MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisumlema Structured version   Visualization version   GIF version

Theorem dchrisumlema 27541
Description: Lemma for dchrisum 27545. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisum.2 (𝑛 = 𝑥𝐴 = 𝐵)
dchrisum.3 (𝜑𝑀 ∈ ℕ)
dchrisum.4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
dchrisum.5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
dchrisum.6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
dchrisum.7 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
Assertion
Ref Expression
dchrisumlema (𝜑 → ((𝐼 ∈ ℝ+𝐼 / 𝑛𝐴 ∈ ℝ) ∧ (𝐼 ∈ (𝑀[,)+∞) → 0 ≤ 𝐼 / 𝑛𝐴)))
Distinct variable groups:   𝑥,𝑛, 1   𝑛,𝐹,𝑥   𝑛,𝐼,𝑥   𝑥,𝐴   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥   𝐵,𝑛   𝑛,𝑍,𝑥   𝐷,𝑛,𝑥   𝑛,𝐿,𝑥   𝑛,𝑀,𝑥   𝑛,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑥)   𝐺(𝑥,𝑛)

Proof of Theorem dchrisumlema
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 dchrisum.4 . . . 4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
21ralrimiva 3148 . . 3 (𝜑 → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
3 nfcsb1v 3940 . . . . 5 𝑛𝐼 / 𝑛𝐴
43nfel1 2921 . . . 4 𝑛𝐼 / 𝑛𝐴 ∈ ℝ
5 csbeq1a 3929 . . . . 5 (𝑛 = 𝐼𝐴 = 𝐼 / 𝑛𝐴)
65eleq1d 2823 . . . 4 (𝑛 = 𝐼 → (𝐴 ∈ ℝ ↔ 𝐼 / 𝑛𝐴 ∈ ℝ))
74, 6rspc 3619 . . 3 (𝐼 ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → 𝐼 / 𝑛𝐴 ∈ ℝ))
82, 7syl5com 31 . 2 (𝜑 → (𝐼 ∈ ℝ+𝐼 / 𝑛𝐴 ∈ ℝ))
9 eqid 2734 . . . 4 (ℤ‘((⌊‘𝐼) + 1)) = (ℤ‘((⌊‘𝐼) + 1))
10 dchrisum.3 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
1110nnred 12304 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
12 elicopnf 13501 . . . . . . . 8 (𝑀 ∈ ℝ → (𝐼 ∈ (𝑀[,)+∞) ↔ (𝐼 ∈ ℝ ∧ 𝑀𝐼)))
1311, 12syl 17 . . . . . . 7 (𝜑 → (𝐼 ∈ (𝑀[,)+∞) ↔ (𝐼 ∈ ℝ ∧ 𝑀𝐼)))
1413simprbda 498 . . . . . 6 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ∈ ℝ)
1514flcld 13845 . . . . 5 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → (⌊‘𝐼) ∈ ℤ)
1615peano2zd 12746 . . . 4 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ((⌊‘𝐼) + 1) ∈ ℤ)
17 nnuz 12942 . . . . . 6 ℕ = (ℤ‘1)
18 1zzd 12670 . . . . . 6 (𝜑 → 1 ∈ ℤ)
19 dchrisum.6 . . . . . 6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
20 nnrp 13064 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ+)
2120ssriv 4006 . . . . . . 7 ℕ ⊆ ℝ+
22 eqid 2734 . . . . . . . 8 (𝑛 ∈ ℝ+𝐴) = (𝑛 ∈ ℝ+𝐴)
2322, 1dmmptd 6724 . . . . . . 7 (𝜑 → dom (𝑛 ∈ ℝ+𝐴) = ℝ+)
2421, 23sseqtrrid 4056 . . . . . 6 (𝜑 → ℕ ⊆ dom (𝑛 ∈ ℝ+𝐴))
2517, 18, 19, 24rlimclim1 15587 . . . . 5 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝ 0)
2625adantr 480 . . . 4 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → (𝑛 ∈ ℝ+𝐴) ⇝ 0)
27 0red 11289 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 ∈ ℝ)
2811adantr 480 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝑀 ∈ ℝ)
2910nngt0d 12338 . . . . . . . . . 10 (𝜑 → 0 < 𝑀)
3029adantr 480 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 < 𝑀)
3113simplbda 499 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝑀𝐼)
3227, 28, 14, 30, 31ltletrd 11446 . . . . . . . 8 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 < 𝐼)
3314, 32elrpd 13092 . . . . . . 7 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ∈ ℝ+)
342adantr 480 . . . . . . 7 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
3533, 34, 7sylc 65 . . . . . 6 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 / 𝑛𝐴 ∈ ℝ)
3635recnd 11314 . . . . 5 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 / 𝑛𝐴 ∈ ℂ)
37 ssid 4025 . . . . . 6 (ℤ‘((⌊‘𝐼) + 1)) ⊆ (ℤ‘((⌊‘𝐼) + 1))
38 fvex 6932 . . . . . 6 (ℤ‘((⌊‘𝐼) + 1)) ∈ V
