| Step | Hyp | Ref
| Expression |
| 1 | | fzodisj 13734 |
. . . . . . . . 9
⊢
((1..^(𝐼 + 1)) ∩
((𝐼 + 1)..^(𝐽 + 1))) =
∅ |
| 2 | 1 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ((1..^(𝐼 + 1)) ∩ ((𝐼 + 1)..^(𝐽 + 1))) = ∅) |
| 3 | | dchrisumlem2.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ∈ ℕ) |
| 4 | 3 | peano2nnd 12284 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐼 + 1) ∈ ℕ) |
| 5 | | nnuz 12922 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
| 6 | 4, 5 | eleqtrdi 2850 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼 + 1) ∈
(ℤ≥‘1)) |
| 7 | | dchrisumlem2.5 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (ℤ≥‘𝐼)) |
| 8 | | eluzp1p1 12907 |
. . . . . . . . . . 11
⊢ (𝐽 ∈
(ℤ≥‘𝐼) → (𝐽 + 1) ∈
(ℤ≥‘(𝐼 + 1))) |
| 9 | 7, 8 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽 + 1) ∈
(ℤ≥‘(𝐼 + 1))) |
| 10 | | elfzuzb 13559 |
. . . . . . . . . 10
⊢ ((𝐼 + 1) ∈ (1...(𝐽 + 1)) ↔ ((𝐼 + 1) ∈
(ℤ≥‘1) ∧ (𝐽 + 1) ∈
(ℤ≥‘(𝐼 + 1)))) |
| 11 | 6, 9, 10 | sylanbrc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼 + 1) ∈ (1...(𝐽 + 1))) |
| 12 | | fzosplit 13733 |
. . . . . . . . 9
⊢ ((𝐼 + 1) ∈ (1...(𝐽 + 1)) → (1..^(𝐽 + 1)) = ((1..^(𝐼 + 1)) ∪ ((𝐼 + 1)..^(𝐽 + 1)))) |
| 13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1..^(𝐽 + 1)) = ((1..^(𝐼 + 1)) ∪ ((𝐼 + 1)..^(𝐽 + 1)))) |
| 14 | | fzofi 14016 |
. . . . . . . . 9
⊢
(1..^(𝐽 + 1)) ∈
Fin |
| 15 | 14 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (1..^(𝐽 + 1)) ∈ Fin) |
| 16 | | elfzouz 13704 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1..^(𝐽 + 1)) → 𝑖 ∈
(ℤ≥‘1)) |
| 17 | 16, 5 | eleqtrrdi 2851 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1..^(𝐽 + 1)) → 𝑖 ∈ ℕ) |
| 18 | | rpvmasum.g |
. . . . . . . . . . 11
⊢ 𝐺 = (DChr‘𝑁) |
| 19 | | rpvmasum.z |
. . . . . . . . . . 11
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
| 20 | | rpvmasum.d |
. . . . . . . . . . 11
⊢ 𝐷 = (Base‘𝐺) |
| 21 | | rpvmasum.l |
. . . . . . . . . . 11
⊢ 𝐿 = (ℤRHom‘𝑍) |
| 22 | | dchrisum.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑋 ∈ 𝐷) |
| 24 | | nnz 12636 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℤ) |
| 25 | 24 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) |
| 26 | 18, 19, 20, 21, 23, 25 | dchrzrhcl 27290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑋‘(𝐿‘𝑖)) ∈ ℂ) |
| 27 | | rpvmasum.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 28 | | rpvmasum.1 |
. . . . . . . . . . . . . 14
⊢ 1 =
(0g‘𝐺) |
| 29 | | dchrisum.n1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ≠ 1 ) |
| 30 | | dchrisum.2 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) |
| 31 | | dchrisum.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 32 | | dchrisum.4 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈
ℝ) |
| 33 | | dchrisum.5 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) |
| 34 | | dchrisum.6 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟
0) |
| 35 | | dchrisum.7 |
. . . . . . . . . . . . . 14
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) |
| 36 | 19, 21, 27, 18, 20, 28, 22, 29, 30, 31, 32, 33, 34, 35 | dchrisumlema 27533 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑖 ∈ ℝ+ →
⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ) ∧ (𝑖 ∈ (𝑀[,)+∞) → 0 ≤
⦋𝑖 / 𝑛⦌𝐴))) |
| 37 | 36 | simpld 494 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑖 ∈ ℝ+ →
⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ)) |
| 38 | | nnrp 13047 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℝ+) |
| 39 | 37, 38 | impel 505 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ) |
| 40 | 39 | recnd 11290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ⦋𝑖 / 𝑛⦌𝐴 ∈ ℂ) |
| 41 | 26, 40 | mulcld 11282 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) ∈ ℂ) |
| 42 | 17, 41 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1..^(𝐽 + 1))) → ((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) ∈ ℂ) |
| 43 | 2, 13, 15, 42 | fsumsplit 15778 |
. . . . . . 7
⊢ (𝜑 → Σ𝑖 ∈ (1..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) = (Σ𝑖 ∈ (1..^(𝐼 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴))) |
| 44 | | eluzelz 12889 |
. . . . . . . . 9
⊢ (𝐽 ∈
(ℤ≥‘𝐼) → 𝐽 ∈ ℤ) |
| 45 | | fzval3 13774 |
. . . . . . . . 9
⊢ (𝐽 ∈ ℤ →
(1...𝐽) = (1..^(𝐽 + 1))) |
| 46 | 7, 44, 45 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (1...𝐽) = (1..^(𝐽 + 1))) |
| 47 | 46 | sumeq1d 15737 |
. . . . . . 7
⊢ (𝜑 → Σ𝑖 ∈ (1...𝐽)((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) = Σ𝑖 ∈ (1..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) |
| 48 | 3 | nnzd 12642 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ ℤ) |
| 49 | | fzval3 13774 |
. . . . . . . . . 10
⊢ (𝐼 ∈ ℤ →
(1...𝐼) = (1..^(𝐼 + 1))) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝐼) = (1..^(𝐼 + 1))) |
| 51 | 50 | sumeq1d 15737 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) = Σ𝑖 ∈ (1..^(𝐼 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) |
| 52 | 51 | oveq1d 7447 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) = (Σ𝑖 ∈ (1..^(𝐼 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴))) |
| 53 | 43, 47, 52 | 3eqtr4d 2786 |
. . . . . 6
⊢ (𝜑 → Σ𝑖 ∈ (1...𝐽)((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) = (Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴))) |
| 54 | | elfznn 13594 |
. . . . . . . 8
⊢ (𝑖 ∈ (1...𝐽) → 𝑖 ∈ ℕ) |
| 55 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) |
| 56 | | nfcv 2904 |
. . . . . . . . . 10
⊢
Ⅎ𝑛𝑖 |
| 57 | | nfcv 2904 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(𝑋‘(𝐿‘𝑖)) |
| 58 | | nfcv 2904 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛
· |
| 59 | | nfcsb1v 3922 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛⦋𝑖 / 𝑛⦌𝐴 |
| 60 | 57, 58, 59 | nfov 7462 |
. . . . . . . . . 10
⊢
Ⅎ𝑛((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) |
| 61 | | 2fveq3 6910 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑖 → (𝑋‘(𝐿‘𝑛)) = (𝑋‘(𝐿‘𝑖))) |
| 62 | | csbeq1a 3912 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑖 → 𝐴 = ⦋𝑖 / 𝑛⦌𝐴) |
| 63 | 61, 62 | oveq12d 7450 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑖 → ((𝑋‘(𝐿‘𝑛)) · 𝐴) = ((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) |
| 64 | 56, 60, 63, 35 | fvmptf 7036 |
. . . . . . . . 9
