Step | Hyp | Ref
| Expression |
1 | | elex 3450 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
2 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑡 ∈ V |
3 | | elfi 9172 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ V ∧ 𝐴 ∈ V) → (𝑡 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = ∩ 𝑥)) |
4 | 2, 3 | mpan 687 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (𝑡 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = ∩ 𝑥)) |
5 | 4 | biimpd 228 |
. . . . . . . 8
⊢ (𝐴 ∈ V → (𝑡 ∈ (fi‘𝐴) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = ∩ 𝑥)) |
6 | | df-rex 3070 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
(𝒫 𝐴 ∩
Fin)𝑡 = ∩ 𝑥
↔ ∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩
𝑥)) |
7 | | fiint 9091 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑥((𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥
∈ 𝑧)) |
8 | | elinel1 4129 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴) |
9 | 8 | elpwid 4544 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) |
10 | 9 | 3ad2ant2 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑥 ⊆ 𝐴) |
11 | | simp1 1135 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝐴 ⊆ 𝑧) |
12 | 10, 11 | sstrd 3931 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑥 ⊆ 𝑧) |
13 | | eqvisset 3449 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = ∩
𝑥 → ∩ 𝑥
∈ V) |
14 | | intex 5261 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ≠ ∅ ↔ ∩ 𝑥
∈ V) |
15 | 13, 14 | sylibr 233 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = ∩
𝑥 → 𝑥 ≠ ∅) |
16 | 15 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑥 ≠ ∅) |
17 | | elinel2 4130 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin) |
18 | 17 | 3ad2ant2 1133 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑥 ∈ Fin) |
19 | 12, 16, 18 | 3jca 1127 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ⊆ 𝑧 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → (𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin)) |
20 | 19 | 3expib 1121 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆ 𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → (𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin))) |
21 | | pm2.27 42 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → (((𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥
∈ 𝑧) → ∩ 𝑥
∈ 𝑧)) |
22 | 20, 21 | syl6 35 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ 𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → (((𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥
∈ 𝑧) → ∩ 𝑥
∈ 𝑧))) |
23 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = ∩
𝑥 → (𝑡 ∈ 𝑧 ↔ ∩ 𝑥 ∈ 𝑧)) |
24 | 23 | biimprd 247 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = ∩
𝑥 → (∩ 𝑥
∈ 𝑧 → 𝑡 ∈ 𝑧)) |
25 | 24 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩
𝑥) → (∩ 𝑥
∈ 𝑧 → 𝑡 ∈ 𝑧)) |
26 | 25 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ 𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → (∩ 𝑥
∈ 𝑧 → 𝑡 ∈ 𝑧))) |
27 | 22, 26 | syldd 72 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ 𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → (((𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥
∈ 𝑧) → 𝑡 ∈ 𝑧))) |
28 | 27 | com23 86 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝑧 → (((𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥
∈ 𝑧) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩
𝑥) → 𝑡 ∈ 𝑧))) |
29 | 28 | alimdv 1919 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ 𝑧 → (∀𝑥((𝑥 ⊆ 𝑧 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥
∈ 𝑧) →
∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩
𝑥) → 𝑡 ∈ 𝑧))) |
30 | 7, 29 | syl5bi 241 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝑧 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑡 ∈ 𝑧))) |
31 | 30 | imp 407 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑡 ∈ 𝑧)) |
32 | | 19.23v 1945 |
. . . . . . . . . 10
⊢
(∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩
𝑥) → 𝑡 ∈ 𝑧) ↔ (∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑡 ∈ 𝑧)) |
33 | 31, 32 | sylib 217 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) → (∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = ∩ 𝑥) → 𝑡 ∈ 𝑧)) |
34 | 6, 33 | syl5bi 241 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = ∩ 𝑥 → 𝑡 ∈ 𝑧)) |
35 | 5, 34 | sylan9 508 |
. . . . . . 7
⊢ ((𝐴 ∈ V ∧ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)) → (𝑡 ∈ (fi‘𝐴) → 𝑡 ∈ 𝑧)) |
36 | 35 | ssrdv 3927 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)) → (fi‘𝐴) ⊆ 𝑧) |
37 | 36 | ex 413 |
. . . . 5
⊢ (𝐴 ∈ V → ((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧)) |
38 | 37 | alrimiv 1930 |
. . . 4
⊢ (𝐴 ∈ V → ∀𝑧((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧)) |
39 | | ssintab 4896 |
. . . 4
⊢
((fi‘𝐴)
⊆ ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ↔ ∀𝑧((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧)) |
40 | 38, 39 | sylibr 233 |
. . 3
⊢ (𝐴 ∈ V → (fi‘𝐴) ⊆ ∩ {𝑧
∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)}) |
41 | | ssfii 9178 |
. . . . 5
⊢ (𝐴 ∈ V → 𝐴 ⊆ (fi‘𝐴)) |
42 | | fiin 9181 |
. . . . . 6
⊢ ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) |
43 | 42 | rgen2 3120 |
. . . . 5
⊢
∀𝑥 ∈
(fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴) |
44 | | fvex 6787 |
. . . . . 6
⊢
(fi‘𝐴) ∈
V |
45 | | sseq2 3947 |
. . . . . . 7
⊢ (𝑧 = (fi‘𝐴) → (𝐴 ⊆ 𝑧 ↔ 𝐴 ⊆ (fi‘𝐴))) |
46 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑧 = (fi‘𝐴) → ((𝑥 ∩ 𝑦) ∈ 𝑧 ↔ (𝑥 ∩ 𝑦) ∈ (fi‘𝐴))) |
47 | 46 | raleqbi1dv 3340 |
. . . . . . . 8
⊢ (𝑧 = (fi‘𝐴) → (∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴))) |
48 | 47 | raleqbi1dv 3340 |
. . . . . . 7
⊢ (𝑧 = (fi‘𝐴) → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴))) |
49 | 45, 48 | anbi12d 631 |
. . . . . 6
⊢ (𝑧 = (fi‘𝐴) → ((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) ↔ (𝐴 ⊆ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴)))) |
50 | 44, 49 | elab 3609 |
. . . . 5
⊢
((fi‘𝐴) ∈
{𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ↔ (𝐴 ⊆ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴))) |
51 | 41, 43, 50 | sylanblrc 590 |
. . . 4
⊢ (𝐴 ∈ V → (fi‘𝐴) ∈ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)}) |
52 | | intss1 4894 |
. . . 4
⊢
((fi‘𝐴) ∈
{𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} → ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ⊆ (fi‘𝐴)) |
53 | 51, 52 | syl 17 |
. . 3
⊢ (𝐴 ∈ V → ∩ {𝑧
∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ⊆ (fi‘𝐴)) |
54 | 40, 53 | eqssd 3938 |
. 2
⊢ (𝐴 ∈ V → (fi‘𝐴) = ∩
{𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)}) |
55 | 1, 54 | syl 17 |
1
⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)}) |