)‘𝐽))
73 elfznn 13474 . . . . . . 7 (𝑖 ∈ (1...𝐼) → 𝑖 ∈ ℕ)
7473, 65sylan2 593 . . . . . 6 ((𝜑𝑖 ∈ (1...𝐼)) → (𝐹𝑖) = ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
7573, 41sylan2 593 . . . . . 6 ((𝜑𝑖 ∈ (1...𝐼)) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
7674, 67, 75fsumser 15655 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = (seq1( + , 𝐹)‘𝐼))
7772, 76oveq12d 7371 . . . 4 (𝜑 → ((Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) − Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) = ((seq1( + , 𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼)))
78 fzfid 13898 . . . . . 6 (𝜑 → (1...𝐼) ∈ Fin)
7978, 75fsumcl 15658 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
80 fzofi 13899 . . . . . . 7 ((𝐼 + 1)..^(𝐽 + 1)) ∈ Fin
8180a1i 11 . . . . . 6 (𝜑 → ((𝐼 + 1)..^(𝐽 + 1)) ∈ Fin)
82 ssun2 4132 . . . . . . . . 9 ((𝐼 + 1)..^(𝐽 + 1)) ⊆ ((1..^(𝐼 + 1)) ∪ ((𝐼 + 1)..^(𝐽 + 1)))
8382, 13sseqtrrid 3981 . . . . . . . 8 (𝜑 → ((𝐼 + 1)..^(𝐽 + 1)) ⊆ (1..^(𝐽 + 1)))
8483sselda 3937 . . . . . . 7 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 𝑖 ∈ (1..^(𝐽 + 1)))
8584, 42syldan 591 . . . . . 6 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
8681, 85fsumcl 15658 . . . . 5 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) ∈ ℂ)
8779, 86pncan2d 11495 . . . 4 (𝜑 → ((Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) − Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) = Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
8877, 87eqtr3d 2766 . . 3 (𝜑 → ((seq1( + , 𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼)) = Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴))
8988fveq2d 6830 . 2 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼))) = (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)))
9086abscld 15364 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) ∈ ℝ)
91 2re 12220 . . . . . 6 2 ∈ ℝ
9291a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
93 dchrisum.9 . . . . 5 (𝜑𝑅 ∈ ℝ)
9492, 93remulcld 11164 . . . 4 (𝜑 → (2 · 𝑅) ∈ ℝ)
9539ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑖 ∈ ℕ 𝑖 / 𝑛𝐴 ∈ ℝ)
96 csbeq1 3856 . . . . . . 7 (𝑖 = (𝐼 + 1) → 𝑖 / 𝑛𝐴 = (𝐼 + 1) / 𝑛𝐴)
9796eleq1d 2813 . . . . . 6 (𝑖 = (𝐼 + 1) → (𝑖 / 𝑛𝐴 ∈ ℝ ↔ (𝐼 + 1) / 𝑛𝐴 ∈ ℝ))
9897rspcv 3575 . . . . 5 ((𝐼 + 1) ∈ ℕ → (∀𝑖 ∈ ℕ 𝑖 / 𝑛𝐴 ∈ ℝ → (𝐼 + 1) / 𝑛𝐴 ∈ ℝ))
994, 95, 98sylc 65 . . . 4 (𝜑(𝐼 + 1) / 𝑛𝐴 ∈ ℝ)
10094, 99remulcld 11164 . . 3 (𝜑 → ((2 · 𝑅) · (𝐼 + 1) / 𝑛𝐴) ∈ ℝ)
101 dchrisumlem2.1 . . . . 5 (𝜑𝑈 ∈ ℝ+)
10232ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
103 nfcsb1v 3877 . . . . . . 7 𝑛𝑈 / 𝑛𝐴
104103nfel1 2908 . . . . . 6 𝑛𝑈 / 𝑛𝐴 ∈ ℝ
105 csbeq1a 3867 . . . . . . 7 (𝑛 = 𝑈𝐴 = 𝑈 / 𝑛𝐴)
106105eleq1d 2813 . . . . . 6 (𝑛 = 𝑈 → (𝐴 ∈ ℝ ↔ 𝑈 / 𝑛𝐴 ∈ ℝ))
107104, 106rspc 3567 . . . . 5 (𝑈 ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → 𝑈 / 𝑛𝐴 ∈ ℝ))
108101, 102, 107sylc 65 . . . 4 (𝜑𝑈 / 𝑛𝐴 ∈ ℝ)
10994, 108remulcld 11164 . . 3 (𝜑 → ((2 · 𝑅) · 𝑈 / 𝑛𝐴) ∈ ℝ)
11069, 5eleqtrrdi 2839 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℕ)
111110peano2nnd 12163 . . . . . . . . . . 11 (𝜑 → (𝐽 + 1) ∈ ℕ)
112111nnrpd 12953 . . . . . . . . . 10 (𝜑 → (𝐽 + 1) ∈ ℝ+)
11319, 21, 27, 18, 20, 28, 22, 29, 30, 31, 32, 33, 34, 35dchrisumlema 27415 . . . . . . . . . . 11 (𝜑 → (((𝐽 + 1) ∈ ℝ+(𝐽 + 1) / 𝑛𝐴 ∈ ℝ) ∧ ((𝐽 + 1) ∈ (𝑀[,)+∞) → 0 ≤ (𝐽 + 1) / 𝑛𝐴)))
114113simpld 494 . . . . . . . . . 10 (𝜑 → ((𝐽 + 1) ∈ ℝ+(𝐽 + 1) / 𝑛𝐴 ∈ ℝ))
115112, 114mpd 15 . . . . . . . . 9 (𝜑(𝐽 + 1) / 𝑛𝐴 ∈ ℝ)
116115recnd 11162 . . . . . . . 8 (𝜑(𝐽 + 1) / 𝑛𝐴 ∈ ℂ)
117 fzofi 13899 . . . . . . . . . 10 (0..^(𝐽 + 1)) ∈ Fin
118117a1i 11 . . . . . . . . 9 (𝜑 → (0..^(𝐽 + 1)) ∈ Fin)
119 elfzoelz 13580 . . . . . . . . . 10 (𝑛 ∈ (0..^(𝐽 + 1)) → 𝑛 ∈ ℤ)
12022adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℤ) → 𝑋𝐷)
121 simpr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
12218, 19, 20, 21, 120, 121dchrzrhcl 27172 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℤ) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
123119, 122sylan2 593 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^(𝐽 + 1))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
124118, 123fsumcl 15658 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)) ∈ ℂ)
125116, 124mulcld 11154 . . . . . . 7 (𝜑 → ((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) ∈ ℂ)
12699recnd 11162 . . . . . . . 8 (𝜑(𝐼 + 1) / 𝑛𝐴 ∈ ℂ)
127 fzofi 13899 . . . . . . . . . 10 (0..^(𝐼 + 1)) ∈ Fin
128127a1i 11 . . . . . . . . 9 (𝜑 → (0..^(𝐼 + 1)) ∈ Fin)
129 elfzoelz 13580 . . . . . . . . . 10 (𝑛 ∈ (0..^(𝐼 + 1)) → 𝑛 ∈ ℤ)
