MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisumlema Structured version   Visualization version   GIF version

Theorem dchrisumlema 25980
Description: Lemma for dchrisum 25984. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisum.2 (𝑛 = 𝑥𝐴 = 𝐵)
dchrisum.3 (𝜑𝑀 ∈ ℕ)
dchrisum.4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
dchrisum.5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
dchrisum.6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
dchrisum.7 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
Assertion
Ref Expression
dchrisumlema (𝜑 → ((𝐼 ∈ ℝ+𝐼 / 𝑛𝐴 ∈ ℝ) ∧ (𝐼 ∈ (𝑀[,)+∞) → 0 ≤ 𝐼 / 𝑛𝐴)))
Distinct variable groups:   𝑥,𝑛, 1   𝑛,𝐹,𝑥   𝑛,𝐼,𝑥   𝑥,𝐴   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥   𝐵,𝑛   𝑛,𝑍,𝑥   𝐷,𝑛,𝑥   𝑛,𝐿,𝑥   𝑛,𝑀,𝑥   𝑛,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑥)   𝐺(𝑥,𝑛)

Proof of Theorem dchrisumlema
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 dchrisum.4 . . . 4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
21ralrimiva 3186 . . 3 (𝜑 → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
3 nfcsb1v 3910 . . . . 5 𝑛𝐼 / 𝑛𝐴
43nfel1 2998 . . . 4 𝑛𝐼 / 𝑛𝐴 ∈ ℝ
5 csbeq1a 3900 . . . . 5 (𝑛 = 𝐼𝐴 = 𝐼 / 𝑛𝐴)
65eleq1d 2901 . . . 4 (𝑛 = 𝐼 → (𝐴 ∈ ℝ ↔ 𝐼 / 𝑛𝐴 ∈ ℝ))
74, 6rspc 3614 . . 3 (𝐼 ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → 𝐼 / 𝑛𝐴 ∈ ℝ))
82, 7syl5com 31 . 2 (𝜑 → (𝐼 ∈ ℝ+𝐼 / 𝑛𝐴 ∈ ℝ))
9 eqid 2825 . . . 4 (ℤ‘((⌊‘𝐼) + 1)) = (ℤ‘((⌊‘𝐼) + 1))
10 dchrisum.3 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
1110nnred 11645 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
12 elicopnf 12826 . . . . . . . 8 (𝑀 ∈ ℝ → (𝐼 ∈ (𝑀[,)+∞) ↔ (𝐼 ∈ ℝ ∧ 𝑀𝐼)))
1311, 12syl 17 . . . . . . 7 (𝜑 → (𝐼 ∈ (𝑀[,)+∞) ↔ (𝐼 ∈ ℝ ∧ 𝑀𝐼)))
1413simprbda 499 . . . . . 6 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ∈ ℝ)
1514flcld 13161 . . . . 5 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → (⌊‘𝐼) ∈ ℤ)
1615peano2zd 12082 . . . 4 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ((⌊‘𝐼) + 1) ∈ ℤ)
17 nnuz 12273 . . . . . 6 ℕ = (ℤ‘1)
18 1zzd 12005 . . . . . 6 (𝜑 → 1 ∈ ℤ)
19 dchrisum.6 . . . . . 6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
20 nnrp 12393 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ+)
2120ssriv 3974 . . . . . . 7 ℕ ⊆ ℝ+
22 eqid 2825 . . . . . . . 8 (𝑛 ∈ ℝ+𝐴) = (𝑛 ∈ ℝ+𝐴)
2322, 1dmmptd 6489 . . . . . . 7 (𝜑 → dom (𝑛 ∈ ℝ+𝐴) = ℝ+)
2421, 23sseqtrrid 4023 . . . . . 6 (𝜑 → ℕ ⊆ dom (𝑛 ∈ ℝ+𝐴))
2517, 18, 19, 24rlimclim1 14895 . . . . 5 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝ 0)
2625adantr 481 . . . 4 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → (𝑛 ∈ ℝ+𝐴) ⇝ 0)
27 0red 10636 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 ∈ ℝ)
2811adantr 481 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝑀 ∈ ℝ)
2910nngt0d 11678 . . . . . . . . . 10 (𝜑 → 0 < 𝑀)
3029adantr 481 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 < 𝑀)
3113simplbda 500 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝑀𝐼)
3227, 28, 14, 30, 31ltletrd 10792 . . . . . . . 8 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 < 𝐼)
3314, 32elrpd 12421 . . . . . . 7 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ∈ ℝ+)
342adantr 481 . . . . . . 7 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
3533, 34, 7sylc 65 . . . . . 6 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 / 𝑛𝐴 ∈ ℝ)
3635recnd 10661 . . . . 5 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 / 𝑛𝐴 ∈ ℂ)