⊢ ((𝑖 ∈ ℕ ∧ ((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) ∈ ℂ) → (𝐹‘𝑖) = ((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) |
| 65 | 55, 41, 64 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) = ((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) |
| 66 | 54, 65 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝐽)) → (𝐹‘𝑖) = ((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) |
| 67 | 3, 5 | eleqtrdi 2850 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈
(ℤ≥‘1)) |
| 68 | | uztrn 12897 |
. . . . . . . 8
⊢ ((𝐽 ∈
(ℤ≥‘𝐼) ∧ 𝐼 ∈ (ℤ≥‘1))
→ 𝐽 ∈
(ℤ≥‘1)) |
| 69 | 7, 67, 68 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈
(ℤ≥‘1)) |
| 70 | 54, 41 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝐽)) → ((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) ∈ ℂ) |
| 71 | 66, 69, 70 | fsumser 15767 |
. . . . . 6
⊢ (𝜑 → Σ𝑖 ∈ (1...𝐽)((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) = (seq1( + , 𝐹)‘𝐽)) |
| 72 | 53, 71 | eqtr3d 2778 |
. . . . 5
⊢ (𝜑 → (Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) = (seq1( + , 𝐹)‘𝐽)) |
| 73 | | elfznn 13594 |
. . . . . . 7
⊢ (𝑖 ∈ (1...𝐼) → 𝑖 ∈ ℕ) |
| 74 | 73, 65 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝐼)) → (𝐹‘𝑖) = ((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) |
| 75 | 73, 41 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝐼)) → ((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) ∈ ℂ) |
| 76 | 74, 67, 75 | fsumser 15767 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) = (seq1( + , 𝐹)‘𝐼)) |
| 77 | 72, 76 | oveq12d 7450 |
. . . 4
⊢ (𝜑 → ((Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) − Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) = ((seq1( + , 𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼))) |
| 78 | | fzfid 14015 |
. . . . . 6
⊢ (𝜑 → (1...𝐼) ∈ Fin) |
| 79 | 78, 75 | fsumcl 15770 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) ∈ ℂ) |
| 80 | | fzofi 14016 |
. . . . . . 7
⊢ ((𝐼 + 1)..^(𝐽 + 1)) ∈ Fin |
| 81 | 80 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((𝐼 + 1)..^(𝐽 + 1)) ∈ Fin) |
| 82 | | ssun2 4178 |
. . . . . . . . 9
⊢ ((𝐼 + 1)..^(𝐽 + 1)) ⊆ ((1..^(𝐼 + 1)) ∪ ((𝐼 + 1)..^(𝐽 + 1))) |
| 83 | 82, 13 | sseqtrrid 4026 |
. . . . . . . 8
⊢ (𝜑 → ((𝐼 + 1)..^(𝐽 + 1)) ⊆ (1..^(𝐽 + 1))) |
| 84 | 83 | sselda 3982 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 𝑖 ∈ (1..^(𝐽 + 1))) |
| 85 | 84, 42 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) ∈ ℂ) |
| 86 | 81, 85 | fsumcl 15770 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) ∈ ℂ) |
| 87 | 79, 86 | pncan2d 11623 |
. . . 4
⊢ (𝜑 → ((Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) + Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) − Σ𝑖 ∈ (1...𝐼)((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) = Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) |
| 88 | 77, 87 | eqtr3d 2778 |
. . 3
⊢ (𝜑 → ((seq1( + , 𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼)) = Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) |
| 89 | 88 | fveq2d 6909 |
. 2
⊢ (𝜑 → (abs‘((seq1( + ,
𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼))) = (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴))) |
| 90 | 86 | abscld 15476 |
. . 3
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) ∈ ℝ) |
| 91 | | 2re 12341 |
. . . . . 6
⊢ 2 ∈
ℝ |
| 92 | 91 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℝ) |
| 93 | | dchrisum.9 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ℝ) |
| 94 | 92, 93 | remulcld 11292 |
. . . 4
⊢ (𝜑 → (2 · 𝑅) ∈
ℝ) |
| 95 | 39 | ralrimiva 3145 |
. . . . 5
⊢ (𝜑 → ∀𝑖 ∈ ℕ ⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ) |
| 96 | | csbeq1 3901 |
. . . . . . 7
⊢ (𝑖 = (𝐼 + 1) → ⦋𝑖 / 𝑛⦌𝐴 = ⦋(𝐼 + 1) / 𝑛⦌𝐴) |
| 97 | 96 | eleq1d 2825 |
. . . . . 6
⊢ (𝑖 = (𝐼 + 1) → (⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ ↔ ⦋(𝐼 + 1) / 𝑛⦌𝐴 ∈ ℝ)) |
| 98 | 97 | rspcv 3617 |
. . . . 5
⊢ ((𝐼 + 1) ∈ ℕ →
(∀𝑖 ∈ ℕ
⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ → ⦋(𝐼 + 1) / 𝑛⦌𝐴 ∈ ℝ)) |
| 99 | 4, 95, 98 | sylc 65 |
. . . 4
⊢ (𝜑 → ⦋(𝐼 + 1) / 𝑛⦌𝐴 ∈ ℝ) |
| 100 | 94, 99 | remulcld 11292 |
. . 3
⊢ (𝜑 → ((2 · 𝑅) · ⦋(𝐼 + 1) / 𝑛⦌𝐴) ∈ ℝ) |
| 101 | | dchrisumlem2.1 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈
ℝ+) |
| 102 | 32 | ralrimiva 3145 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ) |
| 103 | | nfcsb1v 3922 |
. . . . . . 7
⊢
Ⅎ𝑛⦋𝑈 / 𝑛⦌𝐴 |
| 104 | 103 | nfel1 2921 |
. . . . . 6
⊢
Ⅎ𝑛⦋𝑈 / 𝑛⦌𝐴 ∈ ℝ |
| 105 | | csbeq1a 3912 |
. . . . . . 7
⊢ (𝑛 = 𝑈 → 𝐴 = ⦋𝑈 / 𝑛⦌𝐴) |
| 106 | 105 | eleq1d 2825 |
. . . . . 6
⊢ (𝑛 = 𝑈 → (𝐴 ∈ ℝ ↔ ⦋𝑈 / 𝑛⦌𝐴 ∈ ℝ)) |
| 107 | 104, 106 | rspc 3609 |
. . . . 5
⊢ (𝑈 ∈ ℝ+
→ (∀𝑛 ∈
ℝ+ 𝐴
∈ ℝ → ⦋𝑈 / 𝑛⦌𝐴 ∈ ℝ)) |
| 108 | 101, 102,
107 | sylc 65 |
. . . 4
⊢ (𝜑 → ⦋𝑈 / 𝑛⦌𝐴 ∈ ℝ) |
| 109 | 94, 108 | remulcld 11292 |
. . 3
⊢ (𝜑 → ((2 · 𝑅) · ⦋𝑈 / 𝑛⦌𝐴) ∈ ℝ) |
| 110 | 69, 5 | eleqtrrdi 2851 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ ℕ) |
| 111 | 110 | peano2nnd 12284 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽 + 1) ∈ ℕ) |
| 112 | 111 | nnrpd 13076 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽 + 1) ∈
ℝ+) |
| 113 | 19, 21, 27, 18, 20, 28, 22, 29, 30, 31, 32, 33, 34, 35 | dchrisumlema 27533 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐽 + 1) ∈ ℝ+ →
⦋(𝐽 + 1) /
𝑛⦌𝐴 ∈ ℝ) ∧ ((𝐽 + 1) ∈ (𝑀[,)+∞) → 0 ≤
⦋(𝐽 + 1) /
𝑛⦌𝐴))) |
| 114 | 113 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐽 + 1) ∈ ℝ+ →
⦋(𝐽 + 1) /
𝑛⦌𝐴 ∈
ℝ)) |
| 115 | 112, 114 | mpd 15 |
. . . . . . . . 9
⊢ (𝜑 → ⦋(𝐽 + 1) / 𝑛⦌𝐴 ∈ ℝ) |
| 116 | 115 | recnd 11290 |
. . . . . . . 8
⊢ (𝜑 → ⦋(𝐽 + 1) / 𝑛⦌𝐴 ∈ ℂ) |
| 117 | | fzofi 14016 |
. . . . . . . . . 10
⊢
(0..^(𝐽 + 1)) ∈
Fin |
| 118 | 117 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (0..^(𝐽 + 1)) ∈ Fin) |
| 119 | | elfzoelz 13700 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (0..^(𝐽 + 1)) → 𝑛 ∈ ℤ) |
| 120 | 22 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → 𝑋 ∈ 𝐷) |
| 121 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) |
| 122 | 18, 19, 20, 21, 120, 121 | dchrzrhcl 27290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 123 | 119, 122 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^(𝐽 + 1))) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 124 | 118, 123 | fsumcl 15770 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 125 | 116, 124 | mulcld 11282 |
. . . . . . 7
