MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem1 Structured version   Visualization version   GIF version

Theorem dvfsumlem1 25984
Description: Lemma for dvfsumrlim 25990. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsum.h 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
dvfsumlem1.1 (𝜑𝑋𝑆)
dvfsumlem1.2 (𝜑𝑌𝑆)
dvfsumlem1.3 (𝜑𝐷𝑋)
dvfsumlem1.4 (𝜑𝑋𝑌)
dvfsumlem1.5 (𝜑𝑌𝑈)
dvfsumlem1.6 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
Assertion
Ref Expression
dvfsumlem1 (𝜑 → (𝐻𝑌) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐻(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem1
StepHypRef Expression
1 dvfsum.s . . . . . . . . . 10 𝑆 = (𝑇(,)+∞)
2 ioossre 13424 . . . . . . . . . 10 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 4005 . . . . . . . . 9 𝑆 ⊆ ℝ
4 dvfsumlem1.2 . . . . . . . . 9 (𝜑𝑌𝑆)
53, 4sselid 3956 . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
6 dvfsumlem1.1 . . . . . . . . . 10 (𝜑𝑋𝑆)
73, 6sselid 3956 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
87flcld 13815 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ∈ ℤ)
9 reflcl 13813 . . . . . . . . . 10 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
107, 9syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑋) ∈ ℝ)
11 flle 13816 . . . . . . . . . 10 (𝑋 ∈ ℝ → (⌊‘𝑋) ≤ 𝑋)
127, 11syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑋) ≤ 𝑋)
13 dvfsumlem1.4 . . . . . . . . 9 (𝜑𝑋𝑌)
1410, 7, 5, 12, 13letrd 11392 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ≤ 𝑌)
15 flbi 13833 . . . . . . . . 9 ((𝑌 ∈ ℝ ∧ (⌊‘𝑋) ∈ ℤ) → ((⌊‘𝑌) = (⌊‘𝑋) ↔ ((⌊‘𝑋) ≤ 𝑌𝑌 < ((⌊‘𝑋) + 1))))
1615baibd 539 . . . . . . . 8 (((𝑌 ∈ ℝ ∧ (⌊‘𝑋) ∈ ℤ) ∧ (⌊‘𝑋) ≤ 𝑌) → ((⌊‘𝑌) = (⌊‘𝑋) ↔ 𝑌 < ((⌊‘𝑋) + 1)))
175, 8, 14, 16syl21anc 837 . . . . . . 7 (𝜑 → ((⌊‘𝑌) = (⌊‘𝑋) ↔ 𝑌 < ((⌊‘𝑋) + 1)))
1817biimpar 477 . . . . . 6 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = (⌊‘𝑋))
1918oveq2d 7421 . . . . 5 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (𝑌 − (⌊‘𝑌)) = (𝑌 − (⌊‘𝑋)))
2019oveq1d 7420 . . . 4 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵))
2118oveq2d 7421 . . . . . 6 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (𝑀...(⌊‘𝑌)) = (𝑀...(⌊‘𝑋)))
2221sumeq1d 15716 . . . . 5 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
2322oveq1d 7420 . . . 4 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴))
2420, 23oveq12d 7423 . . 3 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
25 simpr 484 . . . . . . . . . . 11 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 = ((⌊‘𝑋) + 1))
267adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑋 ∈ ℝ)
2726flcld 13815 . . . . . . . . . . . 12 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑋) ∈ ℤ)
2827peano2zd 12700 . . . . . . . . . . 11 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((⌊‘𝑋) + 1) ∈ ℤ)
2925, 28eqeltrd 2834 . . . . . . . . . 10 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 ∈ ℤ)
30 flid 13825 . . . . . . . . . 10 (𝑌 ∈ ℤ → (⌊‘𝑌) = 𝑌)
3129, 30syl 17 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = 𝑌)
3231, 25eqtrd 2770 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = ((⌊‘𝑋) + 1))
3332oveq2d 7421 . . . . . . 7 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (𝑌 − (⌊‘𝑌)) = (𝑌 − ((⌊‘𝑋) + 1)))
3433oveq1d 7420 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵))
355recnd 11263 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
3610recnd 11263 . . . . . . . . . 10 (𝜑 → (⌊‘𝑋) ∈ ℂ)
3735, 36subcld 11594 . . . . . . . . 9 (𝜑 → (𝑌 − (⌊‘𝑋)) ∈ ℂ)
