| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dchrisum.4 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈
ℝ) | 
| 2 | 1 | ralrimiva 3145 | . . 3
⊢ (𝜑 → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ) | 
| 3 |  | nfcsb1v 3922 | . . . . 5
⊢
Ⅎ𝑛⦋𝐼 / 𝑛⦌𝐴 | 
| 4 | 3 | nfel1 2921 | . . . 4
⊢
Ⅎ𝑛⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ | 
| 5 |  | csbeq1a 3912 | . . . . 5
⊢ (𝑛 = 𝐼 → 𝐴 = ⦋𝐼 / 𝑛⦌𝐴) | 
| 6 | 5 | eleq1d 2825 | . . . 4
⊢ (𝑛 = 𝐼 → (𝐴 ∈ ℝ ↔ ⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ)) | 
| 7 | 4, 6 | rspc 3609 | . . 3
⊢ (𝐼 ∈ ℝ+
→ (∀𝑛 ∈
ℝ+ 𝐴
∈ ℝ → ⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ)) | 
| 8 | 2, 7 | syl5com 31 | . 2
⊢ (𝜑 → (𝐼 ∈ ℝ+ →
⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ)) | 
| 9 |  | eqid 2736 | . . . 4
⊢
(ℤ≥‘((⌊‘𝐼) + 1)) =
(ℤ≥‘((⌊‘𝐼) + 1)) | 
| 10 |  | dchrisum.3 | . . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 11 | 10 | nnred 12282 | . . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℝ) | 
| 12 |  | elicopnf 13486 | . . . . . . . 8
⊢ (𝑀 ∈ ℝ → (𝐼 ∈ (𝑀[,)+∞) ↔ (𝐼 ∈ ℝ ∧ 𝑀 ≤ 𝐼))) | 
| 13 | 11, 12 | syl 17 | . . . . . . 7
⊢ (𝜑 → (𝐼 ∈ (𝑀[,)+∞) ↔ (𝐼 ∈ ℝ ∧ 𝑀 ≤ 𝐼))) | 
| 14 | 13 | simprbda 498 | . . . . . 6
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ∈ ℝ) | 
| 15 | 14 | flcld 13839 | . . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → (⌊‘𝐼) ∈
ℤ) | 
| 16 | 15 | peano2zd 12727 | . . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → ((⌊‘𝐼) + 1) ∈
ℤ) | 
| 17 |  | nnuz 12922 | . . . . . 6
⊢ ℕ =
(ℤ≥‘1) | 
| 18 |  | 1zzd 12650 | . . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) | 
| 19 |  | dchrisum.6 | . . . . . 6
⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟
0) | 
| 20 |  | nnrp 13047 | . . . . . . . 8
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℝ+) | 
| 21 | 20 | ssriv 3986 | . . . . . . 7
⊢ ℕ
⊆ ℝ+ | 
| 22 |  | eqid 2736 | . . . . . . . 8
⊢ (𝑛 ∈ ℝ+
↦ 𝐴) = (𝑛 ∈ ℝ+
↦ 𝐴) | 
| 23 | 22, 1 | dmmptd 6712 | . . . . . . 7
⊢ (𝜑 → dom (𝑛 ∈ ℝ+ ↦ 𝐴) =
ℝ+) | 
| 24 | 21, 23 | sseqtrrid 4026 | . . . . . 6
⊢ (𝜑 → ℕ ⊆ dom (𝑛 ∈ ℝ+
↦ 𝐴)) | 
| 25 | 17, 18, 19, 24 | rlimclim1 15582 | . . . . 5
⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝ 0) | 
| 26 | 25 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝ 0) | 
| 27 |  | 0red 11265 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 0 ∈
ℝ) | 
| 28 | 11 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 𝑀 ∈ ℝ) | 
| 29 | 10 | nngt0d 12316 | . . . . . . . . . 10
⊢ (𝜑 → 0 < 𝑀) | 
| 30 | 29 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 0 < 𝑀) | 
| 31 | 13 | simplbda 499 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 𝑀 ≤ 𝐼) | 
| 32 | 27, 28, 14, 30, 31 | ltletrd 11422 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 0 < 𝐼) | 
| 33 | 14, 32 | elrpd 13075 | . . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ∈
ℝ+) | 
