Step | Hyp | Ref
| Expression |
1 | | dchrisum.4 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈
ℝ) |
2 | 1 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ) |
3 | | nfcsb1v 3857 |
. . . . 5
⊢
Ⅎ𝑛⦋𝐼 / 𝑛⦌𝐴 |
4 | 3 | nfel1 2923 |
. . . 4
⊢
Ⅎ𝑛⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ |
5 | | csbeq1a 3846 |
. . . . 5
⊢ (𝑛 = 𝐼 → 𝐴 = ⦋𝐼 / 𝑛⦌𝐴) |
6 | 5 | eleq1d 2823 |
. . . 4
⊢ (𝑛 = 𝐼 → (𝐴 ∈ ℝ ↔ ⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ)) |
7 | 4, 6 | rspc 3549 |
. . 3
⊢ (𝐼 ∈ ℝ+
→ (∀𝑛 ∈
ℝ+ 𝐴
∈ ℝ → ⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ)) |
8 | 2, 7 | syl5com 31 |
. 2
⊢ (𝜑 → (𝐼 ∈ ℝ+ →
⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ)) |
9 | | eqid 2738 |
. . . 4
⊢
(ℤ≥‘((⌊‘𝐼) + 1)) =
(ℤ≥‘((⌊‘𝐼) + 1)) |
10 | | dchrisum.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
11 | 10 | nnred 11988 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℝ) |
12 | | elicopnf 13177 |
. . . . . . . 8
⊢ (𝑀 ∈ ℝ → (𝐼 ∈ (𝑀[,)+∞) ↔ (𝐼 ∈ ℝ ∧ 𝑀 ≤ 𝐼))) |
13 | 11, 12 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐼 ∈ (𝑀[,)+∞) ↔ (𝐼 ∈ ℝ ∧ 𝑀 ≤ 𝐼))) |
14 | 13 | simprbda 499 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ∈ ℝ) |
15 | 14 | flcld 13518 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → (⌊‘𝐼) ∈
ℤ) |
16 | 15 | peano2zd 12429 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → ((⌊‘𝐼) + 1) ∈
ℤ) |
17 | | nnuz 12621 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
18 | | 1zzd 12351 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) |
19 | | dchrisum.6 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟
0) |
20 | | nnrp 12741 |
. . . . . . . 8
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℝ+) |
21 | 20 | ssriv 3925 |
. . . . . . 7
⊢ ℕ
⊆ ℝ+ |
22 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑛 ∈ ℝ+
↦ 𝐴) = (𝑛 ∈ ℝ+
↦ 𝐴) |
23 | 22, 1 | dmmptd 6578 |
. . . . . . 7
⊢ (𝜑 → dom (𝑛 ∈ ℝ+ ↦ 𝐴) =
ℝ+) |
24 | 21, 23 | sseqtrrid 3974 |
. . . . . 6
⊢ (𝜑 → ℕ ⊆ dom (𝑛 ∈ ℝ+
↦ 𝐴)) |
25 | 17, 18, 19, 24 | rlimclim1 15254 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝ 0) |
26 | 25 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝ 0) |
27 | | 0red 10978 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 0 ∈
ℝ) |
28 | 11 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 𝑀 ∈ ℝ) |
29 | 10 | nngt0d 12022 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < 𝑀) |
30 | 29 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 0 < 𝑀) |
31 | 13 | simplbda 500 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 𝑀 ≤ 𝐼) |
32 | 27, 28, 14, 30, 31 | ltletrd 11135 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 0 < 𝐼) |
33 | 14, 32 | elrpd 12769 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ∈
ℝ+) |
34 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → ∀𝑛 ∈ ℝ+
𝐴 ∈
ℝ) |
35 | 33, 34, 7 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → ⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ) |
36 | 35 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → ⦋𝐼 / 𝑛⦌𝐴 ∈ ℂ) |
37 | | ssid 3943 |
. . . . . 6
⊢
(ℤ≥‘((⌊‘𝐼) + 1)) ⊆
(ℤ≥‘((⌊‘𝐼) + 1)) |
38 | | fvex 6787 |
. . . . . 6
⊢
(ℤ≥‘((⌊‘𝐼) + 1)) ∈ V |
39 | 37, 38 | climconst2 15257 |
. . . . 5
⊢
((⦋𝐼 /
𝑛⦌𝐴 ∈ ℂ ∧
((⌊‘𝐼) + 1)
∈ ℤ) → ((ℤ≥‘((⌊‘𝐼) + 1)) ×
{⦋𝐼 / 𝑛⦌𝐴}) ⇝ ⦋𝐼 / 𝑛⦌𝐴) |
40 | 36, 16, 39 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) →
((ℤ≥‘((⌊‘𝐼) + 1)) × {⦋𝐼 / 𝑛⦌𝐴}) ⇝ ⦋𝐼 / 𝑛⦌𝐴) |
41 | 33 | rpge0d 12776 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 0 ≤ 𝐼) |
42 | | flge0nn0 13540 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ ℝ ∧ 0 ≤
𝐼) →
(⌊‘𝐼) ∈
ℕ0) |
43 | 14, 41, 42 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → (⌊‘𝐼) ∈
ℕ0) |
44 | | nn0p1nn 12272 |