37 ssid 3992 . . . . . 6 (ℤ‘((⌊‘𝐼) + 1)) ⊆ (ℤ‘((⌊‘𝐼) + 1))
38 fvex 6679 . . . . . 6 (ℤ‘((⌊‘𝐼) + 1)) ∈ V
3937, 38climconst2 14898 . . . . 5 ((𝐼 / 𝑛𝐴 ∈ ℂ ∧ ((⌊‘𝐼) + 1) ∈ ℤ) → ((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴}) ⇝ 𝐼 / 𝑛𝐴)
4036, 16, 39syl2anc 584 . . . 4 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴}) ⇝ 𝐼 / 𝑛𝐴)
4133rpge0d 12428 . . . . . . . . . 10 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 ≤ 𝐼)
42 flge0nn0 13183 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 0 ≤ 𝐼) → (⌊‘𝐼) ∈ ℕ0)
4314, 41, 42syl2anc 584 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → (⌊‘𝐼) ∈ ℕ0)
44 nn0p1nn 11928 . . . . . . . . 9 ((⌊‘𝐼) ∈ ℕ0 → ((⌊‘𝐼) + 1) ∈ ℕ)
4543, 44syl 17 . . . . . . . 8 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ((⌊‘𝐼) + 1) ∈ ℕ)
46 eluznn 12310 . . . . . . . 8 ((((⌊‘𝐼) + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℕ)
4745, 46sylan 580 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℕ)
4847nnrpd 12422 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℝ+)
492ad2antrr 722 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
50 nfcsb1v 3910 . . . . . . . . 9 𝑛𝑖 / 𝑛𝐴
5150nfel1 2998 . . . . . . . 8 𝑛𝑖 / 𝑛𝐴 ∈ ℝ
52 csbeq1a 3900 . . . . . . . . 9 (𝑛 = 𝑖𝐴 = 𝑖 / 𝑛𝐴)
5352eleq1d 2901 . . . . . . . 8 (𝑛 = 𝑖 → (𝐴 ∈ ℝ ↔ 𝑖 / 𝑛𝐴 ∈ ℝ))
5451, 53rspc 3614 . . . . . . 7 (𝑖 ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → 𝑖 / 𝑛𝐴 ∈ ℝ))
5548, 49, 54sylc 65 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 / 𝑛𝐴 ∈ ℝ)
5622fvmpts 6767 . . . . . 6 ((𝑖 ∈ ℝ+𝑖 / 𝑛𝐴 ∈ ℝ) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) = 𝑖 / 𝑛𝐴)
5748, 55, 56syl2anc 584 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) = 𝑖 / 𝑛𝐴)
5857, 55eqeltrd 2917 . . . 4 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) ∈ ℝ)
59 fvconst2g 6963 . . . . . 6 ((𝐼 / 𝑛𝐴 ∈ ℝ ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖) = 𝐼 / 𝑛𝐴)
6035, 59sylan 580 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖) = 𝐼 / 𝑛𝐴)
6135adantr 481 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 / 𝑛𝐴 ∈ ℝ)
6260, 61eqeltrd 2917 . . . 4 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖) ∈ ℝ)
6333adantr 481 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 ∈ ℝ+)
64 dchrisum.5 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
65643expia 1115 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+)) → ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
6665ralrimivva 3195 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
6766ad2antrr 722 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
68 nfcv 2981 . . . . . . . . 9 𝑛+
69 nfv 1908 . . . . . . . . . 10 𝑛(𝑀𝐼𝐼𝑥)
70 nfcv 2981 . . . . . . . . . . 11 𝑛𝐵
71 nfcv 2981 . . . . . . . . . . 11 𝑛
7270, 71, 3nfbr 5109 . . . . . . . . . 10 𝑛 𝐵𝐼 / 𝑛𝐴
7369, 72nfim 1890 . . . . . . . . 9 𝑛((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)
7468, 73nfralw 3229 . . . . . . . 8 𝑛𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)
75 breq2 5066 . . . . . . . . . . 11 (𝑛 = 𝐼 → (𝑀𝑛𝑀𝐼))
76 breq1 5065 . . . . . . . . . . 11 (𝑛 = 𝐼 → (𝑛𝑥𝐼𝑥))
7775, 76anbi12d 630 . . . . . . . . . 10 (𝑛 = 𝐼 → ((𝑀𝑛𝑛𝑥) ↔ (𝑀𝐼𝐼𝑥)))
785breq2d 5074 . . . . . . . . . 10 (𝑛 = 𝐼 → (𝐵𝐴𝐵𝐼 / 𝑛𝐴))
7977, 78imbi12d 346 . . . . . . . . 9 (𝑛 = 𝐼 → (((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)))
8079ralbidv 3201 . . . . . . . 8 (𝑛 = 𝐼 → (∀𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)))