| 34 | 2 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → ∀𝑛 ∈ ℝ+
𝐴 ∈
ℝ) | 
| 35 | 33, 34, 7 | sylc 65 | . . . . . 6
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → ⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ) | 
| 36 | 35 | recnd 11290 | . . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → ⦋𝐼 / 𝑛⦌𝐴 ∈ ℂ) | 
| 37 |  | ssid 4005 | . . . . . 6
⊢
(ℤ≥‘((⌊‘𝐼) + 1)) ⊆
(ℤ≥‘((⌊‘𝐼) + 1)) | 
| 38 |  | fvex 6918 | . . . . . 6
⊢
(ℤ≥‘((⌊‘𝐼) + 1)) ∈ V | 
| 39 | 37, 38 | climconst2 15585 | . . . . 5
⊢
((⦋𝐼 /
𝑛⦌𝐴 ∈ ℂ ∧
((⌊‘𝐼) + 1)
∈ ℤ) → ((ℤ≥‘((⌊‘𝐼) + 1)) ×
{⦋𝐼 / 𝑛⦌𝐴}) ⇝ ⦋𝐼 / 𝑛⦌𝐴) | 
| 40 | 36, 16, 39 | syl2anc 584 | . . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) →
((ℤ≥‘((⌊‘𝐼) + 1)) × {⦋𝐼 / 𝑛⦌𝐴}) ⇝ ⦋𝐼 / 𝑛⦌𝐴) | 
| 41 | 33 | rpge0d 13082 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 0 ≤ 𝐼) | 
| 42 |  | flge0nn0 13861 | . . . . . . . . . 10
⊢ ((𝐼 ∈ ℝ ∧ 0 ≤
𝐼) →
(⌊‘𝐼) ∈
ℕ0) | 
| 43 | 14, 41, 42 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → (⌊‘𝐼) ∈
ℕ0) | 
| 44 |  | nn0p1nn 12567 | . . . . . . . . 9
⊢
((⌊‘𝐼)
∈ ℕ0 → ((⌊‘𝐼) + 1) ∈ ℕ) | 
| 45 | 43, 44 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → ((⌊‘𝐼) + 1) ∈
ℕ) | 
| 46 |  | eluznn 12961 | . . . . . . . 8
⊢
((((⌊‘𝐼)
+ 1) ∈ ℕ ∧ 𝑖
∈ (ℤ≥‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℕ) | 
| 47 | 45, 46 | sylan 580 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℕ) | 
| 48 | 47 | nnrpd 13076 | . . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℝ+) | 
| 49 | 2 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ) | 
| 50 |  | nfcsb1v 3922 | . . . . . . . . 9
⊢
Ⅎ𝑛⦋𝑖 / 𝑛⦌𝐴 | 
| 51 | 50 | nfel1 2921 | . . . . . . . 8
⊢
Ⅎ𝑛⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ | 
| 52 |  | csbeq1a 3912 | . . . . . . . . 9
⊢ (𝑛 = 𝑖 → 𝐴 = ⦋𝑖 / 𝑛⦌𝐴) | 
| 53 | 52 | eleq1d 2825 | . . . . . . . 8
⊢ (𝑛 = 𝑖 → (𝐴 ∈ ℝ ↔ ⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ)) | 
| 54 | 51, 53 | rspc 3609 | . . . . . . 7
⊢ (𝑖 ∈ ℝ+
→ (∀𝑛 ∈
ℝ+ 𝐴
∈ ℝ → ⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ)) | 
| 55 | 48, 49, 54 | sylc 65 | . . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ⦋𝑖 / 𝑛⦌𝐴 ∈ ℝ) | 
| 56 | 22 | fvmpts 7018 | . . . . . 6
⊢ ((𝑖 ∈ ℝ+
∧ ⦋𝑖 /
𝑛⦌𝐴 ∈ ℝ) → ((𝑛 ∈ ℝ+
↦ 𝐴)‘𝑖) = ⦋𝑖 / 𝑛⦌𝐴) | 
| 57 | 48, 55, 56 | syl2anc 584 | . . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+ ↦ 𝐴)‘𝑖) = ⦋𝑖 / 𝑛⦌𝐴) | 
| 58 | 57, 55 | eqeltrd 2840 | . . . 4
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+ ↦ 𝐴)‘𝑖) ∈ ℝ) | 
| 59 |  | fvconst2g 7223 | . . . . . 6
⊢
((⦋𝐼 /
𝑛⦌𝐴 ∈ ℝ ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) →
(((ℤ≥‘((⌊‘𝐼) + 1)) × {⦋𝐼 / 𝑛⦌𝐴})‘𝑖) = ⦋𝐼 / 𝑛⦌𝐴) | 
| 60 | 35, 59 | sylan 580 | . . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) →
(((ℤ≥‘((⌊‘𝐼) + 1)) × {⦋𝐼 / 𝑛⦌𝐴})‘𝑖) = ⦋𝐼 / 𝑛⦌𝐴) | 
| 61 | 35 | adantr 480 | . . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ) | 
| 62 | 60, 61 | eqeltrd 2840 | . . . 4