130129, 122sylan2 593 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^(𝐼 + 1))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
131128, 130fsumcl 15658 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)) ∈ ℂ)
132126, 131mulcld 11154 . . . . . . 7 (𝜑 → ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))) ∈ ℂ)
133125, 132subcld 11493 . . . . . 6 (𝜑 → (((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) ∈ ℂ)
134133abscld 15364 . . . . 5 (𝜑 → (abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) ∈ ℝ)
13584, 17syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 𝑖 ∈ ℕ)
136 peano2nn 12158 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ → (𝑖 + 1) ∈ ℕ)
137136nnrpd 12953 . . . . . . . . . . . 12 (𝑖 ∈ ℕ → (𝑖 + 1) ∈ ℝ+)
138 nfcsb1v 3877 . . . . . . . . . . . . . . 15 𝑛(𝑖 + 1) / 𝑛𝐴
139138nfel1 2908 . . . . . . . . . . . . . 14 𝑛(𝑖 + 1) / 𝑛𝐴 ∈ ℝ
140 csbeq1a 3867 . . . . . . . . . . . . . . 15 (𝑛 = (𝑖 + 1) → 𝐴 = (𝑖 + 1) / 𝑛𝐴)
141140eleq1d 2813 . . . . . . . . . . . . . 14 (𝑛 = (𝑖 + 1) → (𝐴 ∈ ℝ ↔ (𝑖 + 1) / 𝑛𝐴 ∈ ℝ))
142139, 141rspc 3567 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → (𝑖 + 1) / 𝑛𝐴 ∈ ℝ))
143142impcom 407 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ ∧ (𝑖 + 1) ∈ ℝ+) → (𝑖 + 1) / 𝑛𝐴 ∈ ℝ)
144102, 137, 143syl2an 596 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → (𝑖 + 1) / 𝑛𝐴 ∈ ℝ)
145144, 39resubcld 11566 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → ((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) ∈ ℝ)
146145recnd 11162 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → ((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) ∈ ℂ)
147 fzofi 13899 . . . . . . . . . . . 12 (0..^(𝑖 + 1)) ∈ Fin
148147a1i 11 . . . . . . . . . . 11 (𝜑 → (0..^(𝑖 + 1)) ∈ Fin)
149 elfzoelz 13580 . . . . . . . . . . . 12 (𝑛 ∈ (0..^(𝑖 + 1)) → 𝑛 ∈ ℤ)
150149, 122sylan2 593 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^(𝑖 + 1))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
151148, 150fsumcl 15658 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) ∈ ℂ)
152151adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) ∈ ℂ)
153146, 152mulcld 11154 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))) ∈ ℂ)
154135, 153syldan 591 . . . . . . 7 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))) ∈ ℂ)
15581, 154fsumcl 15658 . . . . . 6 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))) ∈ ℂ)
156155abscld 15364 . . . . 5 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ∈ ℝ)
157134, 156readdcld 11163 . . . 4 (𝜑 → ((abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))) ∈ ℝ)
15826, 40mulcomd 11155 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = (𝑖 / 𝑛𝐴 · (𝑋‘(𝐿𝑖))))
159 nnnn0 12409 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℕ → 𝑖 ∈ ℕ0)
160159adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0)
161 nn0uz 12795 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
162160, 161eleqtrdi 2838 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘0))
163 elfzelz 13445 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0...𝑖) → 𝑛 ∈ ℤ)
164122adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
165163, 164sylan2 593 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℕ) ∧ 𝑛 ∈ (0...𝑖)) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
166162, 165, 61fzosump1 15677 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) = (Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)) + (𝑋‘(𝐿𝑖))))
167166oveq1d 7368 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) = ((Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)) + (𝑋‘(𝐿𝑖))) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))))
168 fzofi 13899 . . . . . . . . . . . . . . 15 (0..^𝑖) ∈ Fin
169168a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ℕ) → (0..^𝑖) ∈ Fin)
170 elfzoelz 13580 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0..^𝑖) → 𝑛 ∈ ℤ)
171170, 164sylan2 593 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ ℕ) ∧ 𝑛 ∈ (0..^𝑖)) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
172169, 171fsumcl 15658 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)) ∈ ℂ)
173172, 26pncan2d 11495 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → ((Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)) + (𝑋‘(𝐿𝑖))) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) = (𝑋‘(𝐿𝑖)))
174167, 173eqtr2d 2765 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → (𝑋‘(𝐿𝑖)) = (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))))