⊢ (𝜑 → (⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) ∈ ℂ) |
| 126 | 99 | recnd 11290 |
. . . . . . . 8
⊢ (𝜑 → ⦋(𝐼 + 1) / 𝑛⦌𝐴 ∈ ℂ) |
| 127 | | fzofi 14016 |
. . . . . . . . . 10
⊢
(0..^(𝐼 + 1)) ∈
Fin |
| 128 | 127 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (0..^(𝐼 + 1)) ∈ Fin) |
| 129 | | elfzoelz 13700 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (0..^(𝐼 + 1)) → 𝑛 ∈ ℤ) |
| 130 | 129, 122 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^(𝐼 + 1))) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 131 | 128, 130 | fsumcl 15770 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 132 | 126, 131 | mulcld 11282 |
. . . . . . 7
⊢ (𝜑 → (⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))) ∈ ℂ) |
| 133 | 125, 132 | subcld 11621 |
. . . . . 6
⊢ (𝜑 → ((⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) − (⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛)))) ∈ ℂ) |
| 134 | 133 | abscld 15476 |
. . . . 5
⊢ (𝜑 →
(abs‘((⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) − (⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))))) ∈ ℝ) |
| 135 | 84, 17 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 𝑖 ∈ ℕ) |
| 136 | | peano2nn 12279 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ → (𝑖 + 1) ∈
ℕ) |
| 137 | 136 | nnrpd 13076 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ → (𝑖 + 1) ∈
ℝ+) |
| 138 | | nfcsb1v 3922 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛⦋(𝑖 + 1) / 𝑛⦌𝐴 |
| 139 | 138 | nfel1 2921 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛⦋(𝑖 + 1) / 𝑛⦌𝐴 ∈ ℝ |
| 140 | | csbeq1a 3912 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑖 + 1) → 𝐴 = ⦋(𝑖 + 1) / 𝑛⦌𝐴) |
| 141 | 140 | eleq1d 2825 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑖 + 1) → (𝐴 ∈ ℝ ↔ ⦋(𝑖 + 1) / 𝑛⦌𝐴 ∈ ℝ)) |
| 142 | 139, 141 | rspc 3609 |
. . . . . . . . . . . . 13
⊢ ((𝑖 + 1) ∈ ℝ+
→ (∀𝑛 ∈
ℝ+ 𝐴
∈ ℝ → ⦋(𝑖 + 1) / 𝑛⦌𝐴 ∈ ℝ)) |
| 143 | 142 | impcom 407 |
. . . . . . . . . . . 12
⊢
((∀𝑛 ∈
ℝ+ 𝐴
∈ ℝ ∧ (𝑖 +
1) ∈ ℝ+) → ⦋(𝑖 + 1) / 𝑛⦌𝐴 ∈ ℝ) |
| 144 | 102, 137,
143 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ⦋(𝑖 + 1) / 𝑛⦌𝐴 ∈ ℝ) |
| 145 | 144, 39 | resubcld 11692 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) →
(⦋(𝑖 + 1) /
𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) ∈ ℝ) |
| 146 | 145 | recnd 11290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) →
(⦋(𝑖 + 1) /
𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) ∈ ℂ) |
| 147 | | fzofi 14016 |
. . . . . . . . . . . 12
⊢
(0..^(𝑖 + 1)) ∈
Fin |
| 148 | 147 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (0..^(𝑖 + 1)) ∈ Fin) |
| 149 | | elfzoelz 13700 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (0..^(𝑖 + 1)) → 𝑛 ∈ ℤ) |
| 150 | 149, 122 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^(𝑖 + 1))) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 151 | 148, 150 | fsumcl 15770 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 152 | 151 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 153 | 146, 152 | mulcld 11282 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) →
((⦋(𝑖 + 1) /
𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))) ∈ ℂ) |
| 154 | 135, 153 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))) ∈ ℂ) |
| 155 | 81, 154 | fsumcl 15770 |
. . . . . 6
⊢ (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))) ∈ ℂ) |
| 156 | 155 | abscld 15476 |
. . . . 5
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))) ∈ ℝ) |
| 157 | 134, 156 | readdcld 11291 |
. . . 4
⊢ (𝜑 →
((abs‘((⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) − (⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))))) ∈ ℝ) |
| 158 | 26, 40 | mulcomd 11283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) = (⦋𝑖 / 𝑛⦌𝐴 · (𝑋‘(𝐿‘𝑖)))) |
| 159 | | nnnn0 12535 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℕ0) |
| 160 | 159 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0) |
| 161 | | nn0uz 12921 |
. . . . . . . . . . . . . . 15
⊢
ℕ0 = (ℤ≥‘0) |
| 162 | 160, 161 | eleqtrdi 2850 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈
(ℤ≥‘0)) |
| 163 | | elfzelz 13565 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (0...𝑖) → 𝑛 ∈ ℤ) |
| 164 | 122 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 165 | 163, 164 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (0...𝑖)) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 166 | 162, 165,
61 | fzosump1 15789 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)) = (Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛)) + (𝑋‘(𝐿‘𝑖)))) |
| 167 | 166 | oveq1d 7447 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) = ((Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛)) + (𝑋‘(𝐿‘𝑖))) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛)))) |
| 168 | | fzofi 14016 |
. . . . . . . . . . . . . . 15
⊢
(0..^𝑖) ∈
Fin |
| 169 | 168 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (0..^𝑖) ∈ Fin) |
| 170 | | elfzoelz 13700 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (0..^𝑖) → 𝑛 ∈ ℤ) |
| 171 | 170, 164 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑛 ∈ (0..^𝑖)) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 172 | 169, 171 | fsumcl 15770 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 173 | 172, 26 | pncan2d 11623 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛)) + (𝑋‘(𝐿‘𝑖))) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) = (𝑋‘(𝐿‘𝑖))) |
| 174 | 167, 173 | eqtr2d 2777 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑋‘(𝐿‘𝑖)) = (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛)))) |
| 175 | 174 | oveq2d 7448 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (⦋𝑖 / 𝑛⦌𝐴 · (𝑋‘(𝐿‘𝑖))) = (⦋𝑖 / 𝑛⦌𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))))) |
| 176 | 158, 175 | eqtrd 2776 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) = (⦋𝑖 / 𝑛⦌𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))))) |
| 177 | 135, 176 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) = (⦋𝑖 / 𝑛⦌𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))))) |
| 178 | 177 | sumeq2dv 15739 |
. . . . . . 7
⊢ (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) = Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(⦋𝑖 / 𝑛⦌𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))))) |
| 179 | | csbeq1 3901 |
. . . . . . . . 9