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) →
(((ℤ≥‘((⌊‘𝐼) + 1)) × {⦋𝐼 / 𝑛⦌𝐴})‘𝑖) ∈ ℝ) | 
| 63 | 33 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝐼 ∈
ℝ+) | 
| 64 |  | dchrisum.5 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) | 
| 65 | 64 | 3expia 1121 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+))
→ ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴)) | 
| 66 | 65 | ralrimivva 3201 | . . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ ℝ+ ∀𝑥 ∈ ℝ+
((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴)) | 
| 67 | 66 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ∀𝑛 ∈ ℝ+ ∀𝑥 ∈ ℝ+
((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴)) | 
| 68 |  | nfcv 2904 | . . . . . . . . 9
⊢
Ⅎ𝑛ℝ+ | 
| 69 |  | nfv 1913 | . . . . . . . . . 10
⊢
Ⅎ𝑛(𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) | 
| 70 |  | nfcv 2904 | . . . . . . . . . . 11
⊢
Ⅎ𝑛𝐵 | 
| 71 |  | nfcv 2904 | . . . . . . . . . . 11
⊢
Ⅎ𝑛
≤ | 
| 72 | 70, 71, 3 | nfbr 5189 | . . . . . . . . . 10
⊢
Ⅎ𝑛 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴 | 
| 73 | 69, 72 | nfim 1895 | . . . . . . . . 9
⊢
Ⅎ𝑛((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴) | 
| 74 | 68, 73 | nfralw 3310 | . . . . . . . 8
⊢
Ⅎ𝑛∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴) | 
| 75 |  | breq2 5146 | . . . . . . . . . . 11
⊢ (𝑛 = 𝐼 → (𝑀 ≤ 𝑛 ↔ 𝑀 ≤ 𝐼)) | 
| 76 |  | breq1 5145 | . . . . . . . . . . 11
⊢ (𝑛 = 𝐼 → (𝑛 ≤ 𝑥 ↔ 𝐼 ≤ 𝑥)) | 
| 77 | 75, 76 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑛 = 𝐼 → ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) ↔ (𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥))) | 
| 78 | 5 | breq2d 5154 | . . . . . . . . . 10
⊢ (𝑛 = 𝐼 → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴)) | 
| 79 | 77, 78 | imbi12d 344 | . . . . . . . . 9
⊢ (𝑛 = 𝐼 → (((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴) ↔ ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴))) | 
| 80 | 79 | ralbidv 3177 | . . . . . . . 8
⊢ (𝑛 = 𝐼 → (∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴) ↔ ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴))) | 
| 81 | 74, 80 | rspc 3609 | . . . . . . 7
⊢ (𝐼 ∈ ℝ+
→ (∀𝑛 ∈
ℝ+ ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥) → 𝐵 ≤ 𝐴) → ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴))) | 
| 82 | 63, 67, 81 | sylc 65 | . . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ∀𝑥 ∈ ℝ+ ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴)) | 
| 83 | 31 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝑀 ≤ 𝐼) | 
| 84 | 14 | adantr 480 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝐼 ∈ ℝ) | 
| 85 |  | reflcl 13837 | . . . . . . . . 9
⊢ (𝐼 ∈ ℝ →
(⌊‘𝐼) ∈
ℝ) | 
| 86 |  | peano2re 11435 | . . . . . . . . 9
⊢
((⌊‘𝐼)
∈ ℝ → ((⌊‘𝐼) + 1) ∈ ℝ) | 
| 87 | 84, 85, 86 | 3syl 18 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ((⌊‘𝐼) + 1) ∈