. . . . . . . . 9
⊢
((⌊‘𝐼)
∈ ℕ0 → ((⌊‘𝐼) + 1) ∈ ℕ) |
45 | 43, 44 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → ((⌊‘𝐼) + 1) ∈
ℕ) |
46 | | eluznn 12658 |
. . . . . . . 8
⊢
((((⌊‘𝐼)
+ 1) ∈ ℕ ∧ 𝑖
∈ (ℤ≥‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℕ) |
47 | 45, 46 | sylan 580 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℕ) |
48 | 47 | nnrpd 12770 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℝ+) |
49 | 2 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ) |
50 | | nfcsb1v 3857 |
. . . . . . . . 9
⊢
Ⅎ𝑛⦋𝑖 / 𝑛⦌𝐴 |
51 | 50 | nfel1 2923 |
. . . . . . . 8
⊢
Ⅎ𝑛⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ |
52 | | csbeq1a 3846 |
. . . . . . . . 9
⊢ (𝑛 = 𝑖 → 𝐴 = ⦋𝑖 / 𝑛⦌𝐴) |
53 | 52 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑛 = 𝑖 → (𝐴 ∈ ℝ ↔ ⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ)) |
54 | 51, 53 | rspc 3549 |
. . . . . . 7
⊢ (𝑖 ∈ ℝ+
→ (∀𝑛 ∈
ℝ+ 𝐴
∈ ℝ → ⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ)) |
55 | 48, 49, 54 | sylc 65 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ) |
56 | 22 | fvmpts 6878 |
. . . . . 6
⊢ ((𝑖 ∈ ℝ+
∧ ⦋𝑖 /
𝑛⦌𝐴 ∈ ℝ) → ((𝑛 ∈ ℝ+
↦ 𝐴)‘𝑖) = ⦋𝑖 / 𝑛⦌𝐴) |
57 | 48, 55, 56 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+ ↦ 𝐴)‘𝑖) = ⦋𝑖 / 𝑛⦌𝐴) |
58 | 57, 55 | eqeltrd 2839 |
. . . 4
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+ ↦ 𝐴)‘𝑖) ∈ ℝ) |
59 | | fvconst2g 7077 |
. . . . . 6
⊢
((⦋𝐼 /
𝑛⦌𝐴 ∈ ℝ ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) →
(((ℤ≥‘((⌊‘𝐼) + 1)) × {⦋𝐼 / 𝑛⦌𝐴})‘𝑖) = ⦋𝐼 / 𝑛⦌𝐴) |
60 | 35, 59 | sylan 580 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) →
(((ℤ≥‘((⌊‘𝐼) + 1)) × {⦋𝐼 / 𝑛⦌𝐴})‘𝑖) = ⦋𝐼 / 𝑛⦌𝐴) |
61 | 35 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ) |
62 | 60, 61 | eqeltrd 2839 |
. . . 4
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) →
(((ℤ≥‘((⌊‘𝐼) + 1)) × {⦋𝐼 / 𝑛⦌𝐴})‘𝑖) ∈ ℝ) |
63 | 33 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝐼 ∈
ℝ+) |
64 | | dchrisum.5 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) |
65 | 64 | 3expia 1120 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+))
→ ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴)) |
66 | 65 | ralrimivva 3123 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ ℝ+ ∀𝑥 ∈ ℝ+
((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴)) |
67 | 66 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ∀𝑛 ∈ ℝ+ ∀𝑥 ∈ ℝ+
((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴)) |
68 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑛ℝ+ |
69 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) |
70 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛𝐵 |
71 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛
≤ |
72 | 70, 71, 3 | nfbr 5121 |
. . . . . . . . . 10
⊢
Ⅎ𝑛 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴 |
73 | 69, 72 | nfim 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑛((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴) |
74 | 68, 73 | nfralw 3151 |
. . . . . . . 8
⊢
Ⅎ𝑛∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴) |
75 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐼 → (𝑀 ≤ 𝑛 ↔ 𝑀 ≤ 𝐼)) |
76 | | breq1 5077 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐼 → (𝑛 ≤ 𝑥 ↔ 𝐼 ≤ 𝑥)) |
77 | 75, 76 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐼 → ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) ↔ (𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥))) |
78 | 5 | breq2d 5086 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐼 → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴)) |
79 | 77, 78 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑛 = 𝐼 → (((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴) ↔ ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴))) |