175174oveq2d 7369 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → (𝑖 / 𝑛𝐴 · (𝑋‘(𝐿𝑖))) = (𝑖 / 𝑛𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))))
176158, 175eqtrd 2764 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = (𝑖 / 𝑛𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))))
177135, 176syldan 591 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = (𝑖 / 𝑛𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))))
178177sumeq2dv 15627 . . . . . . 7 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(𝑖 / 𝑛𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))))
179 csbeq1 3856 . . . . . . . . 9 (𝑘 = 𝑖𝑘 / 𝑛𝐴 = 𝑖 / 𝑛𝐴)
180 oveq2 7361 . . . . . . . . . 10 (𝑘 = 𝑖 → (0..^𝑘) = (0..^𝑖))
181180sumeq1d 15625 . . . . . . . . 9 (𝑘 = 𝑖 → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))
182179, 181jca 511 . . . . . . . 8 (𝑘 = 𝑖 → (𝑘 / 𝑛𝐴 = 𝑖 / 𝑛𝐴 ∧ Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))))
183 csbeq1 3856 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → 𝑘 / 𝑛𝐴 = (𝑖 + 1) / 𝑛𝐴)
184 oveq2 7361 . . . . . . . . . 10 (𝑘 = (𝑖 + 1) → (0..^𝑘) = (0..^(𝑖 + 1)))
185184sumeq1d 15625 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))
186183, 185jca 511 . . . . . . . 8 (𝑘 = (𝑖 + 1) → (𝑘 / 𝑛𝐴 = (𝑖 + 1) / 𝑛𝐴 ∧ Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))
187 csbeq1 3856 . . . . . . . . 9 (𝑘 = (𝐼 + 1) → 𝑘 / 𝑛𝐴 = (𝐼 + 1) / 𝑛𝐴)
188 oveq2 7361 . . . . . . . . . 10 (𝑘 = (𝐼 + 1) → (0..^𝑘) = (0..^(𝐼 + 1)))
189188sumeq1d 15625 . . . . . . . . 9 (𝑘 = (𝐼 + 1) → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))
190187, 189jca 511 . . . . . . . 8 (𝑘 = (𝐼 + 1) → (𝑘 / 𝑛𝐴 = (𝐼 + 1) / 𝑛𝐴 ∧ Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))
191 csbeq1 3856 . . . . . . . . 9 (𝑘 = (𝐽 + 1) → 𝑘 / 𝑛𝐴 = (𝐽 + 1) / 𝑛𝐴)
192 oveq2 7361 . . . . . . . . . 10 (𝑘 = (𝐽 + 1) → (0..^𝑘) = (0..^(𝐽 + 1)))
193192sumeq1d 15625 . . . . . . . . 9 (𝑘 = (𝐽 + 1) → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))
194191, 193jca 511 . . . . . . . 8 (𝑘 = (𝐽 + 1) → (𝑘 / 𝑛𝐴 = (𝐽 + 1) / 𝑛𝐴 ∧ Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))))
19540ralrimiva 3121 . . . . . . . . 9 (𝜑 → ∀𝑖 ∈ ℕ 𝑖 / 𝑛𝐴 ∈ ℂ)
196 elfzuz 13441 . . . . . . . . . 10 (𝑘 ∈ ((𝐼 + 1)...(𝐽 + 1)) → 𝑘 ∈ (ℤ‘(𝐼 + 1)))
197 eluznn 12837 . . . . . . . . . 10 (((𝐼 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝐼 + 1))) → 𝑘 ∈ ℕ)
1984, 196, 197syl2an 596 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 + 1))) → 𝑘 ∈ ℕ)
199 csbeq1 3856 . . . . . . . . . . 11 (𝑖 = 𝑘𝑖 / 𝑛𝐴 = 𝑘 / 𝑛𝐴)
200199eleq1d 2813 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑖 / 𝑛𝐴 ∈ ℂ ↔ 𝑘 / 𝑛𝐴 ∈ ℂ))
201200rspccva 3578 . . . . . . . . 9 ((∀𝑖 ∈ ℕ 𝑖 / 𝑛𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 ∈ ℂ)
202195, 198, 201syl2an2r 685 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 + 1))) → 𝑘 / 𝑛𝐴 ∈ ℂ)
203 fzofi 13899 . . . . . . . . . . 11 (0..^𝑘) ∈ Fin
204203a1i 11 . . . . . . . . . 10 (𝜑 → (0..^𝑘) ∈ Fin)
205 elfzoelz 13580 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑘) → 𝑛 ∈ ℤ)
206205, 122sylan2 593 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑘)) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
207204, 206fsumcl 15658 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) ∈ ℂ)
208207adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 + 1))) → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) ∈ ℂ)
209182, 186, 190, 194, 9, 202, 208fsumparts 15731 . . . . . . 7 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(𝑖 / 𝑛𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))) = ((((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) − Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))))
210178, 209eqtrd 2764 . . . . . 6 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴) = ((((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) − Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))))
211210fveq2d 6830 . . . . 5 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) = (abs‘((((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) − Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))))
212133, 155abs2dif2d 15386 . . . . 5 (𝜑 → (abs‘((((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) − Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))) ≤ ((abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))))
213211, 212eqbrtrd 5117 . . . 4 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) ≤ ((abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))))