ℝ) | 
| 88 | 47 | nnred 12282 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℝ) | 
| 89 |  | fllep1 13842 | . . . . . . . . . 10
⊢ (𝐼 ∈ ℝ → 𝐼 ≤ ((⌊‘𝐼) + 1)) | 
| 90 | 14, 89 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ≤ ((⌊‘𝐼) + 1)) | 
| 91 | 90 | adantr 480 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝐼 ≤ ((⌊‘𝐼) + 1)) | 
| 92 |  | eluzle 12892 | . . . . . . . . 9
⊢ (𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1)) → ((⌊‘𝐼) + 1) ≤ 𝑖) | 
| 93 | 92 | adantl 481 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ((⌊‘𝐼) + 1) ≤ 𝑖) | 
| 94 | 84, 87, 88, 91, 93 | letrd 11419 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → 𝐼 ≤ 𝑖) | 
| 95 | 83, 94 | jca 511 | . . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → (𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑖)) | 
| 96 |  | breq2 5146 | . . . . . . . . 9
⊢ (𝑥 = 𝑖 → (𝐼 ≤ 𝑥 ↔ 𝐼 ≤ 𝑖)) | 
| 97 | 96 | anbi2d 630 | . . . . . . . 8
⊢ (𝑥 = 𝑖 → ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) ↔ (𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑖))) | 
| 98 |  | eqvisset 3499 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → 𝑖 ∈ V) | 
| 99 |  | equtr2 2025 | . . . . . . . . . . . 12
⊢ ((𝑥 = 𝑖 ∧ 𝑛 = 𝑖) → 𝑥 = 𝑛) | 
| 100 |  | dchrisum.2 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) | 
| 101 | 100 | equcoms 2018 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑛 → 𝐴 = 𝐵) | 
| 102 | 99, 101 | syl 17 | . . . . . . . . . . 11
⊢ ((𝑥 = 𝑖 ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵) | 
| 103 | 98, 102 | csbied 3934 | . . . . . . . . . 10
⊢ (𝑥 = 𝑖 → ⦋𝑖 / 𝑛⦌𝐴 = 𝐵) | 
| 104 | 103 | eqcomd 2742 | . . . . . . . . 9
⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑛⦌𝐴) | 
| 105 | 104 | breq1d 5152 | . . . . . . . 8
⊢ (𝑥 = 𝑖 → (𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴 ↔ ⦋𝑖 / 𝑛⦌𝐴 ≤ ⦋𝐼 / 𝑛⦌𝐴)) | 
| 106 | 97, 105 | imbi12d 344 | . . . . . . 7
⊢ (𝑥 = 𝑖 → (((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴) ↔ ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑖) → ⦋𝑖 / 𝑛⦌𝐴 ≤ ⦋𝐼 / 𝑛⦌𝐴))) | 
| 107 | 106 | rspcv 3617 | . . . . . 6
⊢ (𝑖 ∈ ℝ+
→ (∀𝑥 ∈
ℝ+ ((𝑀
≤ 𝐼 ∧ 𝐼 ≤ 𝑥) → 𝐵 ≤ ⦋𝐼 / 𝑛⦌𝐴) → ((𝑀 ≤ 𝐼 ∧ 𝐼 ≤ 𝑖) → ⦋𝑖 / 𝑛⦌𝐴 ≤ ⦋𝐼 / 𝑛⦌𝐴))) | 
| 108 | 48, 82, 95, 107 | syl3c 66 | . . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ⦋𝑖 / 𝑛⦌𝐴 ≤ ⦋𝐼 / 𝑛⦌𝐴) | 
| 109 | 108, 57, 60 | 3brtr4d 5174 | . . . 4
⊢ (((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈
(ℤ≥‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+ ↦ 𝐴)‘𝑖) ≤
(((ℤ≥‘((⌊‘𝐼) + 1)) × {⦋𝐼 / 𝑛⦌𝐴})‘𝑖)) | 
| 110 | 9, 16, 26, 40, 58, 62, 109 | climle 15677 | . . 3
⊢ ((𝜑 ∧ 𝐼 ∈ (𝑀[,)+∞)) → 0 ≤
⦋𝐼 / 𝑛⦌𝐴) | 
| 111 | 110 | ex 412 | . 2
⊢ (𝜑 → (𝐼 ∈ (𝑀[,)+∞) → 0 ≤
⦋𝐼 / 𝑛⦌𝐴)) | 
| 112 | 8, 111 | jca 511 | 1
⊢ (𝜑 → ((𝐼 ∈ ℝ+ →
⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ) ∧ (𝐼 ∈ (𝑀[,)+∞) → 0 ≤
⦋𝐼 / 𝑛⦌𝐴))) |