⊢ (𝑘 = 𝑖 → ⦋𝑘 / 𝑛⦌𝐴 = ⦋𝑖 / 𝑛⦌𝐴) |
| 180 | | oveq2 7440 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑖 → (0..^𝑘) = (0..^𝑖)) |
| 181 | 180 | sumeq1d 15737 |
. . . . . . . . 9
⊢ (𝑘 = 𝑖 → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿‘𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) |
| 182 | 179, 181 | jca 511 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → (⦋𝑘 / 𝑛⦌𝐴 = ⦋𝑖 / 𝑛⦌𝐴 ∧ Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿‘𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛)))) |
| 183 | | csbeq1 3901 |
. . . . . . . . 9
⊢ (𝑘 = (𝑖 + 1) → ⦋𝑘 / 𝑛⦌𝐴 = ⦋(𝑖 + 1) / 𝑛⦌𝐴) |
| 184 | | oveq2 7440 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑖 + 1) → (0..^𝑘) = (0..^(𝑖 + 1))) |
| 185 | 184 | sumeq1d 15737 |
. . . . . . . . 9
⊢ (𝑘 = (𝑖 + 1) → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿‘𝑛)) = Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))) |
| 186 | 183, 185 | jca 511 |
. . . . . . . 8
⊢ (𝑘 = (𝑖 + 1) → (⦋𝑘 / 𝑛⦌𝐴 = ⦋(𝑖 + 1) / 𝑛⦌𝐴 ∧ Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿‘𝑛)) = Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))) |
| 187 | | csbeq1 3901 |
. . . . . . . . 9
⊢ (𝑘 = (𝐼 + 1) → ⦋𝑘 / 𝑛⦌𝐴 = ⦋(𝐼 + 1) / 𝑛⦌𝐴) |
| 188 | | oveq2 7440 |
. . . . . . . . . 10
⊢ (𝑘 = (𝐼 + 1) → (0..^𝑘) = (0..^(𝐼 + 1))) |
| 189 | 188 | sumeq1d 15737 |
. . . . . . . . 9
⊢ (𝑘 = (𝐼 + 1) → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿‘𝑛)) = Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))) |
| 190 | 187, 189 | jca 511 |
. . . . . . . 8
⊢ (𝑘 = (𝐼 + 1) → (⦋𝑘 / 𝑛⦌𝐴 = ⦋(𝐼 + 1) / 𝑛⦌𝐴 ∧ Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿‘𝑛)) = Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛)))) |
| 191 | | csbeq1 3901 |
. . . . . . . . 9
⊢ (𝑘 = (𝐽 + 1) → ⦋𝑘 / 𝑛⦌𝐴 = ⦋(𝐽 + 1) / 𝑛⦌𝐴) |
| 192 | | oveq2 7440 |
. . . . . . . . . 10
⊢ (𝑘 = (𝐽 + 1) → (0..^𝑘) = (0..^(𝐽 + 1))) |
| 193 | 192 | sumeq1d 15737 |
. . . . . . . . 9
⊢ (𝑘 = (𝐽 + 1) → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿‘𝑛)) = Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) |
| 194 | 191, 193 | jca 511 |
. . . . . . . 8
⊢ (𝑘 = (𝐽 + 1) → (⦋𝑘 / 𝑛⦌𝐴 = ⦋(𝐽 + 1) / 𝑛⦌𝐴 ∧ Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿‘𝑛)) = Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛)))) |
| 195 | 40 | ralrimiva 3145 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑖 ∈ ℕ ⦋𝑖 / 𝑛⦌𝐴 ∈ ℂ) |
| 196 | | elfzuz 13561 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ((𝐼 + 1)...(𝐽 + 1)) → 𝑘 ∈ (ℤ≥‘(𝐼 + 1))) |
| 197 | | eluznn 12961 |
. . . . . . . . . 10
⊢ (((𝐼 + 1) ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝐼 + 1))) → 𝑘 ∈ ℕ) |
| 198 | 4, 196, 197 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐼 + 1)...(𝐽 + 1))) → 𝑘 ∈ ℕ) |
| 199 | | csbeq1 3901 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑘 → ⦋𝑖 / 𝑛⦌𝐴 = ⦋𝑘 / 𝑛⦌𝐴) |
| 200 | 199 | eleq1d 2825 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑘 → (⦋𝑖 / 𝑛⦌𝐴 ∈ ℂ ↔ ⦋𝑘 / 𝑛⦌𝐴 ∈ ℂ)) |
| 201 | 200 | rspccva 3620 |
. . . . . . . . 9
⊢
((∀𝑖 ∈
ℕ ⦋𝑖 /
𝑛⦌𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) →
⦋𝑘 / 𝑛⦌𝐴 ∈ ℂ) |
| 202 | 195, 198,
201 | syl2an2r 685 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐼 + 1)...(𝐽 + 1))) → ⦋𝑘 / 𝑛⦌𝐴 ∈ ℂ) |
| 203 | | fzofi 14016 |
. . . . . . . . . . 11
⊢
(0..^𝑘) ∈
Fin |
| 204 | 203 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (0..^𝑘) ∈ Fin) |
| 205 | | elfzoelz 13700 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (0..^𝑘) → 𝑛 ∈ ℤ) |
| 206 | 205, 122 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑘)) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 207 | 204, 206 | fsumcl 15770 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 208 | 207 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐼 + 1)...(𝐽 + 1))) → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 209 | 182, 186,
190, 194, 9, 202, 208 | fsumparts 15843 |
. . . . . . 7
⊢ (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(⦋𝑖 / 𝑛⦌𝐴 · (Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)) − Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛)))) = (((⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) − (⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛)))) − Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))))) |
| 210 | 178, 209 | eqtrd 2776 |
. . . . . 6
⊢ (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴) = (((⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) − (⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛)))) − Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))))) |
| 211 | 210 | fveq2d 6909 |
. . . . 5
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) = (abs‘(((⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) − (⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛)))) − Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))))) |
| 212 | 133, 155 | abs2dif2d 15498 |
. . . . 5
⊢ (𝜑 →
(abs‘(((⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) − (⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛)))) − Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))))) ≤
((abs‘((⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) − (⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))))) |
| 213 | 211, 212 | eqbrtrd 5164 |
. . . 4
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) ≤ ((abs‘((⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) − (⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))))) |
| 214 | 115, 99 | readdcld 11291 |
. . . . . . 7
⊢ (𝜑 → (⦋(𝐽 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴) ∈ ℝ) |
| 215 | 214, 93 | remulcld 11292 |
. . . . . 6
⊢ (𝜑 → ((⦋(𝐽 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴) · 𝑅) ∈ ℝ) |
| 216 | 179, 183,
187, 191, 9, 202 | telfsumo 15839 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) = (⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴)) |
| 217 | 135, 39 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ) |
| 218 | 135, 144 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ⦋(𝑖 + 1) / 𝑛⦌𝐴 ∈ ℝ) |
| 219 | 217, 218 | resubcld 11692 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) ∈ ℝ) |
| 220 | 81, 219 | fsumrecl 15771 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) ∈ ℝ) |
| 221 | 216, 220 | eqeltrrd 2841 |
. . . . . . 7
⊢ (𝜑 → (⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴) ∈ ℝ) |