214115, 99readdcld 11163 . . . . . . 7 (𝜑 → ((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) ∈ ℝ)
215214, 93remulcld 11164 . . . . . 6 (𝜑 → (((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) · 𝑅) ∈ ℝ)
216179, 183, 187, 191, 9, 202telfsumo 15727 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) = ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴))
217135, 39syldan 591 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 𝑖 / 𝑛𝐴 ∈ ℝ)
218135, 144syldan 591 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (𝑖 + 1) / 𝑛𝐴 ∈ ℝ)
219217, 218resubcld 11566 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) ∈ ℝ)
22081, 219fsumrecl 15659 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) ∈ ℝ)
221216, 220eqeltrrd 2829 . . . . . . 7 (𝜑 → ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) ∈ ℝ)
222221, 93remulcld 11164 . . . . . 6 (𝜑 → (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅) ∈ ℝ)
223125abscld 15364 . . . . . . . 8 (𝜑 → (abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) ∈ ℝ)
224132abscld 15364 . . . . . . . 8 (𝜑 → (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) ∈ ℝ)
225223, 224readdcld 11163 . . . . . . 7 (𝜑 → ((abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) + (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) ∈ ℝ)
226125, 132abs2dif2d 15386 . . . . . . 7 (𝜑 → (abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) ≤ ((abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) + (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))))
227115, 93remulcld 11164 . . . . . . . . 9 (𝜑 → ((𝐽 + 1) / 𝑛𝐴 · 𝑅) ∈ ℝ)
22899, 93remulcld 11164 . . . . . . . . 9 (𝜑 → ((𝐼 + 1) / 𝑛𝐴 · 𝑅) ∈ ℝ)
229116, 124absmuld 15382 . . . . . . . . . . 11 (𝜑 → (abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) = ((abs‘(𝐽 + 1) / 𝑛𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))))
230 eluzelre 12764 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℝ)
231230adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℝ)
232 eluzle 12766 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (ℤ𝑀) → 𝑀𝑖)
233232adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑀𝑖)
23431nnred 12161 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℝ)
235234adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
236 elicopnf 13366 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℝ → (𝑖 ∈ (𝑀[,)+∞) ↔ (𝑖 ∈ ℝ ∧ 𝑀𝑖)))
237235, 236syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑖 ∈ (𝑀[,)+∞) ↔ (𝑖 ∈ ℝ ∧ 𝑀𝑖)))
238231, 233, 237mpbir2and 713 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ (𝑀[,)+∞))
239238ex 412 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ (𝑀[,)+∞)))
240239ssrdv 3943 . . . . . . . . . . . . . . 15 (𝜑 → (ℤ𝑀) ⊆ (𝑀[,)+∞))
24131nnzd 12516 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℤ)
24248peano2zd 12601 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐼 + 1) ∈ ℤ)
243101rpred 12955 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ∈ ℝ)
2444nnred 12161 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼 + 1) ∈ ℝ)
245 dchrisumlem2.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀𝑈)
246 dchrisumlem2.3 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ≤ (𝐼 + 1))
247234, 243, 244, 245, 246letrd 11291 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ≤ (𝐼 + 1))
248 eluz2 12759 . . . . . . . . . . . . . . . . 17 ((𝐼 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝐼 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝐼 + 1)))
249241, 242, 247, 248syl3anbrc 1344 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐼 + 1) ∈ (ℤ𝑀))
250 uztrn 12771 . . . . . . . . . . . . . . . 16 (((𝐽 + 1) ∈ (ℤ‘(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (ℤ𝑀)) → (𝐽 + 1) ∈ (ℤ𝑀))
2519, 249, 250syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 + 1) ∈ (ℤ𝑀))
252240, 251sseldd 3938 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 + 1) ∈ (𝑀[,)+∞))
253113simprd 495 . . . . . . . . . . . . . 14 (𝜑 → ((𝐽 + 1) ∈ (𝑀[,)+∞) → 0 ≤ (𝐽 + 1) / 𝑛𝐴))
254252, 253mpd 15 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (𝐽 + 1) / 𝑛𝐴)
255115, 254absidd 15348 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐽 + 1) / 𝑛𝐴) = (𝐽 + 1) / 𝑛𝐴)
256255oveq1d 7368 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐽 + 1) / 𝑛𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) = ((𝐽 + 1) / 𝑛𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))))
257229, 256eqtrd 2764 . . . . . . . . . 10 (𝜑 → (abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) = ((𝐽 + 1) / 𝑛𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))))
