MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem1 Structured version   Visualization version   GIF version

Theorem dvfsumlem1 25959
Description: Lemma for dvfsumrlim 25965. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsum.h 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
dvfsumlem1.1 (𝜑𝑋𝑆)
dvfsumlem1.2 (𝜑𝑌𝑆)
dvfsumlem1.3 (𝜑𝐷𝑋)
dvfsumlem1.4 (𝜑𝑋𝑌)
dvfsumlem1.5 (𝜑𝑌𝑈)
dvfsumlem1.6 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
Assertion
Ref Expression
dvfsumlem1 (𝜑 → (𝐻𝑌) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐻(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem1
StepHypRef Expression
1 dvfsum.s . . . . . . . . . 10 𝑆 = (𝑇(,)+∞)
2 ioossre 13307 . . . . . . . . . 10 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3976 . . . . . . . . 9 𝑆 ⊆ ℝ
4 dvfsumlem1.2 . . . . . . . . 9 (𝜑𝑌𝑆)
53, 4sselid 3927 . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
6 dvfsumlem1.1 . . . . . . . . . 10 (𝜑𝑋𝑆)
73, 6sselid 3927 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
87flcld 13702 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ∈ ℤ)
9 reflcl 13700 . . . . . . . . . 10 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
107, 9syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑋) ∈ ℝ)
11 flle 13703 . . . . . . . . . 10 (𝑋 ∈ ℝ → (⌊‘𝑋) ≤ 𝑋)
127, 11syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑋) ≤ 𝑋)
13 dvfsumlem1.4 . . . . . . . . 9 (𝜑𝑋𝑌)
1410, 7, 5, 12, 13letrd 11270 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ≤ 𝑌)
15 flbi 13720 . . . . . . . . 9 ((𝑌 ∈ ℝ ∧ (⌊‘𝑋) ∈ ℤ) → ((⌊‘𝑌) = (⌊‘𝑋) ↔ ((⌊‘𝑋) ≤ 𝑌𝑌 < ((⌊‘𝑋) + 1))))
1615baibd 539 . . . . . . . 8 (((𝑌 ∈ ℝ ∧ (⌊‘𝑋) ∈ ℤ) ∧ (⌊‘𝑋) ≤ 𝑌) → ((⌊‘𝑌) = (⌊‘𝑋) ↔ 𝑌 < ((⌊‘𝑋) + 1)))
175, 8, 14, 16syl21anc 837 . . . . . . 7 (𝜑 → ((⌊‘𝑌) = (⌊‘𝑋) ↔ 𝑌 < ((⌊‘𝑋) + 1)))
1817biimpar 477 . . . . . 6 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = (⌊‘𝑋))
1918oveq2d 7362 . . . . 5 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (𝑌 − (⌊‘𝑌)) = (𝑌 − (⌊‘𝑋)))
2019oveq1d 7361 . . . 4 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵))
2118oveq2d 7362 . . . . . 6 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (𝑀...(⌊‘𝑌)) = (𝑀...(⌊‘𝑋)))
2221sumeq1d 15607 . . . . 5 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
2322oveq1d 7361 . . . 4 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴))
2420, 23oveq12d 7364 . . 3 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
25 simpr 484 . . . . . . . . . . 11 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 = ((⌊‘𝑋) + 1))
267adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑋 ∈ ℝ)
2726flcld 13702 . . . . . . . . . . . 12 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑋) ∈ ℤ)
2827peano2zd 12580 . . . . . . . . . . 11 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((⌊‘𝑋) + 1) ∈ ℤ)
2925, 28eqeltrd 2831 . . . . . . . . . 10 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 ∈ ℤ)
30 flid 13712 . . . . . . . . . 10 (𝑌 ∈ ℤ → (⌊‘𝑌) = 𝑌)
3129, 30syl 17 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = 𝑌)
3231, 25eqtrd 2766 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = ((⌊‘𝑋) + 1))
3332oveq2d 7362 . . . . . . 7 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (𝑌 − (⌊‘𝑌)) = (𝑌 − ((⌊‘𝑋) + 1)))
3433oveq1d 7361 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵))
355recnd 11140 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
3610recnd 11140 . . . . . . . . . 10 (𝜑 → (⌊‘𝑋) ∈ ℂ)