80 | 79 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑛 = 𝐼 → (∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴) ↔ ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴))) |
81 | 74, 80 | rspc 3549 |
. . . . . . 7
⊢ (𝐼 ∈ ℝ+
→ (∀𝑛 ∈
ℝ+ ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴) → ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴))) |
82 | 63, 67, 81 | sylc 65 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴)) |
83 | 31 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝑀 ≤ 𝐼) |
84 | 14 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝐼 ∈ ℝ) |
85 | | reflcl 13516 |
. . . . . . . . 9
⊢ (𝐼 ∈ ℝ →
(⌊‘𝐼) ∈
ℝ) |
86 | | peano2re 11148 |
. . . . . . . . 9
⊢
((⌊‘𝐼)
∈ ℝ → ((⌊‘𝐼) + 1) ∈ ℝ) |
87 | 84, 85, 86 | 3syl 18 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ((⌊‘𝐼) + 1) ∈
ℝ) |
88 | 47 | nnred 11988 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℝ) |
89 | | fllep1 13521 |
. . . . . . . . . 10
⊢ (𝐼 ∈ ℝ → 𝐼 ≤ ((⌊‘𝐼) + 1)) |
90 | 14, 89 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ≤ ((⌊‘𝐼) + 1)) |
91 | 90 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝐼 ≤ ((⌊‘𝐼) + 1)) |
92 | | eluzle 12595 |
. . . . . . . . 9
⊢ (𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1)) → ((⌊‘𝐼) + 1) ≤ 𝑖) |
93 | 92 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ((⌊‘𝐼) + 1) ≤ 𝑖) |
94 | 84, 87, 88, 91, 93 | letrd 11132 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝐼 ≤ 𝑖) |
95 | 83, 94 | jca 512 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → (𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑖)) |
96 | | breq2 5078 |
. . . . . . . . 9
⊢ (𝑥 = 𝑖 → (𝐼 ≤ 𝑥 ↔ 𝐼 ≤ 𝑖)) |
97 | 96 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑥 = 𝑖 → ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) ↔ (𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑖))) |
98 | | eqvisset 3449 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → 𝑖 ∈ V) |
99 | | equtr2 2030 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑖 ∧ 𝑛 = 𝑖) → 𝑥 = 𝑛) |
100 | | dchrisum.2 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) |
101 | 100 | equcoms 2023 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑛 → 𝐴 = 𝐵) |
102 | 99, 101 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑖 ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵) |
103 | 98, 102 | csbied 3870 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑖 → ⦋𝑖 / 𝑛⦌𝐴 = 𝐵) |
104 | 103 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑛⦌𝐴) |
105 | 104 | breq1d 5084 |
. . . . . . . 8
⊢ (𝑥 = 𝑖 → (𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴 ↔ ⦋𝑖 / 𝑛⦌𝐴 ≤ ⦋𝐼 / 𝑛⦌𝐴)) |
106 | 97, 105 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = 𝑖 → (((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴) ↔ ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑖) → ⦋𝑖 / 𝑛⦌𝐴 ≤ ⦋𝐼 / 𝑛⦌𝐴))) |
107 | 106 | rspcv 3557 |
. . . . . 6
⊢ (𝑖 ∈ ℝ+
→ (∀𝑥 ∈
ℝ+ ((𝑀
≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴) → ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑖) → ⦋𝑖 / 𝑛⦌𝐴 ≤ ⦋𝐼 / 𝑛⦌𝐴))) |
108 | 48, 82, 95, 107 | syl3c 66 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ⦋𝑖 / 𝑛⦌𝐴 ≤ ⦋𝐼 / 𝑛⦌𝐴) |
109 | 108, 57, 60 | 3brtr4d 5106 |
. . . 4
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+ ↦ 𝐴)‘𝑖) ≤
(((ℤ≥‘((⌊‘𝐼) + 1)) × {⦋𝐼 / 𝑛⦌𝐴})‘𝑖)) |
110 | 9, 16, 26, 40, 58, 62, 109 | climle 15349 |
. . 3
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 0 ≤
⦋𝐼 / 𝑛⦌𝐴) |
111 | 110 | ex 413 |
. 2
⊢ (𝜑 → (𝐼 ∈ (𝑀[,)+∞) → 0 ≤
⦋𝐼 / 𝑛⦌𝐴)) |
112 | 8, 111 | jca 512 |
1
⊢ (𝜑 → ((𝐼 ∈ ℝ+ →
⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ) ∧ (𝐼 ∈ (𝑀[,)+∞) → 0 ≤
⦋𝐼 / 𝑛⦌𝐴))) |