258124abscld 15364 . . . . . . . . . . 11 (𝜑 → (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) ∈ ℝ)
259111nnnn0d 12463 . . . . . . . . . . . 12 (𝜑 → (𝐽 + 1) ∈ ℕ0)
260 dchrisum.10 . . . . . . . . . . . . 13 (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) ≤ 𝑅)
26119, 21, 27, 18, 20, 28, 22, 29, 30, 31, 32, 33, 34, 35, 93, 260dchrisumlem1 27416 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐽 + 1) ∈ ℕ0) → (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) ≤ 𝑅)
262259, 261mpdan 687 . . . . . . . . . . 11 (𝜑 → (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) ≤ 𝑅)
263258, 93, 115, 254, 262lemul2ad 12083 . . . . . . . . . 10 (𝜑 → ((𝐽 + 1) / 𝑛𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) ≤ ((𝐽 + 1) / 𝑛𝐴 · 𝑅))
264257, 263eqbrtrd 5117 . . . . . . . . 9 (𝜑 → (abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) ≤ ((𝐽 + 1) / 𝑛𝐴 · 𝑅))
265126, 131absmuld 15382 . . . . . . . . . . 11 (𝜑 → (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) = ((abs‘(𝐼 + 1) / 𝑛𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))))
266240, 249sseldd 3938 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 + 1) ∈ (𝑀[,)+∞))
26719, 21, 27, 18, 20, 28, 22, 29, 30, 31, 32, 33, 34, 35dchrisumlema 27415 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐼 + 1) ∈ ℝ+(𝐼 + 1) / 𝑛𝐴 ∈ ℝ) ∧ ((𝐼 + 1) ∈ (𝑀[,)+∞) → 0 ≤ (𝐼 + 1) / 𝑛𝐴)))
268267simprd 495 . . . . . . . . . . . . . 14 (𝜑 → ((𝐼 + 1) ∈ (𝑀[,)+∞) → 0 ≤ (𝐼 + 1) / 𝑛𝐴))
269266, 268mpd 15 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (𝐼 + 1) / 𝑛𝐴)
27099, 269absidd 15348 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐼 + 1) / 𝑛𝐴) = (𝐼 + 1) / 𝑛𝐴)
271270oveq1d 7368 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐼 + 1) / 𝑛𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) = ((𝐼 + 1) / 𝑛𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))))
272265, 271eqtrd 2764 . . . . . . . . . 10 (𝜑 → (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) = ((𝐼 + 1) / 𝑛𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))))
273131abscld 15364 . . . . . . . . . . 11 (𝜑 → (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))) ∈ ℝ)
2744nnnn0d 12463 . . . . . . . . . . . 12 (𝜑 → (𝐼 + 1) ∈ ℕ0)
27519, 21, 27, 18, 20, 28, 22, 29, 30, 31, 32, 33, 34, 35, 93, 260dchrisumlem1 27416 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐼 + 1) ∈ ℕ0) → (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))) ≤ 𝑅)
276274, 275mpdan 687 . . . . . . . . . . 11 (𝜑 → (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))) ≤ 𝑅)
277273, 93, 99, 269, 276lemul2ad 12083 . . . . . . . . . 10 (𝜑 → ((𝐼 + 1) / 𝑛𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) ≤ ((𝐼 + 1) / 𝑛𝐴 · 𝑅))
278272, 277eqbrtrd 5117 . . . . . . . . 9 (𝜑 → (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛)))) ≤ ((𝐼 + 1) / 𝑛𝐴 · 𝑅))
279223, 224, 227, 228, 264, 278le2addd 11757 . . . . . . . 8 (𝜑 → ((abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) + (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) ≤ (((𝐽 + 1) / 𝑛𝐴 · 𝑅) + ((𝐼 + 1) / 𝑛𝐴 · 𝑅)))
28093recnd 11162 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
281116, 126, 280adddird 11159 . . . . . . . 8 (𝜑 → (((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) · 𝑅) = (((𝐽 + 1) / 𝑛𝐴 · 𝑅) + ((𝐼 + 1) / 𝑛𝐴 · 𝑅)))
282279, 281breqtrrd 5123 . . . . . . 7 (𝜑 → ((abs‘((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛)))) + (abs‘((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) ≤ (((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) · 𝑅))
283134, 225, 215, 226, 282letrd 11291 . . . . . 6 (𝜑 → (abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) ≤ (((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) · 𝑅))
284154abscld 15364 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ∈ ℝ)
28581, 284fsumrecl 15659 . . . . . . 7 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ∈ ℝ)
28681, 154fsumabs 15726 . . . . . . 7 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ≤ Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))))
28793adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 𝑅 ∈ ℝ)
288219, 287remulcld 11164 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅) ∈ ℝ)
289135, 146syldan 591 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) ∈ ℂ)
290151adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)) ∈ ℂ)
291289, 290absmuld 15382 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) = ((abs‘((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴)) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))))
