MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffi2 Structured version   Visualization version   GIF version

Theorem dffi2 8682
Description: The set of finite intersections is the smallest set that contains 𝐴 and is closed under pairwise intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
dffi2 (𝐴𝑉 → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝑉,𝑧
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem dffi2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 elex 3434 . 2 (𝐴𝑉𝐴 ∈ V)
2 vex 3419 . . . . . . . . . 10 𝑡 ∈ V
3 elfi 8672 . . . . . . . . . 10 ((𝑡 ∈ V ∧ 𝐴 ∈ V) → (𝑡 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥))
42, 3mpan 677 . . . . . . . . 9 (𝐴 ∈ V → (𝑡 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥))
54biimpd 221 . . . . . . . 8 (𝐴 ∈ V → (𝑡 ∈ (fi‘𝐴) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥))
6 df-rex 3095 . . . . . . . . 9 (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥 ↔ ∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥))
7 fiint 8590 . . . . . . . . . . . 12 (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧))
8 elinel1 4061 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
98elpwid 4434 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
1093ad2ant2 1114 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥𝐴)
11 simp1 1116 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝐴𝑧)
1210, 11sstrd 3869 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥𝑧)
13 eqvisset 3433 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑥 𝑥 ∈ V)
14 intex 5096 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ≠ ∅ ↔ 𝑥 ∈ V)
1513, 14sylibr 226 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑥𝑥 ≠ ∅)
16153ad2ant3 1115 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥 ≠ ∅)
17 elinel2 4062 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
18173ad2ant2 1114 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥 ∈ Fin)
1912, 16, 183jca 1108 . . . . . . . . . . . . . . . . 17 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin))
20193expib 1102 . . . . . . . . . . . . . . . 16 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin)))
21 pm2.27 42 . . . . . . . . . . . . . . . 16 ((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → 𝑥𝑧))
2220, 21syl6 35 . . . . . . . . . . . . . . 15 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → 𝑥𝑧)))
23 eleq1 2854 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑥 → (𝑡𝑧 𝑥𝑧))
2423biimprd 240 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑥 → ( 𝑥𝑧𝑡𝑧))
2524adantl 474 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → ( 𝑥𝑧𝑡𝑧))
2625a1i 11 . . . . . . . . . . . . . . 15 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → ( 𝑥𝑧𝑡𝑧)))
2722, 26syldd 72 . . . . . . . . . . . . . 14 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → 𝑡𝑧)))
2827com23 86 . . . . . . . . . . . . 13 (𝐴𝑧 → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧)))
2928alimdv 1875 . . . . . . . . . . . 12 (𝐴𝑧 → (∀𝑥((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧)))
307, 29syl5bi 234 . . . . . . . . . . 11 (𝐴𝑧 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧)))
3130imp 398 . . . . . . . . . 10 ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧))
32 19.23v 1901 . . . . . . . . . 10 (∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧) ↔ (∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧))
3331, 32sylib 210 . . . . . . . . 9 ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧))
346, 33syl5bi 234 . . . . . . . 8 ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥𝑡𝑧))
355, 34sylan9 500 . . . . . . 7 ((𝐴 ∈ V ∧ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)) → (𝑡 ∈ (fi‘𝐴) → 𝑡𝑧))
3635ssrdv 3865 . . . . . 6 ((𝐴 ∈ V ∧ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)) → (fi‘𝐴) ⊆ 𝑧)
3736ex 405 . . . . 5 (𝐴 ∈ V → ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧))
3837alrimiv 1886 . . . 4 (𝐴 ∈ V → ∀𝑧((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧))
39 ssintab 4766 . . . 4 ((fi‘𝐴) ⊆ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ↔ ∀𝑧((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧))
4038, 39sylibr 226 . . 3 (𝐴 ∈ V → (fi‘𝐴) ⊆ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
41 ssfii 8678 . . . . 5 (𝐴 ∈ V → 𝐴 ⊆ (fi‘𝐴))
42 fiin 8681 . . . . . 6 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥𝑦) ∈ (fi‘𝐴))
4342rgen2a 3177 . . . . 5 𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)
44 fvex 6512 . . . . . 6 (fi‘𝐴) ∈ V
45 sseq2 3884 . . . . . . 7 (𝑧 = (fi‘𝐴) → (𝐴𝑧𝐴 ⊆ (fi‘𝐴)))
46 eleq2 2855 . . . . . . . . 9 (𝑧 = (fi‘𝐴) → ((𝑥𝑦) ∈ 𝑧 ↔ (𝑥𝑦) ∈ (fi‘𝐴)))
4746raleqbi1dv 3344 . . . . . . . 8 (𝑧 = (fi‘𝐴) → (∀𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)))
4847raleqbi1dv 3344 . . . . . . 7 (𝑧 = (fi‘𝐴) → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)))
4945, 48anbi12d 621 . . . . . 6 (𝑧 = (fi‘𝐴) → ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) ↔ (𝐴 ⊆ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴))))
5044, 49elab 3583 . . . . 5 ((fi‘𝐴) ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ↔ (𝐴 ⊆ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)))
5141, 43, 50sylanblrc 581 . . . 4 (𝐴 ∈ V → (fi‘𝐴) ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
52 intss1 4764 . . . 4 ((fi‘𝐴) ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} → {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ (fi‘𝐴))
5351, 52syl 17 . . 3 (𝐴 ∈ V → {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ (fi‘𝐴))
5440, 53eqssd 3876 . 2 (𝐴 ∈ V → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
551, 54syl 17 1 (𝐴𝑉 → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068  wal 1505   = wceq 1507  wex 1742  wcel 2050  {cab 2759  wne 2968  wral 3089  wrex 3090  Vcvv 3416  cin 3829  wss 3830  c0 4179  𝒫 cpw 4422   cint 4749  cfv 6188  Fincfn 8306  ficfi 8669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-en 8307  df-fin 8310  df-fi 8670
This theorem is referenced by:  fiss  8683  inficl  8684  dffi3  8690  fbssfi  22149
  Copyright terms: Public domain W3C validator