3735, 36subcld 11472 . . . . . . . . 9 (𝜑 → (𝑌 − (⌊‘𝑋)) ∈ ℂ)
38 1cnd 11107 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
393a1i 11 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℝ)
40 dvfsum.a . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
41 dvfsum.b1 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝐵𝑉)
42 dvfsum.b3 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
4339, 40, 41, 42dvmptrecl 25957 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
4443recnd 11140 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
4544ralrimiva 3124 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℂ)
46 nfcsb1v 3869 . . . . . . . . . . . 12 𝑥𝑌 / 𝑥𝐵
4746nfel1 2911 . . . . . . . . . . 11 𝑥𝑌 / 𝑥𝐵 ∈ ℂ
48 csbeq1a 3859 . . . . . . . . . . . 12 (𝑥 = 𝑌𝐵 = 𝑌 / 𝑥𝐵)
4948eleq1d 2816 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝐵 ∈ ℂ ↔ 𝑌 / 𝑥𝐵 ∈ ℂ))
5047, 49rspc 3560 . . . . . . . . . 10 (𝑌𝑆 → (∀𝑥𝑆 𝐵 ∈ ℂ → 𝑌 / 𝑥𝐵 ∈ ℂ))
514, 45, 50sylc 65 . . . . . . . . 9 (𝜑𝑌 / 𝑥𝐵 ∈ ℂ)
5237, 38, 51subdird 11574 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)))
5335, 36, 38subsub4d 11503 . . . . . . . . 9 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) = (𝑌 − ((⌊‘𝑋) + 1)))
5453oveq1d 7361 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵))
5551mullidd 11130 . . . . . . . . 9 (𝜑 → (1 · 𝑌 / 𝑥𝐵) = 𝑌 / 𝑥𝐵)
5655oveq2d 7362 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5752, 54, 563eqtr3d 2774 . . . . . . 7 (𝜑 → ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5857adantr 480 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5934, 58eqtrd 2766 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
60 dvfsum.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
618peano2zd 12580 . . . . . . . . . . . 12 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℤ)
6260zred 12577 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
63 peano2rem 11428 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ∈ ℝ)
65 dvfsum.d . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℝ)
66 dvfsum.md . . . . . . . . . . . . . . . 16 (𝜑𝑀 ≤ (𝐷 + 1))
67 1red 11113 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℝ)
6862, 67, 65lesubaddd 11714 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) ≤ 𝐷𝑀 ≤ (𝐷 + 1)))
6966, 68mpbird 257 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ≤ 𝐷)
70 dvfsumlem1.3 . . . . . . . . . . . . . . 15 (𝜑𝐷𝑋)
7164, 65, 7, 69, 70letrd 11270 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 − 1) ≤ 𝑋)
72 peano2zm 12515 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
7360, 72syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ∈ ℤ)
74 flge 13709 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) ≤ 𝑋 ↔ (𝑀 − 1) ≤ (⌊‘𝑋)))
757, 73, 74syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 − 1) ≤ 𝑋 ↔ (𝑀 − 1) ≤ (⌊‘𝑋)))
7671, 75mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑀 − 1) ≤ (⌊‘𝑋))
7762, 67, 10lesubaddd 11714 . . . . . . . . . . . . 13 (𝜑 → ((𝑀 − 1) ≤ (⌊‘𝑋) ↔ 𝑀 ≤ ((⌊‘𝑋) + 1)))
7876, 77mpbid 232 . . . . . . . . . . . 12 (𝜑𝑀 ≤ ((⌊‘𝑋) + 1))
79 eluz2 12738 . . . . . . . . . . . 12 (((⌊‘𝑋) + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ ((⌊‘𝑋) + 1) ∈ ℤ ∧ 𝑀 ≤ ((⌊‘𝑋) + 1)))
8060, 61, 78, 79syl3anbrc 1344 . . . . . . . . . . 11 (𝜑 → ((⌊‘𝑋) + 1) ∈ (ℤ𝑀))
81 dvfsum.b2 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
8281recnd 11140 . . . . . . . . . . . . 13 ((𝜑𝑥𝑍) → 𝐵 ∈ ℂ)
8382ralrimiva 3124 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℂ)