292 elfzouz 13584 . . . . . . . . . . . . . . 15 (𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1)) → 𝑖 ∈ (ℤ‘(𝐼 + 1)))
293 uztrn 12771 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (ℤ‘(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (ℤ𝑀)) → 𝑖 ∈ (ℤ𝑀))
294292, 249, 293syl2anr 597 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 𝑖 ∈ (ℤ𝑀))
295 eluznn 12837 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℕ)
29631, 295sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℕ)
297296, 137syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑖 + 1) ∈ ℝ+)
298296nnrpd 12953 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℝ+)
299333expia 1121 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+)) → ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
300299ralrimivva 3172 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
301300adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → ∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
302 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑛+
303 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑛(𝑀𝑖𝑖𝑥)
304 nfcv 2891 . . . . . . . . . . . . . . . . . . . 20 𝑛𝐵
305 nfcv 2891 . . . . . . . . . . . . . . . . . . . 20 𝑛
306304, 305, 59nfbr 5142 . . . . . . . . . . . . . . . . . . 19 𝑛 𝐵𝑖 / 𝑛𝐴
307303, 306nfim 1896 . . . . . . . . . . . . . . . . . 18 𝑛((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴)
308302, 307nfralw 3277 . . . . . . . . . . . . . . . . 17 𝑛𝑥 ∈ ℝ+ ((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴)
309 breq2 5099 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑖 → (𝑀𝑛𝑀𝑖))
310 breq1 5098 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑖 → (𝑛𝑥𝑖𝑥))
311309, 310anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → ((𝑀𝑛𝑛𝑥) ↔ (𝑀𝑖𝑖𝑥)))
31262breq2d 5107 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → (𝐵𝐴𝐵𝑖 / 𝑛𝐴))
313311, 312imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴)))
314313ralbidv 3152 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → (∀𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ∀𝑥 ∈ ℝ+ ((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴)))
315308, 314rspc 3567 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℝ+ → (∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) → ∀𝑥 ∈ ℝ+ ((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴)))
316298, 301, 315sylc 65 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → ∀𝑥 ∈ ℝ+ ((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴))
317231lep1d 12074 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ≤ (𝑖 + 1))
318233, 317jca 511 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑀𝑖𝑖 ≤ (𝑖 + 1)))
319 breq2 5099 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑖 + 1) → (𝑖𝑥𝑖 ≤ (𝑖 + 1)))
320319anbi2d 630 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑖 + 1) → ((𝑀𝑖𝑖𝑥) ↔ (𝑀𝑖𝑖 ≤ (𝑖 + 1))))
321 eqvisset 3458 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑖 + 1) → (𝑖 + 1) ∈ V)
322 eqtr3 2751 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = (𝑖 + 1) ∧ 𝑛 = (𝑖 + 1)) → 𝑥 = 𝑛)
32330equcoms 2020 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑛𝐴 = 𝐵)
324322, 323syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = (𝑖 + 1) ∧ 𝑛 = (𝑖 + 1)) → 𝐴 = 𝐵)
325321, 324csbied 3889 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑖 + 1) → (𝑖 + 1) / 𝑛𝐴 = 𝐵)
326325eqcomd 2735 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑖 + 1) → 𝐵 = (𝑖 + 1) / 𝑛𝐴)
327326breq1d 5105 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑖 + 1) → (𝐵𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴))
328320, 327imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑖 + 1) → (((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴) ↔ ((𝑀𝑖𝑖 ≤ (𝑖 + 1)) → (𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴)))
329328rspcv 3575 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ((𝑀𝑖𝑖𝑥) → 𝐵𝑖 / 𝑛𝐴) → ((𝑀𝑖𝑖 ≤ (𝑖 + 1)) → (𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴)))
330297, 316, 318, 329syl3c 66 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴)
331294, 330syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴)
332218, 217, 331abssuble0d 15360 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴)) = (𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴))
333332oveq1d 7368 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((abs‘((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴)) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) = ((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))))