38 1cnd 11230 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
393a1i 11 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℝ)
40 dvfsum.a . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
41 dvfsum.b1 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝐵𝑉)
42 dvfsum.b3 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
4339, 40, 41, 42dvmptrecl 25982 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
4443recnd 11263 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
4544ralrimiva 3132 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℂ)
46 nfcsb1v 3898 . . . . . . . . . . . 12 𝑥𝑌 / 𝑥𝐵
4746nfel1 2915 . . . . . . . . . . 11 𝑥𝑌 / 𝑥𝐵 ∈ ℂ
48 csbeq1a 3888 . . . . . . . . . . . 12 (𝑥 = 𝑌𝐵 = 𝑌 / 𝑥𝐵)
4948eleq1d 2819 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝐵 ∈ ℂ ↔ 𝑌 / 𝑥𝐵 ∈ ℂ))
5047, 49rspc 3589 . . . . . . . . . 10 (𝑌𝑆 → (∀𝑥𝑆 𝐵 ∈ ℂ → 𝑌 / 𝑥𝐵 ∈ ℂ))
514, 45, 50sylc 65 . . . . . . . . 9 (𝜑𝑌 / 𝑥𝐵 ∈ ℂ)
5237, 38, 51subdird 11694 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)))
5335, 36, 38subsub4d 11625 . . . . . . . . 9 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) = (𝑌 − ((⌊‘𝑋) + 1)))
5453oveq1d 7420 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵))
5551mullidd 11253 . . . . . . . . 9 (𝜑 → (1 · 𝑌 / 𝑥𝐵) = 𝑌 / 𝑥𝐵)
5655oveq2d 7421 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5752, 54, 563eqtr3d 2778 . . . . . . 7 (𝜑 → ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5857adantr 480 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5934, 58eqtrd 2770 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
60 dvfsum.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
618peano2zd 12700 . . . . . . . . . . . 12 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℤ)
6260zred 12697 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
63 peano2rem 11550 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ∈ ℝ)
65 dvfsum.d . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℝ)
66 dvfsum.md . . . . . . . . . . . . . . . 16 (𝜑𝑀 ≤ (𝐷 + 1))
67 1red 11236 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℝ)
6862, 67, 65lesubaddd 11834 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) ≤ 𝐷𝑀 ≤ (𝐷 + 1)))
6966, 68mpbird 257 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ≤ 𝐷)
70 dvfsumlem1.3 . . . . . . . . . . . . . . 15 (𝜑𝐷𝑋)
7164, 65, 7, 69, 70letrd 11392 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 − 1) ≤ 𝑋)
72 peano2zm 12635 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
7360, 72syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ∈ ℤ)
74 flge 13822 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) ≤ 𝑋 ↔ (𝑀 − 1) ≤ (⌊‘𝑋)))
757, 73, 74syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 − 1) ≤ 𝑋 ↔ (𝑀 − 1) ≤ (⌊‘𝑋)))
7671, 75mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑀 − 1) ≤ (⌊‘𝑋))
7762, 67, 10lesubaddd 11834 . . . . . . . . . . . . 13 (𝜑 → ((𝑀 − 1) ≤ (⌊‘𝑋) ↔ 𝑀 ≤ ((⌊‘𝑋) + 1)))
7876, 77mpbid 232 . . . . . . . . . . . 12 (𝜑𝑀 ≤ ((⌊‘𝑋) + 1))
79 eluz2 12858 . . . . . . . . . . . 12 (((⌊‘𝑋) + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ ((⌊‘𝑋) + 1) ∈ ℤ ∧ 𝑀 ≤ ((⌊‘𝑋) + 1)))
8060, 61, 78, 79syl3anbrc 1344 . . . . . . . . . . 11 (𝜑 → ((⌊‘𝑋) + 1) ∈ (ℤ𝑀))
81 dvfsum.b2 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
8281recnd 11263 . . . . . . . . . . . . 13 ((𝜑𝑥𝑍) → 𝐵 ∈ ℂ)
8382ralrimiva 3132 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℂ)
84 elfzuz 13537 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...((⌊‘𝑋) + 1)) → 𝑘 ∈ (ℤ𝑀))
