MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem1 Structured version   Visualization version   GIF version

Theorem dvfsumlem1 25190
Description: Lemma for dvfsumrlim 25195. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsum.h 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
dvfsumlem1.1 (𝜑𝑋𝑆)
dvfsumlem1.2 (𝜑𝑌𝑆)
dvfsumlem1.3 (𝜑𝐷𝑋)
dvfsumlem1.4 (𝜑𝑋𝑌)
dvfsumlem1.5 (𝜑𝑌𝑈)
dvfsumlem1.6 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
Assertion
Ref Expression
dvfsumlem1 (𝜑 → (𝐻𝑌) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐻(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem1
StepHypRef Expression
1 dvfsum.s . . . . . . . . . 10 𝑆 = (𝑇(,)+∞)
2 ioossre 13140 . . . . . . . . . 10 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3955 . . . . . . . . 9 𝑆 ⊆ ℝ
4 dvfsumlem1.2 . . . . . . . . 9 (𝜑𝑌𝑆)
53, 4sselid 3919 . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
6 dvfsumlem1.1 . . . . . . . . . 10 (𝜑𝑋𝑆)
73, 6sselid 3919 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
87flcld 13518 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ∈ ℤ)
9 reflcl 13516 . . . . . . . . . 10 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
107, 9syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑋) ∈ ℝ)
11 flle 13519 . . . . . . . . . 10 (𝑋 ∈ ℝ → (⌊‘𝑋) ≤ 𝑋)
127, 11syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑋) ≤ 𝑋)
13 dvfsumlem1.4 . . . . . . . . 9 (𝜑𝑋𝑌)
1410, 7, 5, 12, 13letrd 11132 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ≤ 𝑌)
15 flbi 13536 . . . . . . . . 9 ((𝑌 ∈ ℝ ∧ (⌊‘𝑋) ∈ ℤ) → ((⌊‘𝑌) = (⌊‘𝑋) ↔ ((⌊‘𝑋) ≤ 𝑌𝑌 < ((⌊‘𝑋) + 1))))
1615baibd 540 . . . . . . . 8 (((𝑌 ∈ ℝ ∧ (⌊‘𝑋) ∈ ℤ) ∧ (⌊‘𝑋) ≤ 𝑌) → ((⌊‘𝑌) = (⌊‘𝑋) ↔ 𝑌 < ((⌊‘𝑋) + 1)))
175, 8, 14, 16syl21anc 835 . . . . . . 7 (𝜑 → ((⌊‘𝑌) = (⌊‘𝑋) ↔ 𝑌 < ((⌊‘𝑋) + 1)))
1817biimpar 478 . . . . . 6 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = (⌊‘𝑋))
1918oveq2d 7291 . . . . 5 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (𝑌 − (⌊‘𝑌)) = (𝑌 − (⌊‘𝑋)))
2019oveq1d 7290 . . . 4 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵))
2118oveq2d 7291 . . . . . 6 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (𝑀...(⌊‘𝑌)) = (𝑀...(⌊‘𝑋)))
2221sumeq1d 15413 . . . . 5 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
2322oveq1d 7290 . . . 4 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴))
2420, 23oveq12d 7293 . . 3 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
25 simpr 485 . . . . . . . . . . 11 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 = ((⌊‘𝑋) + 1))
267adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑋 ∈ ℝ)
2726flcld 13518 . . . . . . . . . . . 12 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑋) ∈ ℤ)
2827peano2zd 12429 . . . . . . . . . . 11 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((⌊‘𝑋) + 1) ∈ ℤ)
2925, 28eqeltrd 2839 . . . . . . . . . 10 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 ∈ ℤ)
30 flid 13528 . . . . . . . . . 10 (𝑌 ∈ ℤ → (⌊‘𝑌) = 𝑌)
3129, 30syl 17 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = 𝑌)
3231, 25eqtrd 2778 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = ((⌊‘𝑋) + 1))
3332oveq2d 7291 . . . . . . 7 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (𝑌 − (⌊‘𝑌)) = (𝑌 − ((⌊‘𝑋) + 1)))
3433oveq1d 7290 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵))
355recnd 11003 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
3610recnd 11003 . . . . . . . . . 10 (𝜑 → (⌊‘𝑋) ∈ ℂ)