3937, 38climconst2 15590 . . . . 5 ((𝐼 / 𝑛𝐴 ∈ ℂ ∧ ((⌊‘𝐼) + 1) ∈ ℤ) → ((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴}) ⇝ 𝐼 / 𝑛𝐴)
4036, 16, 39syl2anc 583 . . . 4 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴}) ⇝ 𝐼 / 𝑛𝐴)
4133rpge0d 13099 . . . . . . . . . 10 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 ≤ 𝐼)
42 flge0nn0 13867 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 0 ≤ 𝐼) → (⌊‘𝐼) ∈ ℕ0)
4314, 41, 42syl2anc 583 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → (⌊‘𝐼) ∈ ℕ0)
44 nn0p1nn 12588 . . . . . . . . 9 ((⌊‘𝐼) ∈ ℕ0 → ((⌊‘𝐼) + 1) ∈ ℕ)
4543, 44syl 17 . . . . . . . 8 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ((⌊‘𝐼) + 1) ∈ ℕ)
46 eluznn 12979 . . . . . . . 8 ((((⌊‘𝐼) + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℕ)
4745, 46sylan 579 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℕ)
4847nnrpd 13093 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℝ+)
492ad2antrr 725 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
50 nfcsb1v 3940 . . . . . . . . 9 𝑛𝑖 / 𝑛𝐴
5150nfel1 2921 . . . . . . . 8 𝑛𝑖 / 𝑛𝐴 ∈ ℝ
52 csbeq1a 3929 . . . . . . . . 9 (𝑛 = 𝑖𝐴 = 𝑖 / 𝑛𝐴)
5352eleq1d 2823 . . . . . . . 8 (𝑛 = 𝑖 → (𝐴 ∈ ℝ ↔ 𝑖 / 𝑛𝐴 ∈ ℝ))
5451, 53rspc 3619 . . . . . . 7 (𝑖 ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → 𝑖 / 𝑛𝐴 ∈ ℝ))
5548, 49, 54sylc 65 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 / 𝑛𝐴 ∈ ℝ)
5622fvmpts 7030 . . . . . 6 ((𝑖 ∈ ℝ+𝑖 / 𝑛𝐴 ∈ ℝ) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) = 𝑖 / 𝑛𝐴)
5748, 55, 56syl2anc 583 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) = 𝑖 / 𝑛𝐴)
5857, 55eqeltrd 2838 . . . 4 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) ∈ ℝ)
59 fvconst2g 7237 . . . . . 6 ((𝐼 / 𝑛𝐴 ∈ ℝ ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖) = 𝐼 / 𝑛𝐴)
6035, 59sylan 579 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖) = 𝐼 / 𝑛𝐴)
6135adantr 480 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 / 𝑛𝐴 ∈ ℝ)
6260, 61eqeltrd 2838 . . . 4 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖) ∈ ℝ)
6333adantr 480 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 ∈ ℝ+)
64 dchrisum.5 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
65643expia 1121 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+)) → ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
6665ralrimivva 3204 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
6766ad2antrr 725 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
68 nfcv 2904 . . . . . . . . 9 𝑛+
69 nfv 1913 . . . . . . . . . 10 𝑛(𝑀𝐼𝐼𝑥)
70 nfcv 2904 . . . . . . . . . . 11 𝑛𝐵
71 nfcv 2904 . . . . . . . . . . 11 𝑛
7270, 71, 3nfbr 5216 . . . . . . . . . 10 𝑛 𝐵𝐼 / 𝑛𝐴
7369, 72nfim 1895 . . . . . . . . 9 𝑛((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)
7468, 73nfralw 3312 . . . . . . . 8 𝑛𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)
75 breq2 5173 . . . . . . . . . . 11 (𝑛 = 𝐼 → (𝑀𝑛𝑀𝐼))
76 breq1 5172 . . . . . . . . . . 11 (𝑛 = 𝐼 → (𝑛𝑥𝐼𝑥))
7775, 76anbi12d 631 . . . . . . . . . 10 (𝑛 = 𝐼 → ((𝑀𝑛𝑛𝑥) ↔ (𝑀𝐼𝐼𝑥)))
785breq2d 5181 . . . . . . . . . 10 (𝑛 = 𝐼 → (𝐵𝐴𝐵𝐼 / 𝑛𝐴))
7977, 78imbi12d 344 . . . . . . . . 9 (𝑛 = 𝐼 → (((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)))
8079ralbidv 3180 . . . . . . . 8 (𝑛 = 𝐼 → (∀𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)))
8174, 80rspc 3619 . . . . . . 7 (𝐼 ∈ ℝ+ → (∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) → ∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)))
8263, 67, 81sylc 65 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴))