84 elfzuz 13420 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...((⌊‘𝑋) + 1)) → 𝑘 ∈ (ℤ𝑀))
85 dvfsum.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
8684, 85eleqtrrdi 2842 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...((⌊‘𝑋) + 1)) → 𝑘𝑍)
87 dvfsum.c . . . . . . . . . . . . . 14 (𝑥 = 𝑘𝐵 = 𝐶)
8887eleq1d 2816 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
8988rspccva 3571 . . . . . . . . . . . 12 ((∀𝑥𝑍 𝐵 ∈ ℂ ∧ 𝑘𝑍) → 𝐶 ∈ ℂ)
9083, 86, 89syl2an 596 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))) → 𝐶 ∈ ℂ)
91 eqvisset 3456 . . . . . . . . . . . . 13 (𝑘 = ((⌊‘𝑋) + 1) → ((⌊‘𝑋) + 1) ∈ V)
92 eqeq2 2743 . . . . . . . . . . . . . . 15 (𝑘 = ((⌊‘𝑋) + 1) → (𝑥 = 𝑘𝑥 = ((⌊‘𝑋) + 1)))
9392biimpar 477 . . . . . . . . . . . . . 14 ((𝑘 = ((⌊‘𝑋) + 1) ∧ 𝑥 = ((⌊‘𝑋) + 1)) → 𝑥 = 𝑘)
9493, 87syl 17 . . . . . . . . . . . . 13 ((𝑘 = ((⌊‘𝑋) + 1) ∧ 𝑥 = ((⌊‘𝑋) + 1)) → 𝐵 = 𝐶)
9591, 94csbied 3881 . . . . . . . . . . . 12 (𝑘 = ((⌊‘𝑋) + 1) → ((⌊‘𝑋) + 1) / 𝑥𝐵 = 𝐶)
9695eqcomd 2737 . . . . . . . . . . 11 (𝑘 = ((⌊‘𝑋) + 1) → 𝐶 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
9780, 90, 96fsumm1 15658 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
98 ax-1cn 11064 . . . . . . . . . . . . . 14 1 ∈ ℂ
99 pncan 11366 . . . . . . . . . . . . . 14 (((⌊‘𝑋) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑋) + 1) − 1) = (⌊‘𝑋))
10036, 98, 99sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (((⌊‘𝑋) + 1) − 1) = (⌊‘𝑋))
101100oveq2d 7362 . . . . . . . . . . . 12 (𝜑 → (𝑀...(((⌊‘𝑋) + 1) − 1)) = (𝑀...(⌊‘𝑋)))
102101sumeq1d 15607 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
103102oveq1d 7361 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
10497, 103eqtrd 2766 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
105104adantr 480 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
10632oveq2d 7362 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (𝑀...(⌊‘𝑌)) = (𝑀...((⌊‘𝑋) + 1)))
107106sumeq1d 15607 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶)
10825csbeq1d 3849 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
109108oveq2d 7362 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
110105, 107, 1093eqtr4d 2776 . . . . . . 7 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵))
111110oveq1d 7361 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
112 fzfid 13880 . . . . . . . . 9 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
113 elfzuz 13420 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
114113, 85eleqtrrdi 2842 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
11583, 114, 89syl2an 596 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℂ)
116112, 115fsumcl 15640 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℂ)
11740recnd 11140 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝐴 ∈ ℂ)
118117ralrimiva 3124 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℂ)
119 nfcsb1v 3869 . . . . . . . . . . 11 𝑥𝑌 / 𝑥𝐴
120119nfel1 2911 . . . . . . . . . 10 𝑥𝑌 / 𝑥𝐴 ∈ ℂ
121 csbeq1a 3859 . . . . . . . . . . 11 (𝑥 = 𝑌𝐴 = 𝑌 / 𝑥𝐴)
122121eleq1d 2816 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝐴 ∈ ℂ ↔ 𝑌 / 𝑥𝐴 ∈ ℂ))
123120, 122rspc 3560 . . . . . . . . 9 (𝑌𝑆 → (∀𝑥𝑆 𝐴 ∈ ℂ → 𝑌 / 𝑥𝐴 ∈ ℂ))
1244, 118, 123sylc 65 . . . . . . . 8 (𝜑𝑌 / 𝑥𝐴 ∈ ℂ)
125116, 51, 124addsubd 11493 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
126125adantr 480 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
127111, 126eqtrd 2766 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