85 dvfsum.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
8684, 85eleqtrrdi 2845 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...((⌊‘𝑋) + 1)) → 𝑘𝑍)
87 dvfsum.c . . . . . . . . . . . . . 14 (𝑥 = 𝑘𝐵 = 𝐶)
8887eleq1d 2819 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
8988rspccva 3600 . . . . . . . . . . . 12 ((∀𝑥𝑍 𝐵 ∈ ℂ ∧ 𝑘𝑍) → 𝐶 ∈ ℂ)
9083, 86, 89syl2an 596 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))) → 𝐶 ∈ ℂ)
91 eqvisset 3479 . . . . . . . . . . . . 13 (𝑘 = ((⌊‘𝑋) + 1) → ((⌊‘𝑋) + 1) ∈ V)
92 eqeq2 2747 . . . . . . . . . . . . . . 15 (𝑘 = ((⌊‘𝑋) + 1) → (𝑥 = 𝑘𝑥 = ((⌊‘𝑋) + 1)))
9392biimpar 477 . . . . . . . . . . . . . 14 ((𝑘 = ((⌊‘𝑋) + 1) ∧ 𝑥 = ((⌊‘𝑋) + 1)) → 𝑥 = 𝑘)
9493, 87syl 17 . . . . . . . . . . . . 13 ((𝑘 = ((⌊‘𝑋) + 1) ∧ 𝑥 = ((⌊‘𝑋) + 1)) → 𝐵 = 𝐶)
9591, 94csbied 3910 . . . . . . . . . . . 12 (𝑘 = ((⌊‘𝑋) + 1) → ((⌊‘𝑋) + 1) / 𝑥𝐵 = 𝐶)
9695eqcomd 2741 . . . . . . . . . . 11 (𝑘 = ((⌊‘𝑋) + 1) → 𝐶 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
9780, 90, 96fsumm1 15767 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
98 ax-1cn 11187 . . . . . . . . . . . . . 14 1 ∈ ℂ
99 pncan 11488 . . . . . . . . . . . . . 14 (((⌊‘𝑋) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑋) + 1) − 1) = (⌊‘𝑋))
10036, 98, 99sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (((⌊‘𝑋) + 1) − 1) = (⌊‘𝑋))
101100oveq2d 7421 . . . . . . . . . . . 12 (𝜑 → (𝑀...(((⌊‘𝑋) + 1) − 1)) = (𝑀...(⌊‘𝑋)))
102101sumeq1d 15716 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
103102oveq1d 7420 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
10497, 103eqtrd 2770 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
105104adantr 480 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
10632oveq2d 7421 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (𝑀...(⌊‘𝑌)) = (𝑀...((⌊‘𝑋) + 1)))
107106sumeq1d 15716 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶)
10825csbeq1d 3878 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
109108oveq2d 7421 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
110105, 107, 1093eqtr4d 2780 . . . . . . 7 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵))
111110oveq1d 7420 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
112 fzfid 13991 . . . . . . . . 9 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
113 elfzuz 13537 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
114113, 85eleqtrrdi 2845 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
11583, 114, 89syl2an 596 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℂ)
116112, 115fsumcl 15749 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℂ)
11740recnd 11263 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝐴 ∈ ℂ)
118117ralrimiva 3132 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℂ)
119 nfcsb1v 3898 . . . . . . . . . . 11 𝑥𝑌 / 𝑥𝐴
120119nfel1 2915 . . . . . . . . . 10 𝑥𝑌 / 𝑥𝐴 ∈ ℂ
121 csbeq1a 3888 . . . . . . . . . . 11 (𝑥 = 𝑌𝐴 = 𝑌 / 𝑥𝐴)
122121eleq1d 2819 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝐴 ∈ ℂ ↔ 𝑌 / 𝑥𝐴 ∈ ℂ))
123120, 122rspc 3589 . . . . . . . . 9 (𝑌𝑆 → (∀𝑥𝑆 𝐴 ∈ ℂ → 𝑌 / 𝑥𝐴 ∈ ℂ))
1244, 118, 123sylc 65 . . . . . . . 8 (𝜑𝑌 / 𝑥𝐴 ∈ ℂ)
125116, 51, 124addsubd 11615 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
126125adantr 480 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
127111, 126eqtrd 2770 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