334291, 333eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) = ((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))))
335290abscld 15364 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))) ∈ ℝ)
336217, 218subge0d 11728 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (0 ≤ (𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) ↔ (𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴))
337331, 336mpbird 257 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 0 ≤ (𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴))
338135peano2nnd 12163 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (𝑖 + 1) ∈ ℕ)
339338nnnn0d 12463 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (𝑖 + 1) ∈ ℕ0)
34019, 21, 27, 18, 20, 28, 22, 29, 30, 31, 32, 33, 34, 35, 93, 260dchrisumlem1 27416 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 + 1) ∈ ℕ0) → (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))) ≤ 𝑅)
341339, 340syldan 591 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))) ≤ 𝑅)
342335, 287, 219, 337, 341lemul2ad 12083 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ≤ ((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅))
343334, 342eqbrtrd 5117 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ≤ ((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅))
34481, 284, 288, 343fsumle 15724 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ≤ Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅))
345219recnd 11162 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) ∈ ℂ)
34681, 280, 345fsummulc1 15710 . . . . . . . . 9 (𝜑 → (Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅) = Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅))
347216oveq1d 7368 . . . . . . . . 9 (𝜑 → (Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅) = (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅))
348346, 347eqtr3d 2766 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑖 / 𝑛𝐴(𝑖 + 1) / 𝑛𝐴) · 𝑅) = (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅))
349344, 348breqtrd 5121 . . . . . . 7 (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(abs‘(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ≤ (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅))
350156, 285, 222, 286, 349letrd 11291 . . . . . 6 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛)))) ≤ (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅))
351134, 156, 215, 222, 283, 350le2addd 11757 . . . . 5 (𝜑 → ((abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))) ≤ ((((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) · 𝑅) + (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅)))
3521262timesd 12385 . . . . . . . 8 (𝜑 → (2 · (𝐼 + 1) / 𝑛𝐴) = ((𝐼 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴))
353126, 116, 126ppncand 11533 . . . . . . . 8 (𝜑 → (((𝐼 + 1) / 𝑛𝐴 + (𝐽 + 1) / 𝑛𝐴) + ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴)) = ((𝐼 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴))
354126, 116addcomd 11336 . . . . . . . . 9 (𝜑 → ((𝐼 + 1) / 𝑛𝐴 + (𝐽 + 1) / 𝑛𝐴) = ((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴))
355354oveq1d 7368 . . . . . . . 8 (𝜑 → (((𝐼 + 1) / 𝑛𝐴 + (𝐽 + 1) / 𝑛𝐴) + ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴)) = (((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) + ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴)))
356352, 353, 3553eqtr2d 2770 . . . . . . 7 (𝜑 → (2 · (𝐼 + 1) / 𝑛𝐴) = (((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) + ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴)))
357356oveq1d 7368 . . . . . 6 (𝜑 → ((2 · (𝐼 + 1) / 𝑛𝐴) · 𝑅) = ((((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) + ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴)) · 𝑅))
358 2cnd 12224 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
359358, 126, 280mul32d 11344 . . . . . 6 (𝜑 → ((2 · (𝐼 + 1) / 𝑛𝐴) · 𝑅) = ((2 · 𝑅) · (𝐼 + 1) / 𝑛𝐴))
360214recnd 11162 . . . . . . 7 (𝜑 → ((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) ∈ ℂ)
361221recnd 11162 . . . . . . 7 (𝜑 → ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) ∈ ℂ)
362360, 361, 280adddird 11159 . . . . . 6 (𝜑 → ((((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) + ((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴)) · 𝑅) = ((((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) · 𝑅) + (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅)))