| 222 | 221, 93 | remulcld 11292 |
. . . . . 6
⊢ (𝜑 → ((⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴) · 𝑅) ∈ ℝ) |
| 223 | 125 | abscld 15476 |
. . . . . . . 8
⊢ (𝜑 →
(abs‘(⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛)))) ∈ ℝ) |
| 224 | 132 | abscld 15476 |
. . . . . . . 8
⊢ (𝜑 →
(abs‘(⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛)))) ∈ ℝ) |
| 225 | 223, 224 | readdcld 11291 |
. . . . . . 7
⊢ (𝜑 →
((abs‘(⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛)))) + (abs‘(⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))))) ∈ ℝ) |
| 226 | 125, 132 | abs2dif2d 15498 |
. . . . . . 7
⊢ (𝜑 →
(abs‘((⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) − (⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))))) ≤ ((abs‘(⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛)))) + (abs‘(⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛)))))) |
| 227 | 115, 93 | remulcld 11292 |
. . . . . . . . 9
⊢ (𝜑 → (⦋(𝐽 + 1) / 𝑛⦌𝐴 · 𝑅) ∈ ℝ) |
| 228 | 99, 93 | remulcld 11292 |
. . . . . . . . 9
⊢ (𝜑 → (⦋(𝐼 + 1) / 𝑛⦌𝐴 · 𝑅) ∈ ℝ) |
| 229 | 116, 124 | absmuld 15494 |
. . . . . . . . . . 11
⊢ (𝜑 →
(abs‘(⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛)))) = ((abs‘⦋(𝐽 + 1) / 𝑛⦌𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))))) |
| 230 | | eluzelre 12890 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈
(ℤ≥‘𝑀) → 𝑖 ∈ ℝ) |
| 231 | 230 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 𝑖 ∈ ℝ) |
| 232 | | eluzle 12892 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑖) |
| 233 | 232 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 𝑀 ≤ 𝑖) |
| 234 | 31 | nnred 12282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 235 | 234 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℝ) |
| 236 | | elicopnf 13486 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ∈ ℝ → (𝑖 ∈ (𝑀[,)+∞) ↔ (𝑖 ∈ ℝ ∧ 𝑀 ≤ 𝑖))) |
| 237 | 235, 236 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → (𝑖 ∈ (𝑀[,)+∞) ↔ (𝑖 ∈ ℝ ∧ 𝑀 ≤ 𝑖))) |
| 238 | 231, 233,
237 | mpbir2and 713 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 𝑖 ∈ (𝑀[,)+∞)) |
| 239 | 238 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑖 ∈ (ℤ≥‘𝑀) → 𝑖 ∈ (𝑀[,)+∞))) |
| 240 | 239 | ssrdv 3988 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(ℤ≥‘𝑀) ⊆ (𝑀[,)+∞)) |
| 241 | 31 | nnzd 12642 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 242 | 48 | peano2zd 12727 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐼 + 1) ∈ ℤ) |
| 243 | 101 | rpred 13078 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑈 ∈ ℝ) |
| 244 | 4 | nnred 12282 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐼 + 1) ∈ ℝ) |
| 245 | | dchrisumlem2.2 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ≤ 𝑈) |
| 246 | | dchrisumlem2.3 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑈 ≤ (𝐼 + 1)) |
| 247 | 234, 243,
244, 245, 246 | letrd 11419 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ≤ (𝐼 + 1)) |
| 248 | | eluz2 12885 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 + 1) ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝐼 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝐼 + 1))) |
| 249 | 241, 242,
247, 248 | syl3anbrc 1343 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐼 + 1) ∈
(ℤ≥‘𝑀)) |
| 250 | | uztrn 12897 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 + 1) ∈
(ℤ≥‘(𝐼 + 1)) ∧ (𝐼 + 1) ∈
(ℤ≥‘𝑀)) → (𝐽 + 1) ∈
(ℤ≥‘𝑀)) |
| 251 | 9, 249, 250 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐽 + 1) ∈
(ℤ≥‘𝑀)) |
| 252 | 240, 251 | sseldd 3983 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐽 + 1) ∈ (𝑀[,)+∞)) |
| 253 | 113 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐽 + 1) ∈ (𝑀[,)+∞) → 0 ≤
⦋(𝐽 + 1) /
𝑛⦌𝐴)) |
| 254 | 252, 253 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤
⦋(𝐽 + 1) /
𝑛⦌𝐴) |
| 255 | 115, 254 | absidd 15462 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(abs‘⦋(𝐽 + 1) / 𝑛⦌𝐴) = ⦋(𝐽 + 1) / 𝑛⦌𝐴) |
| 256 | 255 | oveq1d 7447 |
. . . . . . . . . . 11
⊢ (𝜑 →
((abs‘⦋(𝐽 + 1) / 𝑛⦌𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛)))) = (⦋(𝐽 + 1) / 𝑛⦌𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))))) |
| 257 | 229, 256 | eqtrd 2776 |
. . . . . . . . . 10
⊢ (𝜑 →
(abs‘(⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛)))) = (⦋(𝐽 + 1) / 𝑛⦌𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))))) |
| 258 | 124 | abscld 15476 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) ∈ ℝ) |
| 259 | 111 | nnnn0d 12589 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐽 + 1) ∈
ℕ0) |
| 260 | | dchrisum.10 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) |
| 261 | 19, 21, 27, 18, 20, 28, 22, 29, 30, 31, 32, 33, 34, 35, 93, 260 | dchrisumlem1 27534 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐽 + 1) ∈ ℕ0) →
(abs‘Σ𝑛 ∈
(0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) |
| 262 | 259, 261 | mpdan 687 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) |
| 263 | 258, 93, 115, 254, 262 | lemul2ad 12209 |
. . . . . . . . . 10
⊢ (𝜑 → (⦋(𝐽 + 1) / 𝑛⦌𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛)))) ≤ (⦋(𝐽 + 1) / 𝑛⦌𝐴 · 𝑅)) |
| 264 | 257, 263 | eqbrtrd 5164 |
. . . . . . . . 9
⊢ (𝜑 →
(abs‘(⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛)))) ≤ (⦋(𝐽 + 1) / 𝑛⦌𝐴 · 𝑅)) |
| 265 | 126, 131 | absmuld 15494 |
. . . . . . . . . . 11
⊢ (𝜑 →
(abs‘(⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛)))) = ((abs‘⦋(𝐼 + 1) / 𝑛⦌𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))))) |
| 266 | 240, 249 | sseldd 3983 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐼 + 1) ∈ (𝑀[,)+∞)) |
| 267 | 19, 21, 27, 18, 20, 28, 22, 29, 30, 31, 32, 33, 34, 35 | dchrisumlema 27533 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝐼 + 1) ∈ ℝ+ →
⦋(𝐼 + 1) /
𝑛⦌𝐴 ∈ ℝ) ∧ ((𝐼 + 1) ∈ (𝑀[,)+∞) → 0 ≤
⦋(𝐼 + 1) /
𝑛⦌𝐴))) |
| 268 | 267 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐼 + 1) ∈ (𝑀[,)+∞) → 0 ≤
⦋(𝐼 + 1) /
𝑛⦌𝐴)) |
| 269 | 266, 268 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤
⦋(𝐼 + 1) /
𝑛⦌𝐴) |
| 270 | 99, 269 | absidd 15462 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(abs‘⦋(𝐼 + 1) / 𝑛⦌𝐴) = ⦋(𝐼 + 1) / 𝑛⦌𝐴) |
| 271 | 270 | oveq1d 7447 |
. . . . . . . . . . 11
⊢ (𝜑 →
((abs‘⦋(𝐼 + 1) / 𝑛⦌𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛)))) = (⦋(𝐼 + 1) / 𝑛⦌𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))))) |