3735, 36subcld 11332 . . . . . . . . 9 (𝜑 → (𝑌 − (⌊‘𝑋)) ∈ ℂ)
38 1cnd 10970 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
393a1i 11 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℝ)
40 dvfsum.a . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
41 dvfsum.b1 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝐵𝑉)
42 dvfsum.b3 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
4339, 40, 41, 42dvmptrecl 25188 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
4443recnd 11003 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
4544ralrimiva 3103 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℂ)
46 nfcsb1v 3857 . . . . . . . . . . . 12 𝑥𝑌 / 𝑥𝐵
4746nfel1 2923 . . . . . . . . . . 11 𝑥𝑌 / 𝑥𝐵 ∈ ℂ
48 csbeq1a 3846 . . . . . . . . . . . 12 (𝑥 = 𝑌𝐵 = 𝑌 / 𝑥𝐵)
4948eleq1d 2823 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝐵 ∈ ℂ ↔ 𝑌 / 𝑥𝐵 ∈ ℂ))
5047, 49rspc 3549 . . . . . . . . . 10 (𝑌𝑆 → (∀𝑥𝑆 𝐵 ∈ ℂ → 𝑌 / 𝑥𝐵 ∈ ℂ))
514, 45, 50sylc 65 . . . . . . . . 9 (𝜑𝑌 / 𝑥𝐵 ∈ ℂ)
5237, 38, 51subdird 11432 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)))
5335, 36, 38subsub4d 11363 . . . . . . . . 9 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) = (𝑌 − ((⌊‘𝑋) + 1)))
5453oveq1d 7290 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵))
5551mulid2d 10993 . . . . . . . . 9 (𝜑 → (1 · 𝑌 / 𝑥𝐵) = 𝑌 / 𝑥𝐵)
5655oveq2d 7291 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5752, 54, 563eqtr3d 2786 . . . . . . 7 (𝜑 → ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5857adantr 481 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5934, 58eqtrd 2778 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
60 dvfsum.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
618peano2zd 12429 . . . . . . . . . . . 12 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℤ)
6260zred 12426 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
63 peano2rem 11288 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ∈ ℝ)
65 dvfsum.d . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℝ)
66 dvfsum.md . . . . . . . . . . . . . . . 16 (𝜑𝑀 ≤ (𝐷 + 1))
67 1red 10976 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℝ)
6862, 67, 65lesubaddd 11572 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) ≤ 𝐷𝑀 ≤ (𝐷 + 1)))
6966, 68mpbird 256 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ≤ 𝐷)
70 dvfsumlem1.3 . . . . . . . . . . . . . . 15 (𝜑𝐷𝑋)
7164, 65, 7, 69, 70letrd 11132 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 − 1) ≤ 𝑋)
72 peano2zm 12363 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
7360, 72syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ∈ ℤ)
74 flge 13525 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) ≤ 𝑋 ↔ (𝑀 − 1) ≤ (⌊‘𝑋)))
757, 73, 74syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 − 1) ≤ 𝑋 ↔ (𝑀 − 1) ≤ (⌊‘𝑋)))
7671, 75mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝑀 − 1) ≤ (⌊‘𝑋))
7762, 67, 10lesubaddd 11572 . . . . . . . . . . . . 13 (𝜑 → ((𝑀 − 1) ≤ (⌊‘𝑋) ↔ 𝑀 ≤ ((⌊‘𝑋) + 1)))
7876, 77mpbid 231 . . . . . . . . . . . 12 (𝜑𝑀 ≤ ((⌊‘𝑋) + 1))
79 eluz2 12588 . . . . . . . . . . . 12 (((⌊‘𝑋) + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ ((⌊‘𝑋) + 1) ∈ ℤ ∧ 𝑀 ≤ ((⌊‘𝑋) + 1)))
8060, 61, 78, 79syl3anbrc 1342 . . . . . . . . . . 11 (𝜑 → ((⌊‘𝑋) + 1) ∈ (ℤ𝑀))
81 dvfsum.b2 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
8281recnd 11003 . . . . . . . . . . . . 13 ((𝜑𝑥𝑍) → 𝐵 ∈ ℂ)