363357, 359, 3623eqtr3d 2772 . . . . 5 (𝜑 → ((2 · 𝑅) · (𝐼 + 1) / 𝑛𝐴) = ((((𝐽 + 1) / 𝑛𝐴 + (𝐼 + 1) / 𝑛𝐴) · 𝑅) + (((𝐼 + 1) / 𝑛𝐴(𝐽 + 1) / 𝑛𝐴) · 𝑅)))
364351, 363breqtrrd 5123 . . . 4 (𝜑 → ((abs‘(((𝐽 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))) − ((𝐼 + 1) / 𝑛𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(((𝑖 + 1) / 𝑛𝐴𝑖 / 𝑛𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿𝑛))))) ≤ ((2 · 𝑅) · (𝐼 + 1) / 𝑛𝐴))
36590, 157, 100, 213, 364letrd 11291 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) ≤ ((2 · 𝑅) · (𝐼 + 1) / 𝑛𝐴))
366 2nn0 12419 . . . . . 6 2 ∈ ℕ0
367 nn0ge0 12427 . . . . . 6 (2 ∈ ℕ0 → 0 ≤ 2)
368366, 367mp1i 13 . . . . 5 (𝜑 → 0 ≤ 2)
369 0red 11137 . . . . . 6 (𝜑 → 0 ∈ ℝ)
370124absge0d 15372 . . . . . 6 (𝜑 → 0 ≤ (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿𝑛))))
371369, 258, 93, 370, 262letrd 11291 . . . . 5 (𝜑 → 0 ≤ 𝑅)
37292, 93, 368, 371mulge0d 11715 . . . 4 (𝜑 → 0 ≤ (2 · 𝑅))
3734nnrpd 12953 . . . . 5 (𝜑 → (𝐼 + 1) ∈ ℝ+)
374 nfv 1914 . . . . . . . . 9 𝑛(𝑀𝑈𝑈𝑥)
375304, 305, 103nfbr 5142 . . . . . . . . 9 𝑛 𝐵𝑈 / 𝑛𝐴
376374, 375nfim 1896 . . . . . . . 8 𝑛((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴)
377302, 376nfralw 3277 . . . . . . 7 𝑛𝑥 ∈ ℝ+ ((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴)
378 breq2 5099 . . . . . . . . . 10 (𝑛 = 𝑈 → (𝑀𝑛𝑀𝑈))
379 breq1 5098 . . . . . . . . . 10 (𝑛 = 𝑈 → (𝑛𝑥𝑈𝑥))
380378, 379anbi12d 632 . . . . . . . . 9 (𝑛 = 𝑈 → ((𝑀𝑛𝑛𝑥) ↔ (𝑀𝑈𝑈𝑥)))
381105breq2d 5107 . . . . . . . . 9 (𝑛 = 𝑈 → (𝐵𝐴𝐵𝑈 / 𝑛𝐴))
382380, 381imbi12d 344 . . . . . . . 8 (𝑛 = 𝑈 → (((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴)))
383382ralbidv 3152 . . . . . . 7 (𝑛 = 𝑈 → (∀𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ∀𝑥 ∈ ℝ+ ((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴)))
384377, 383rspc 3567 . . . . . 6 (𝑈 ∈ ℝ+ → (∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) → ∀𝑥 ∈ ℝ+ ((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴)))
385101, 300, 384sylc 65 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+ ((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴))
386245, 246jca 511 . . . . 5 (𝜑 → (𝑀𝑈𝑈 ≤ (𝐼 + 1)))
387 breq2 5099 . . . . . . . 8 (𝑥 = (𝐼 + 1) → (𝑈𝑥𝑈 ≤ (𝐼 + 1)))
388387anbi2d 630 . . . . . . 7 (𝑥 = (𝐼 + 1) → ((𝑀𝑈𝑈𝑥) ↔ (𝑀𝑈𝑈 ≤ (𝐼 + 1))))
389 eqvisset 3458 . . . . . . . . . 10 (𝑥 = (𝐼 + 1) → (𝐼 + 1) ∈ V)
390 eqtr3 2751 . . . . . . . . . . 11 ((𝑥 = (𝐼 + 1) ∧ 𝑛 = (𝐼 + 1)) → 𝑥 = 𝑛)
391390, 323syl 17 . . . . . . . . . 10 ((𝑥 = (𝐼 + 1) ∧ 𝑛 = (𝐼 + 1)) → 𝐴 = 𝐵)
392389, 391csbied 3889 . . . . . . . . 9 (𝑥 = (𝐼 + 1) → (𝐼 + 1) / 𝑛𝐴 = 𝐵)
393392eqcomd 2735 . . . . . . . 8 (𝑥 = (𝐼 + 1) → 𝐵 = (𝐼 + 1) / 𝑛𝐴)
394393breq1d 5105 . . . . . . 7 (𝑥 = (𝐼 + 1) → (𝐵𝑈 / 𝑛𝐴(𝐼 + 1) / 𝑛𝐴𝑈 / 𝑛𝐴))
395388, 394imbi12d 344 . . . . . 6 (𝑥 = (𝐼 + 1) → (((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴) ↔ ((𝑀𝑈𝑈 ≤ (𝐼 + 1)) → (𝐼 + 1) / 𝑛𝐴𝑈 / 𝑛𝐴)))
396395rspcv 3575 . . . . 5 ((𝐼 + 1) ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ((𝑀𝑈𝑈𝑥) → 𝐵𝑈 / 𝑛𝐴) → ((𝑀𝑈𝑈 ≤ (𝐼 + 1)) → (𝐼 + 1) / 𝑛𝐴𝑈 / 𝑛𝐴)))
397373, 385, 386, 396syl3c 66 . . . 4 (𝜑(𝐼 + 1) / 𝑛𝐴𝑈 / 𝑛𝐴)
39899, 108, 94, 372, 397lemul2ad 12083 . . 3 (𝜑 → ((2 · 𝑅) · (𝐼 + 1) / 𝑛𝐴) ≤ ((2 · 𝑅) · 𝑈 / 𝑛𝐴))
39990, 100, 109, 365, 398letrd 11291 . 2 (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿𝑖)) · 𝑖 / 𝑛𝐴)) ≤ ((2 · 𝑅) · 𝑈 / 𝑛𝐴))
40089, 399eqbrtrd 5117 1 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼))) ≤ ((2 · 𝑅) · 𝑈 / 𝑛𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3438  csb 3853  cun 3903  cin 3904  c0 4286   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  +∞cpnf 11165  cle 11169  cmin 11365  cn 12146  2c2 12201  0cn0 12402  cz 12489  cuz 12753  +crp 12911  [,)cico 13268  ...cfz 13428  ..^cfzo 13575  seqcseq 13926  abscabs 15159  𝑟 crli 15410  Σcsu 15611  Basecbs 17138  0gc0g 17361  ℤRHomczrh 21424  ℤ/nczn 21427  DChrcdchr 27159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-ico 13272  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-dvds 16182  df-gcd 16424  df-phi 16695  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17363  df-imas 17430  df-qus 17431  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-nsg 19021  df-eqg 19022  df-ghm 19110  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-lsp 20893  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-2idl 21175  df-cnfld 21280  df-zring 21372  df-zrh 21428  df-zn 21431  df-dchr 27160
This theorem is referenced by:  dchrisumlem3  27418
  Copyright terms: Public domain W3C validator