12859, 127oveq12d 7423 . . . 4 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) + ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵)))
12937, 51mulcld 11255 . . . . . 6 (𝜑 → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
130129adantr 480 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
13151adantr 480 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 / 𝑥𝐵 ∈ ℂ)
132116, 124subcld 11594 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
133132adantr 480 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
134130, 131, 133nppcan3d 11621 . . . 4 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) + ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
135128, 134eqtrd 2770 . . 3 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
136 dvfsumlem1.6 . . . 4 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
137 peano2re 11408 . . . . . 6 ((⌊‘𝑋) ∈ ℝ → ((⌊‘𝑋) + 1) ∈ ℝ)
13810, 137syl 17 . . . . 5 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℝ)
1395, 138leloed 11378 . . . 4 (𝜑 → (𝑌 ≤ ((⌊‘𝑋) + 1) ↔ (𝑌 < ((⌊‘𝑋) + 1) ∨ 𝑌 = ((⌊‘𝑋) + 1))))
140136, 139mpbid 232 . . 3 (𝜑 → (𝑌 < ((⌊‘𝑋) + 1) ∨ 𝑌 = ((⌊‘𝑋) + 1)))
14124, 135, 140mpjaodan 960 . 2 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
142 ovex 7438 . . 3 (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ V
143 nfcv 2898 . . . 4 𝑥𝑌
144 nfcv 2898 . . . . . 6 𝑥(𝑌 − (⌊‘𝑌))
145 nfcv 2898 . . . . . 6 𝑥 ·
146144, 145, 46nfov 7435 . . . . 5 𝑥((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)
147 nfcv 2898 . . . . 5 𝑥 +
148 nfcv 2898 . . . . . 6 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶
149 nfcv 2898 . . . . . 6 𝑥
150148, 149, 119nfov 7435 . . . . 5 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)
151146, 147, 150nfov 7435 . . . 4 𝑥(((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
152 id 22 . . . . . . 7 (𝑥 = 𝑌𝑥 = 𝑌)
153 fveq2 6876 . . . . . . 7 (𝑥 = 𝑌 → (⌊‘𝑥) = (⌊‘𝑌))
154152, 153oveq12d 7423 . . . . . 6 (𝑥 = 𝑌 → (𝑥 − (⌊‘𝑥)) = (𝑌 − (⌊‘𝑌)))
155154, 48oveq12d 7423 . . . . 5 (𝑥 = 𝑌 → ((𝑥 − (⌊‘𝑥)) · 𝐵) = ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))
156153oveq2d 7421 . . . . . . 7 (𝑥 = 𝑌 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑌)))
157156sumeq1d 15716 . . . . . 6 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
158157, 121oveq12d 7423 . . . . 5 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
159155, 158oveq12d 7423 . . . 4 (𝑥 = 𝑌 → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
160 dvfsum.h . . . 4 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
161143, 151, 159, 160fvmptf 7007 . . 3 ((𝑌𝑆 ∧ (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ V) → (𝐻𝑌) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
1624, 142, 161sylancl 586 . 2 (𝜑 → (𝐻𝑌) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
163129, 124, 116subadd23d 11616 . 2 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
164141, 162, 1633eqtr4d 2780 1 (𝜑 → (𝐻𝑌) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  csb 3874  wss 3926   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  1c1 11130   + caddc 11132   · cmul 11134  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  cmin 11466  cz 12588  cuz 12852  (,)cioo 13362  ...cfz 13524  cfl 13807  Σcsu 15702   D cdv 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-rest 17436  df-topn 17437  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-cncf 24822  df-limc 25819  df-dv 25820
This theorem is referenced by:  dvfsumlem2  25985  dvfsumlem2OLD  25986
  Copyright terms: Public domain W3C validator