8382ralrimiva 3103 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℂ)
84 elfzuz 13252 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...((⌊‘𝑋) + 1)) → 𝑘 ∈ (ℤ𝑀))
85 dvfsum.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
8684, 85eleqtrrdi 2850 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...((⌊‘𝑋) + 1)) → 𝑘𝑍)
87 dvfsum.c . . . . . . . . . . . . . 14 (𝑥 = 𝑘𝐵 = 𝐶)
8887eleq1d 2823 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
8988rspccva 3560 . . . . . . . . . . . 12 ((∀𝑥𝑍 𝐵 ∈ ℂ ∧ 𝑘𝑍) → 𝐶 ∈ ℂ)
9083, 86, 89syl2an 596 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))) → 𝐶 ∈ ℂ)
91 eqvisset 3449 . . . . . . . . . . . . 13 (𝑘 = ((⌊‘𝑋) + 1) → ((⌊‘𝑋) + 1) ∈ V)
92 eqeq2 2750 . . . . . . . . . . . . . . 15 (𝑘 = ((⌊‘𝑋) + 1) → (𝑥 = 𝑘𝑥 = ((⌊‘𝑋) + 1)))
9392biimpar 478 . . . . . . . . . . . . . 14 ((𝑘 = ((⌊‘𝑋) + 1) ∧ 𝑥 = ((⌊‘𝑋) + 1)) → 𝑥 = 𝑘)
9493, 87syl 17 . . . . . . . . . . . . 13 ((𝑘 = ((⌊‘𝑋) + 1) ∧ 𝑥 = ((⌊‘𝑋) + 1)) → 𝐵 = 𝐶)
9591, 94csbied 3870 . . . . . . . . . . . 12 (𝑘 = ((⌊‘𝑋) + 1) → ((⌊‘𝑋) + 1) / 𝑥𝐵 = 𝐶)
9695eqcomd 2744 . . . . . . . . . . 11 (𝑘 = ((⌊‘𝑋) + 1) → 𝐶 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
9780, 90, 96fsumm1 15463 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
98 ax-1cn 10929 . . . . . . . . . . . . . 14 1 ∈ ℂ
99 pncan 11227 . . . . . . . . . . . . . 14 (((⌊‘𝑋) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑋) + 1) − 1) = (⌊‘𝑋))
10036, 98, 99sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (((⌊‘𝑋) + 1) − 1) = (⌊‘𝑋))
101100oveq2d 7291 . . . . . . . . . . . 12 (𝜑 → (𝑀...(((⌊‘𝑋) + 1) − 1)) = (𝑀...(⌊‘𝑋)))
102101sumeq1d 15413 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
103102oveq1d 7290 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
10497, 103eqtrd 2778 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
105104adantr 481 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
10632oveq2d 7291 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (𝑀...(⌊‘𝑌)) = (𝑀...((⌊‘𝑋) + 1)))
107106sumeq1d 15413 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶)
10825csbeq1d 3836 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
109108oveq2d 7291 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
110105, 107, 1093eqtr4d 2788 . . . . . . 7 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵))
111110oveq1d 7290 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
112 fzfid 13693 . . . . . . . . 9 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
113 elfzuz 13252 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
114113, 85eleqtrrdi 2850 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
11583, 114, 89syl2an 596 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℂ)
116112, 115fsumcl 15445 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℂ)
11740recnd 11003 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝐴 ∈ ℂ)
118117ralrimiva 3103 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℂ)
119 nfcsb1v 3857 . . . . . . . . . . 11 𝑥𝑌 / 𝑥𝐴
120119nfel1 2923 . . . . . . . . . 10 𝑥𝑌 / 𝑥𝐴 ∈ ℂ
121 csbeq1a 3846 . . . . . . . . . . 11 (𝑥 = 𝑌𝐴 = 𝑌 / 𝑥𝐴)
122121eleq1d 2823 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝐴 ∈ ℂ ↔ 𝑌 / 𝑥𝐴 ∈ ℂ))
123120, 122rspc 3549 . . . . . . . . 9 (𝑌𝑆 → (∀𝑥𝑆 𝐴 ∈ ℂ → 𝑌 / 𝑥𝐴 ∈ ℂ))
1244, 118, 123sylc 65 . . . . . . . 8 (𝜑𝑌 / 𝑥𝐴 ∈ ℂ)
125116, 51, 124addsubd 11353 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