| 272 | 265, 271 | eqtrd 2776 |
. . . . . . . . . 10
⊢ (𝜑 →
(abs‘(⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛)))) = (⦋(𝐼 + 1) / 𝑛⦌𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))))) |
| 273 | 131 | abscld 15476 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))) ∈ ℝ) |
| 274 | 4 | nnnn0d 12589 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐼 + 1) ∈
ℕ0) |
| 275 | 19, 21, 27, 18, 20, 28, 22, 29, 30, 31, 32, 33, 34, 35, 93, 260 | dchrisumlem1 27534 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐼 + 1) ∈ ℕ0) →
(abs‘Σ𝑛 ∈
(0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) |
| 276 | 274, 275 | mpdan 687 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) |
| 277 | 273, 93, 99, 269, 276 | lemul2ad 12209 |
. . . . . . . . . 10
⊢ (𝜑 → (⦋(𝐼 + 1) / 𝑛⦌𝐴 · (abs‘Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛)))) ≤ (⦋(𝐼 + 1) / 𝑛⦌𝐴 · 𝑅)) |
| 278 | 272, 277 | eqbrtrd 5164 |
. . . . . . . . 9
⊢ (𝜑 →
(abs‘(⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛)))) ≤ (⦋(𝐼 + 1) / 𝑛⦌𝐴 · 𝑅)) |
| 279 | 223, 224,
227, 228, 264, 278 | le2addd 11883 |
. . . . . . . 8
⊢ (𝜑 →
((abs‘(⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛)))) + (abs‘(⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))))) ≤ ((⦋(𝐽 + 1) / 𝑛⦌𝐴 · 𝑅) + (⦋(𝐼 + 1) / 𝑛⦌𝐴 · 𝑅))) |
| 280 | 93 | recnd 11290 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ ℂ) |
| 281 | 116, 126,
280 | adddird 11287 |
. . . . . . . 8
⊢ (𝜑 → ((⦋(𝐽 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴) · 𝑅) = ((⦋(𝐽 + 1) / 𝑛⦌𝐴 · 𝑅) + (⦋(𝐼 + 1) / 𝑛⦌𝐴 · 𝑅))) |
| 282 | 279, 281 | breqtrrd 5170 |
. . . . . . 7
⊢ (𝜑 →
((abs‘(⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛)))) + (abs‘(⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))))) ≤ ((⦋(𝐽 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴) · 𝑅)) |
| 283 | 134, 225,
215, 226, 282 | letrd 11419 |
. . . . . 6
⊢ (𝜑 →
(abs‘((⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) − (⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))))) ≤ ((⦋(𝐽 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴) · 𝑅)) |
| 284 | 154 | abscld 15476 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) →
(abs‘((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))) ∈ ℝ) |
| 285 | 81, 284 | fsumrecl 15771 |
. . . . . . 7
⊢ (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(abs‘((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))) ∈ ℝ) |
| 286 | 81, 154 | fsumabs 15838 |
. . . . . . 7
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))) ≤ Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(abs‘((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))))) |
| 287 | 93 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 𝑅 ∈ ℝ) |
| 288 | 219, 287 | remulcld 11292 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) · 𝑅) ∈ ℝ) |
| 289 | 135, 146 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) ∈ ℂ) |
| 290 | 151 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 291 | 289, 290 | absmuld 15494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) →
(abs‘((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))) = ((abs‘(⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴)) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))))) |
| 292 | | elfzouz 13704 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1)) → 𝑖 ∈ (ℤ≥‘(𝐼 + 1))) |
| 293 | | uztrn 12897 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈
(ℤ≥‘(𝐼 + 1)) ∧ (𝐼 + 1) ∈
(ℤ≥‘𝑀)) → 𝑖 ∈ (ℤ≥‘𝑀)) |
| 294 | 292, 249,
293 | syl2anr 597 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 𝑖 ∈ (ℤ≥‘𝑀)) |
| 295 | | eluznn 12961 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ ℕ ∧ 𝑖 ∈
(ℤ≥‘𝑀)) → 𝑖 ∈ ℕ) |
| 296 | 31, 295 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 𝑖 ∈ ℕ) |
| 297 | 296, 137 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → (𝑖 + 1) ∈
ℝ+) |
| 298 | 296 | nnrpd 13076 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 𝑖 ∈ ℝ+) |
| 299 | 33 | 3expia 1121 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+))
→ ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴)) |
| 300 | 299 | ralrimivva 3201 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑛 ∈ ℝ+ ∀𝑥 ∈ ℝ+
((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴)) |
| 301 | 300 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → ∀𝑛 ∈ ℝ+
∀𝑥 ∈
ℝ+ ((𝑀
≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴)) |
| 302 | | nfcv 2904 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛ℝ+ |
| 303 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑛(𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥) |
| 304 | | nfcv 2904 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑛𝐵 |
| 305 | | nfcv 2904 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑛
≤ |
| 306 | 304, 305,
59 | nfbr 5189 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑛 𝐵 ≤ ⦋𝑖 / 𝑛⦌𝐴 |
| 307 | 303, 306 | nfim 1895 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛((𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥) → 𝐵 ≤ ⦋𝑖 / 𝑛⦌𝐴) |
| 308 | 302, 307 | nfralw 3310 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥) → 𝐵 ≤ ⦋𝑖 / 𝑛⦌𝐴) |
| 309 | | breq2 5146 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑖 → (𝑀 ≤ 𝑛 ↔ 𝑀 ≤ 𝑖)) |
| 310 | | breq1 5145 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑖 → (𝑛 ≤ 𝑥 ↔ 𝑖 ≤ 𝑥)) |
| 311 | 309, 310 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑖 → ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) ↔ (𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥))) |
| 312 | 62 | breq2d 5154 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑖 → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ ⦋𝑖 / 𝑛⦌𝐴)) |
| 313 | 311, 312 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑖 → (((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴) ↔ ((𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥) → 𝐵 ≤ ⦋𝑖 / 𝑛⦌𝐴))) |
| 314 | 313 | ralbidv 3177 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑖 → (∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴) ↔ ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥) → 𝐵 ≤ ⦋𝑖 / 𝑛⦌𝐴))) |
| 315 | 308, 314 | rspc 3609 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℝ+
→ (∀𝑛 ∈