8331adantr 480 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑀𝐼)
8414adantr 480 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 ∈ ℝ)
85 reflcl 13843 . . . . . . . . 9 (𝐼 ∈ ℝ → (⌊‘𝐼) ∈ ℝ)
86 peano2re 11459 . . . . . . . . 9 ((⌊‘𝐼) ∈ ℝ → ((⌊‘𝐼) + 1) ∈ ℝ)
8784, 85, 863syl 18 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((⌊‘𝐼) + 1) ∈ ℝ)
8847nnred 12304 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℝ)
89 fllep1 13848 . . . . . . . . . 10 (𝐼 ∈ ℝ → 𝐼 ≤ ((⌊‘𝐼) + 1))
9014, 89syl 17 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ≤ ((⌊‘𝐼) + 1))
9190adantr 480 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 ≤ ((⌊‘𝐼) + 1))
92 eluzle 12912 . . . . . . . . 9 (𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1)) → ((⌊‘𝐼) + 1) ≤ 𝑖)
9392adantl 481 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((⌊‘𝐼) + 1) ≤ 𝑖)
9484, 87, 88, 91, 93letrd 11443 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼𝑖)
9583, 94jca 511 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (𝑀𝐼𝐼𝑖))
96 breq2 5173 . . . . . . . . 9 (𝑥 = 𝑖 → (𝐼𝑥𝐼𝑖))
9796anbi2d 629 . . . . . . . 8 (𝑥 = 𝑖 → ((𝑀𝐼𝐼𝑥) ↔ (𝑀𝐼𝐼𝑖)))
98 eqvisset 3503 . . . . . . . . . . 11 (𝑥 = 𝑖𝑖 ∈ V)
99 equtr2 2026 . . . . . . . . . . . 12 ((𝑥 = 𝑖𝑛 = 𝑖) → 𝑥 = 𝑛)
100 dchrisum.2 . . . . . . . . . . . . 13 (𝑛 = 𝑥𝐴 = 𝐵)
101100equcoms 2019 . . . . . . . . . . . 12 (𝑥 = 𝑛𝐴 = 𝐵)
10299, 101syl 17 . . . . . . . . . . 11 ((𝑥 = 𝑖𝑛 = 𝑖) → 𝐴 = 𝐵)
10398, 102csbied 3953 . . . . . . . . . 10 (𝑥 = 𝑖𝑖 / 𝑛𝐴 = 𝐵)
104103eqcomd 2740 . . . . . . . . 9 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑛𝐴)
105104breq1d 5179 . . . . . . . 8 (𝑥 = 𝑖 → (𝐵𝐼 / 𝑛𝐴𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴))
10697, 105imbi12d 344 . . . . . . 7 (𝑥 = 𝑖 → (((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴) ↔ ((𝑀𝐼𝐼𝑖) → 𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴)))
107106rspcv 3627 . . . . . 6 (𝑖 ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴) → ((𝑀𝐼𝐼𝑖) → 𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴)))
10848, 82, 95, 107syl3c 66 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴)
109108, 57, 603brtr4d 5201 . . . 4 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) ≤ (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖))
1109, 16, 26, 40, 58, 62, 109climle 15682 . . 3 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 ≤ 𝐼 / 𝑛𝐴)
111110ex 412 . 2 (𝜑 → (𝐼 ∈ (𝑀[,)+∞) → 0 ≤ 𝐼 / 𝑛𝐴))
1128, 111jca 511 1 (𝜑 → ((𝐼 ∈ ℝ+𝐼 / 𝑛𝐴 ∈ ℝ) ∧ (𝐼 ∈ (𝑀[,)+∞) → 0 ≤ 𝐼 / 𝑛𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2103  wne 2942  wral 3063  Vcvv 3482  csb 3915  {csn 4648   class class class wbr 5169  cmpt 5252   × cxp 5697  dom cdm 5699  cfv 6572  (class class class)co 7445  cc 11178  cr 11179  0cc0 11180  1c1 11181   + caddc 11183   · cmul 11185  +∞cpnf 11317   < clt 11320  cle 11321  cn 12289  0cn0 12549  cz 12635  cuz 12899  +crp 13053  [,)cico 13405  cfl 13837  cli 15526  𝑟 crli 15527  Basecbs 17253  0gc0g 17494  ℤRHomczrh 21528  ℤ/nczn 21531  DChrcdchr 27285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-er 8759  df-pm 8883  df-en 9000  df-dom 9001  df-sdom 9002  df-sup 9507  df-inf 9508  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-n0 12550  df-z 12636  df-uz 12900  df-rp 13054  df-ico 13409  df-fl 13839  df-seq 14049  df-exp 14109  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-clim 15530  df-rlim 15531
This theorem is referenced by:  dchrisumlem2  27543  dchrisumlem3  27544
  Copyright terms: Public domain W3C validator