12859, 127oveq12d 7364 . . . 4 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) + ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵)))
12937, 51mulcld 11132 . . . . . 6 (𝜑 → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
130129adantr 480 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
13151adantr 480 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 / 𝑥𝐵 ∈ ℂ)
132116, 124subcld 11472 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
133132adantr 480 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
134130, 131, 133nppcan3d 11499 . . . 4 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) + ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
135128, 134eqtrd 2766 . . 3 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
136 dvfsumlem1.6 . . . 4 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
137 peano2re 11286 . . . . . 6 ((⌊‘𝑋) ∈ ℝ → ((⌊‘𝑋) + 1) ∈ ℝ)
13810, 137syl 17 . . . . 5 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℝ)
1395, 138leloed 11256 . . . 4 (𝜑 → (𝑌 ≤ ((⌊‘𝑋) + 1) ↔ (𝑌 < ((⌊‘𝑋) + 1) ∨ 𝑌 = ((⌊‘𝑋) + 1))))
140136, 139mpbid 232 . . 3 (𝜑 → (𝑌 < ((⌊‘𝑋) + 1) ∨ 𝑌 = ((⌊‘𝑋) + 1)))
14124, 135, 140mpjaodan 960 . 2 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
142 ovex 7379 . . 3 (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ V
143 nfcv 2894 . . . 4 𝑥𝑌
144 nfcv 2894 . . . . . 6 𝑥(𝑌 − (⌊‘𝑌))
145 nfcv 2894 . . . . . 6 𝑥 ·
146144, 145, 46nfov 7376 . . . . 5 𝑥((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)
147 nfcv 2894 . . . . 5 𝑥 +
148 nfcv 2894 . . . . . 6 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶
149 nfcv 2894 . . . . . 6 𝑥
150148, 149, 119nfov 7376 . . . . 5 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)
151146, 147, 150nfov 7376 . . . 4 𝑥(((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
152 id 22 . . . . . . 7 (𝑥 = 𝑌𝑥 = 𝑌)
153 fveq2 6822 . . . . . . 7 (𝑥 = 𝑌 → (⌊‘𝑥) = (⌊‘𝑌))
154152, 153oveq12d 7364 . . . . . 6 (𝑥 = 𝑌 → (𝑥 − (⌊‘𝑥)) = (𝑌 − (⌊‘𝑌)))
155154, 48oveq12d 7364 . . . . 5 (𝑥 = 𝑌 → ((𝑥 − (⌊‘𝑥)) · 𝐵) = ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))
156153oveq2d 7362 . . . . . . 7 (𝑥 = 𝑌 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑌)))
157156sumeq1d 15607 . . . . . 6 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
158157, 121oveq12d 7364 . . . . 5 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
159155, 158oveq12d 7364 . . . 4 (𝑥 = 𝑌 → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
160 dvfsum.h . . . 4 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
161143, 151, 159, 160fvmptf 6950 . . 3 ((𝑌𝑆 ∧ (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ V) → (𝐻𝑌) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
1624, 142, 161sylancl 586 . 2 (𝜑 → (𝐻𝑌) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
163129, 124, 116subadd23d 11494 . 2 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
164141, 162, 1633eqtr4d 2776 1 (𝜑 → (𝐻𝑌) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  csb 3845  wss 3897   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  1c1 11007   + caddc 11009   · cmul 11011  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  cmin 11344  cz 12468  cuz 12732  (,)cioo 13245  ...cfz 13407  cfl 13694  Σcsu 15593   D cdv 25791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-cncf 24798  df-limc 25794  df-dv 25795
This theorem is referenced by:  dvfsumlem2  25960  dvfsumlem2OLD  25961
  Copyright terms: Public domain W3C validator