ℝ+ ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴) → ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥) → 𝐵 ≤ ⦋𝑖 / 𝑛⦌𝐴))) |
| 316 | 298, 301,
315 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → ∀𝑥 ∈ ℝ+
((𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥) → 𝐵 ≤ ⦋𝑖 / 𝑛⦌𝐴)) |
| 317 | 231 | lep1d 12200 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 𝑖 ≤ (𝑖 + 1)) |
| 318 | 233, 317 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → (𝑀 ≤ 𝑖 ∧ 𝑖 ≤ (𝑖 + 1))) |
| 319 | | breq2 5146 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑖 + 1) → (𝑖 ≤ 𝑥 ↔ 𝑖 ≤ (𝑖 + 1))) |
| 320 | 319 | anbi2d 630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑖 + 1) → ((𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥) ↔ (𝑀 ≤ 𝑖 ∧ 𝑖 ≤ (𝑖 + 1)))) |
| 321 | | eqvisset 3499 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑖 + 1) → (𝑖 + 1) ∈ V) |
| 322 | | eqtr3 2762 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 = (𝑖 + 1) ∧ 𝑛 = (𝑖 + 1)) → 𝑥 = 𝑛) |
| 323 | 30 | equcoms 2018 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑛 → 𝐴 = 𝐵) |
| 324 | 322, 323 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 = (𝑖 + 1) ∧ 𝑛 = (𝑖 + 1)) → 𝐴 = 𝐵) |
| 325 | 321, 324 | csbied 3934 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑖 + 1) → ⦋(𝑖 + 1) / 𝑛⦌𝐴 = 𝐵) |
| 326 | 325 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑖 + 1) → 𝐵 = ⦋(𝑖 + 1) / 𝑛⦌𝐴) |
| 327 | 326 | breq1d 5152 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑖 + 1) → (𝐵 ≤ ⦋𝑖 / 𝑛⦌𝐴 ↔ ⦋(𝑖 + 1) / 𝑛⦌𝐴 ≤ ⦋𝑖 / 𝑛⦌𝐴)) |
| 328 | 320, 327 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑖 + 1) → (((𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥) → 𝐵 ≤ ⦋𝑖 / 𝑛⦌𝐴) ↔ ((𝑀 ≤ 𝑖 ∧ 𝑖 ≤ (𝑖 + 1)) → ⦋(𝑖 + 1) / 𝑛⦌𝐴 ≤ ⦋𝑖 / 𝑛⦌𝐴))) |
| 329 | 328 | rspcv 3617 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 + 1) ∈ ℝ+
→ (∀𝑥 ∈
ℝ+ ((𝑀
≤ 𝑖 ∧ 𝑖 ≤ 𝑥) → 𝐵 ≤ ⦋𝑖 / 𝑛⦌𝐴) → ((𝑀 ≤ 𝑖 ∧ 𝑖 ≤ (𝑖 + 1)) → ⦋(𝑖 + 1) / 𝑛⦌𝐴 ≤ ⦋𝑖 / 𝑛⦌𝐴))) |
| 330 | 297, 316,
318, 329 | syl3c 66 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → ⦋(𝑖 + 1) / 𝑛⦌𝐴 ≤ ⦋𝑖 / 𝑛⦌𝐴) |
| 331 | 294, 330 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ⦋(𝑖 + 1) / 𝑛⦌𝐴 ≤ ⦋𝑖 / 𝑛⦌𝐴) |
| 332 | 218, 217,
331 | abssuble0d 15472 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) →
(abs‘(⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴)) = (⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴)) |
| 333 | 332 | oveq1d 7447 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) →
((abs‘(⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴)) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))) = ((⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))))) |
| 334 | 291, 333 | eqtrd 2776 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) →
(abs‘((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))) = ((⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))))) |
| 335 | 290 | abscld 15476 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))) ∈ ℝ) |
| 336 | 217, 218 | subge0d 11854 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (0 ≤ (⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) ↔ ⦋(𝑖 + 1) / 𝑛⦌𝐴 ≤ ⦋𝑖 / 𝑛⦌𝐴)) |
| 337 | 331, 336 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → 0 ≤ (⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴)) |
| 338 | 135 | peano2nnd 12284 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (𝑖 + 1) ∈ ℕ) |
| 339 | 338 | nnnn0d 12589 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (𝑖 + 1) ∈
ℕ0) |
| 340 | 19, 21, 27, 18, 20, 28, 22, 29, 30, 31, 32, 33, 34, 35, 93, 260 | dchrisumlem1 27534 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 + 1) ∈ ℕ0) →
(abs‘Σ𝑛 ∈
(0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) |
| 341 | 339, 340 | syldan 591 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) |
| 342 | 335, 287,
219, 337, 341 | lemul2ad 12209 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → ((⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) · (abs‘Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))) ≤ ((⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) · 𝑅)) |
| 343 | 334, 342 | eqbrtrd 5164 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) →
(abs‘((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))) ≤ ((⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) · 𝑅)) |
| 344 | 81, 284, 288, 343 | fsumle 15836 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(abs‘((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))) ≤ Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) · 𝑅)) |
| 345 | 219 | recnd 11290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))) → (⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) ∈ ℂ) |
| 346 | 81, 280, 345 | fsummulc1 15822 |
. . . . . . . . 9
⊢ (𝜑 → (Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) · 𝑅) = Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) · 𝑅)) |
| 347 | 216 | oveq1d 7447 |
. . . . . . . . 9
⊢ (𝜑 → (Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) · 𝑅) = ((⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴) · 𝑅)) |
| 348 | 346, 347 | eqtr3d 2778 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋𝑖 / 𝑛⦌𝐴 − ⦋(𝑖 + 1) / 𝑛⦌𝐴) · 𝑅) = ((⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴) · 𝑅)) |
| 349 | 344, 348 | breqtrd 5168 |
. . . . . . 7
⊢ (𝜑 → Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))(abs‘((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))) ≤ ((⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴) · 𝑅)) |
| 350 | 156, 285,
222, 286, 349 | letrd 11419 |
. . . . . 6
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛)))) ≤ ((⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴) · 𝑅)) |
| 351 | 134, 156,
215, 222, 283, 350 | le2addd 11883 |
. . . . 5
⊢ (𝜑 →
((abs‘((⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) − (⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))))) ≤ (((⦋(𝐽 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴) · 𝑅) + ((⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴) · 𝑅))) |
| 352 | 126 | 2timesd 12511 |
. . . . . . . 8
⊢ (𝜑 → (2 ·
⦋(𝐼 + 1) /
𝑛⦌𝐴) = (⦋(𝐼 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴)) |
| 353 | 126, 116,
126 | ppncand 11661 |
. . . . . . . 8
⊢ (𝜑 → ((⦋(𝐼 + 1) / 𝑛⦌𝐴 + ⦋(𝐽 + 1) / 𝑛⦌𝐴) + (⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴)) = (⦋(𝐼 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴)) |