126125adantr 481 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
127111, 126eqtrd 2778 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
12859, 127oveq12d 7293 . . . 4 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) + ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵)))
12937, 51mulcld 10995 . . . . . 6 (𝜑 → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
130129adantr 481 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
13151adantr 481 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 / 𝑥𝐵 ∈ ℂ)
132116, 124subcld 11332 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
133132adantr 481 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
134130, 131, 133nppcan3d 11359 . . . 4 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) + ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
135128, 134eqtrd 2778 . . 3 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
136 dvfsumlem1.6 . . . 4 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
137 peano2re 11148 . . . . . 6 ((⌊‘𝑋) ∈ ℝ → ((⌊‘𝑋) + 1) ∈ ℝ)
13810, 137syl 17 . . . . 5 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℝ)
1395, 138leloed 11118 . . . 4 (𝜑 → (𝑌 ≤ ((⌊‘𝑋) + 1) ↔ (𝑌 < ((⌊‘𝑋) + 1) ∨ 𝑌 = ((⌊‘𝑋) + 1))))
140136, 139mpbid 231 . . 3 (𝜑 → (𝑌 < ((⌊‘𝑋) + 1) ∨ 𝑌 = ((⌊‘𝑋) + 1)))
14124, 135, 140mpjaodan 956 . 2 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
142 ovex 7308 . . 3 (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ V
143 nfcv 2907 . . . 4 𝑥𝑌
144 nfcv 2907 . . . . . 6 𝑥(𝑌 − (⌊‘𝑌))
145 nfcv 2907 . . . . . 6 𝑥 ·
146144, 145, 46nfov 7305 . . . . 5 𝑥((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)
147 nfcv 2907 . . . . 5 𝑥 +
148 nfcv 2907 . . . . . 6 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶
149 nfcv 2907 . . . . . 6 𝑥
150148, 149, 119nfov 7305 . . . . 5 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)
151146, 147, 150nfov 7305 . . . 4 𝑥(((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
152 id 22 . . . . . . 7 (𝑥 = 𝑌𝑥 = 𝑌)
153 fveq2 6774 . . . . . . 7 (𝑥 = 𝑌 → (⌊‘𝑥) = (⌊‘𝑌))
154152, 153oveq12d 7293 . . . . . 6 (𝑥 = 𝑌 → (𝑥 − (⌊‘𝑥)) = (𝑌 − (⌊‘𝑌)))
155154, 48oveq12d 7293 . . . . 5 (𝑥 = 𝑌 → ((𝑥 − (⌊‘𝑥)) · 𝐵) = ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))
156153oveq2d 7291 . . . . . . 7 (𝑥 = 𝑌 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑌)))
157156sumeq1d 15413 . . . . . 6 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
158157, 121oveq12d 7293 . . . . 5 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
159155, 158oveq12d 7293 . . . 4 (𝑥 = 𝑌 → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
160 dvfsum.h . . . 4 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
161143, 151, 159, 160fvmptf 6896 . . 3 ((𝑌𝑆 ∧ (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ V) → (𝐻𝑌) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
1624, 142, 161sylancl 586 . 2 (𝜑 → (𝐻𝑌) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
163129, 124, 116subadd23d 11354 . 2 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
164141, 162, 1633eqtr4d 2788 1 (𝜑 → (𝐻𝑌) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  csb 3832  wss 3887   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  cmin 11205  cz 12319  cuz 12582  (,)cioo 13079  ...cfz 13239  cfl 13510  Σcsu 15397   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  dvfsumlem2  25191
  Copyright terms: Public domain W3C validator