8174, 80rspc 3614 . . . . . . 7 (𝐼 ∈ ℝ+ → (∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) → ∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)))
8263, 67, 81sylc 65 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴))
8331adantr 481 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑀𝐼)
8414adantr 481 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 ∈ ℝ)
85 reflcl 13159 . . . . . . . . 9 (𝐼 ∈ ℝ → (⌊‘𝐼) ∈ ℝ)
86 peano2re 10805 . . . . . . . . 9 ((⌊‘𝐼) ∈ ℝ → ((⌊‘𝐼) + 1) ∈ ℝ)
8784, 85, 863syl 18 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((⌊‘𝐼) + 1) ∈ ℝ)
8847nnred 11645 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℝ)
89 fllep1 13164 . . . . . . . . . 10 (𝐼 ∈ ℝ → 𝐼 ≤ ((⌊‘𝐼) + 1))
9014, 89syl 17 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ≤ ((⌊‘𝐼) + 1))
9190adantr 481 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 ≤ ((⌊‘𝐼) + 1))
92 eluzle 12248 . . . . . . . . 9 (𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1)) → ((⌊‘𝐼) + 1) ≤ 𝑖)
9392adantl 482 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((⌊‘𝐼) + 1) ≤ 𝑖)
9484, 87, 88, 91, 93letrd 10789 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼𝑖)
9583, 94jca 512 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (𝑀𝐼𝐼𝑖))
96 breq2 5066 . . . . . . . . 9 (𝑥 = 𝑖 → (𝐼𝑥𝐼𝑖))
9796anbi2d 628 . . . . . . . 8 (𝑥 = 𝑖 → ((𝑀𝐼𝐼𝑥) ↔ (𝑀𝐼𝐼𝑖)))
98 eqvisset 3516 . . . . . . . . . . 11 (𝑥 = 𝑖𝑖 ∈ V)
99 equtr2 2027 . . . . . . . . . . . 12 ((𝑥 = 𝑖𝑛 = 𝑖) → 𝑥 = 𝑛)
100 dchrisum.2 . . . . . . . . . . . . 13 (𝑛 = 𝑥𝐴 = 𝐵)
101100equcoms 2020 . . . . . . . . . . . 12 (𝑥 = 𝑛𝐴 = 𝐵)
10299, 101syl 17 . . . . . . . . . . 11 ((𝑥 = 𝑖𝑛 = 𝑖) → 𝐴 = 𝐵)
10398, 102csbied 3922 . . . . . . . . . 10 (𝑥 = 𝑖𝑖 / 𝑛𝐴 = 𝐵)
104103eqcomd 2831 . . . . . . . . 9 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑛𝐴)
105104breq1d 5072 . . . . . . . 8 (𝑥 = 𝑖 → (𝐵𝐼 / 𝑛𝐴𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴))
10697, 105imbi12d 346 . . . . . . 7 (𝑥 = 𝑖 → (((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴) ↔ ((𝑀𝐼𝐼𝑖) → 𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴)))
107106rspcv 3621 . . . . . 6 (𝑖 ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴) → ((𝑀𝐼𝐼𝑖) → 𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴)))
10848, 82, 95, 107syl3c 66 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴)
109108, 57, 603brtr4d 5094 . . . 4 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) ≤ (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖))
1109, 16, 26, 40, 58, 62, 109climle 14989 . . 3 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 ≤ 𝐼 / 𝑛𝐴)
111110ex 413 . 2 (𝜑 → (𝐼 ∈ (𝑀[,)+∞) → 0 ≤ 𝐼 / 𝑛𝐴))
1128, 111jca 512 1 (𝜑 → ((𝐼 ∈ ℝ+𝐼 / 𝑛𝐴 ∈ ℝ) ∧ (𝐼 ∈ (𝑀[,)+∞) → 0 ≤ 𝐼 / 𝑛𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020  wral 3142  Vcvv 3499  csb 3886  {csn 4563   class class class wbr 5062  cmpt 5142   × cxp 5551  dom cdm 5553  cfv 6351  (class class class)co 7151  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  +∞cpnf 10664   < clt 10667  cle 10668  cn 11630  0cn0 11889  cz 11973  cuz 12235  +crp 12382  [,)cico 12733  cfl 13153  cli 14834  𝑟 crli 14835  Basecbs 16475  0gc0g 16705  ℤRHomczrh 20565  ℤ/nczn 20568  DChrcdchr 25724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-ico 12737  df-fl 13155  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839
This theorem is referenced by:  dchrisumlem2  25982  dchrisumlem3  25983
  Copyright terms: Public domain W3C validator