| 354 | 126, 116 | addcomd 11464 |
. . . . . . . . 9
⊢ (𝜑 → (⦋(𝐼 + 1) / 𝑛⦌𝐴 + ⦋(𝐽 + 1) / 𝑛⦌𝐴) = (⦋(𝐽 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴)) |
| 355 | 354 | oveq1d 7447 |
. . . . . . . 8
⊢ (𝜑 → ((⦋(𝐼 + 1) / 𝑛⦌𝐴 + ⦋(𝐽 + 1) / 𝑛⦌𝐴) + (⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴)) = ((⦋(𝐽 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴) + (⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴))) |
| 356 | 352, 353,
355 | 3eqtr2d 2782 |
. . . . . . 7
⊢ (𝜑 → (2 ·
⦋(𝐼 + 1) /
𝑛⦌𝐴) = ((⦋(𝐽 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴) + (⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴))) |
| 357 | 356 | oveq1d 7447 |
. . . . . 6
⊢ (𝜑 → ((2 ·
⦋(𝐼 + 1) /
𝑛⦌𝐴) · 𝑅) = (((⦋(𝐽 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴) + (⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴)) · 𝑅)) |
| 358 | | 2cnd 12345 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℂ) |
| 359 | 358, 126,
280 | mul32d 11472 |
. . . . . 6
⊢ (𝜑 → ((2 ·
⦋(𝐼 + 1) /
𝑛⦌𝐴) · 𝑅) = ((2 · 𝑅) · ⦋(𝐼 + 1) / 𝑛⦌𝐴)) |
| 360 | 214 | recnd 11290 |
. . . . . . 7
⊢ (𝜑 → (⦋(𝐽 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴) ∈ ℂ) |
| 361 | 221 | recnd 11290 |
. . . . . . 7
⊢ (𝜑 → (⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴) ∈ ℂ) |
| 362 | 360, 361,
280 | adddird 11287 |
. . . . . 6
⊢ (𝜑 → (((⦋(𝐽 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴) + (⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴)) · 𝑅) = (((⦋(𝐽 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴) · 𝑅) + ((⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴) · 𝑅))) |
| 363 | 357, 359,
362 | 3eqtr3d 2784 |
. . . . 5
⊢ (𝜑 → ((2 · 𝑅) · ⦋(𝐼 + 1) / 𝑛⦌𝐴) = (((⦋(𝐽 + 1) / 𝑛⦌𝐴 + ⦋(𝐼 + 1) / 𝑛⦌𝐴) · 𝑅) + ((⦋(𝐼 + 1) / 𝑛⦌𝐴 − ⦋(𝐽 + 1) / 𝑛⦌𝐴) · 𝑅))) |
| 364 | 351, 363 | breqtrrd 5170 |
. . . 4
⊢ (𝜑 →
((abs‘((⦋(𝐽 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛))) − (⦋(𝐼 + 1) / 𝑛⦌𝐴 · Σ𝑛 ∈ (0..^(𝐼 + 1))(𝑋‘(𝐿‘𝑛))))) + (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((⦋(𝑖 + 1) / 𝑛⦌𝐴 − ⦋𝑖 / 𝑛⦌𝐴) · Σ𝑛 ∈ (0..^(𝑖 + 1))(𝑋‘(𝐿‘𝑛))))) ≤ ((2 · 𝑅) · ⦋(𝐼 + 1) / 𝑛⦌𝐴)) |
| 365 | 90, 157, 100, 213, 364 | letrd 11419 |
. . 3
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) ≤ ((2 · 𝑅) · ⦋(𝐼 + 1) / 𝑛⦌𝐴)) |
| 366 | | 2nn0 12545 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
| 367 | | nn0ge0 12553 |
. . . . . 6
⊢ (2 ∈
ℕ0 → 0 ≤ 2) |
| 368 | 366, 367 | mp1i 13 |
. . . . 5
⊢ (𝜑 → 0 ≤ 2) |
| 369 | | 0red 11265 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℝ) |
| 370 | 124 | absge0d 15484 |
. . . . . 6
⊢ (𝜑 → 0 ≤
(abs‘Σ𝑛 ∈
(0..^(𝐽 + 1))(𝑋‘(𝐿‘𝑛)))) |
| 371 | 369, 258,
93, 370, 262 | letrd 11419 |
. . . . 5
⊢ (𝜑 → 0 ≤ 𝑅) |
| 372 | 92, 93, 368, 371 | mulge0d 11841 |
. . . 4
⊢ (𝜑 → 0 ≤ (2 · 𝑅)) |
| 373 | 4 | nnrpd 13076 |
. . . . 5
⊢ (𝜑 → (𝐼 + 1) ∈
ℝ+) |
| 374 | | nfv 1913 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥) |
| 375 | 304, 305,
103 | nfbr 5189 |
. . . . . . . . 9
⊢
Ⅎ𝑛 𝐵 ≤ ⦋𝑈 / 𝑛⦌𝐴 |
| 376 | 374, 375 | nfim 1895 |
. . . . . . . 8
⊢
Ⅎ𝑛((𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥) → 𝐵 ≤ ⦋𝑈 / 𝑛⦌𝐴) |
| 377 | 302, 376 | nfralw 3310 |
. . . . . . 7
⊢
Ⅎ𝑛∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥) → 𝐵 ≤ ⦋𝑈 / 𝑛⦌𝐴) |
| 378 | | breq2 5146 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑈 → (𝑀 ≤ 𝑛 ↔ 𝑀 ≤ 𝑈)) |
| 379 | | breq1 5145 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑈 → (𝑛 ≤ 𝑥 ↔ 𝑈 ≤ 𝑥)) |
| 380 | 378, 379 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑛 = 𝑈 → ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) ↔ (𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥))) |
| 381 | 105 | breq2d 5154 |
. . . . . . . . 9
⊢ (𝑛 = 𝑈 → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ ⦋𝑈 / 𝑛⦌𝐴)) |
| 382 | 380, 381 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑛 = 𝑈 → (((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴) ↔ ((𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥) → 𝐵 ≤ ⦋𝑈 / 𝑛⦌𝐴))) |
| 383 | 382 | ralbidv 3177 |
. . . . . . 7
⊢ (𝑛 = 𝑈 → (∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴) ↔ ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥) → 𝐵 ≤ ⦋𝑈 / 𝑛⦌𝐴))) |
| 384 | 377, 383 | rspc 3609 |
. . . . . 6
⊢ (𝑈 ∈ ℝ+
→ (∀𝑛 ∈
ℝ+ ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴) → ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥) → 𝐵 ≤ ⦋𝑈 / 𝑛⦌𝐴))) |
| 385 | 101, 300,
384 | sylc 65 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥) → 𝐵 ≤ ⦋𝑈 / 𝑛⦌𝐴)) |
| 386 | 245, 246 | jca 511 |
. . . . 5
⊢ (𝜑 → (𝑀 ≤ 𝑈 ∧ 𝑈 ≤ (𝐼 + 1))) |
| 387 | | breq2 5146 |
. . . . . . . 8
⊢ (𝑥 = (𝐼 + 1) → (𝑈 ≤ 𝑥 ↔ 𝑈 ≤ (𝐼 + 1))) |
| 388 | 387 | anbi2d 630 |
. . . . . . 7
⊢ (𝑥 = (𝐼 + 1) → ((𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥) ↔ (𝑀 ≤ 𝑈 ∧ 𝑈 ≤ (𝐼 + 1)))) |
| 389 | | eqvisset 3499 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐼 + 1) → (𝐼 + 1) ∈ V) |
| 390 | | eqtr3 2762 |
. . . . . . . . . . 11
⊢ ((𝑥 = (𝐼 + 1) ∧ 𝑛 = (𝐼 + 1)) → 𝑥 = 𝑛) |
| 391 | 390, 323 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 = (𝐼 + 1) ∧ 𝑛 = (𝐼 + 1)) → 𝐴 = 𝐵) |
| 392 | 389, 391 | csbied 3934 |
. . . . . . . . 9
⊢ (𝑥 = (𝐼 + 1) → ⦋(𝐼 + 1) / 𝑛⦌𝐴 = 𝐵) |
| 393 | 392 | eqcomd 2742 |
. . . . . . . 8
⊢ (𝑥 = (𝐼 + 1) → 𝐵 = ⦋(𝐼 + 1) / 𝑛⦌𝐴) |
| 394 | 393 | breq1d 5152 |
. . . . . . 7
⊢ (𝑥 = (𝐼 + 1) → (𝐵 ≤ ⦋𝑈 / 𝑛⦌𝐴 ↔ ⦋(𝐼 + 1) / 𝑛⦌𝐴 ≤ ⦋𝑈 / 𝑛⦌𝐴)) |
| 395 | 388, 394 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = (𝐼 + 1) → (((𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥) → 𝐵 ≤ ⦋𝑈 / 𝑛⦌𝐴) ↔ ((𝑀 ≤ 𝑈 ∧ 𝑈 ≤ (𝐼 + 1)) → ⦋(𝐼 + 1) / 𝑛⦌𝐴 ≤ ⦋𝑈 / 𝑛⦌𝐴))) |
| 396 | 395 | rspcv 3617 |
. . . . 5
⊢ ((𝐼 + 1) ∈ ℝ+
→ (∀𝑥 ∈
ℝ+ ((𝑀
≤ 𝑈 ∧ 𝑈 ≤ 𝑥) → 𝐵 ≤ ⦋𝑈 / 𝑛⦌𝐴) → ((𝑀 ≤ 𝑈 ∧ 𝑈 ≤ (𝐼 + 1)) → ⦋(𝐼 + 1) / 𝑛⦌𝐴 ≤ ⦋𝑈 / 𝑛⦌𝐴))) |
| 397 | 373, 385,
386, 396 | syl3c 66 |
. . . 4
⊢ (𝜑 → ⦋(𝐼 + 1) / 𝑛⦌𝐴 ≤ ⦋𝑈 / 𝑛⦌𝐴) |
| 398 | 99, 108, 94, 372, 397 | lemul2ad 12209 |
. . 3
⊢ (𝜑 → ((2 · 𝑅) · ⦋(𝐼 + 1) / 𝑛⦌𝐴) ≤ ((2 · 𝑅) · ⦋𝑈 / 𝑛⦌𝐴)) |
| 399 | 90, 100, 109, 365, 398 | letrd 11419 |
. 2
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝐼 + 1)..^(𝐽 + 1))((𝑋‘(𝐿‘𝑖)) · ⦋𝑖 / 𝑛⦌𝐴)) ≤ ((2 · 𝑅) · ⦋𝑈 / 𝑛⦌𝐴)) |
| 400 | 89, 399 | eqbrtrd 5164 |
1
⊢ (𝜑 → (abs‘((seq1( + ,
𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼))) ≤ ((2 · 𝑅) · ⦋𝑈 / 𝑛⦌𝐴)) |