MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffi2 Structured version   Visualization version   GIF version

Theorem dffi2 8889
Description: The set of finite intersections is the smallest set that contains 𝐴 and is closed under pairwise intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
dffi2 (𝐴𝑉 → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝑉,𝑧
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem dffi2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 elex 3514 . 2 (𝐴𝑉𝐴 ∈ V)
2 vex 3499 . . . . . . . . . 10 𝑡 ∈ V
3 elfi 8879 . . . . . . . . . 10 ((𝑡 ∈ V ∧ 𝐴 ∈ V) → (𝑡 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥))
42, 3mpan 688 . . . . . . . . 9 (𝐴 ∈ V → (𝑡 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥))
54biimpd 231 . . . . . . . 8 (𝐴 ∈ V → (𝑡 ∈ (fi‘𝐴) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥))
6 df-rex 3146 . . . . . . . . 9 (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥 ↔ ∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥))
7 fiint 8797 . . . . . . . . . . . 12 (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧))
8 elinel1 4174 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
98elpwid 4552 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
1093ad2ant2 1130 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥𝐴)
11 simp1 1132 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝐴𝑧)
1210, 11sstrd 3979 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥𝑧)
13 eqvisset 3513 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑥 𝑥 ∈ V)
14 intex 5242 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ≠ ∅ ↔ 𝑥 ∈ V)
1513, 14sylibr 236 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑥𝑥 ≠ ∅)
16153ad2ant3 1131 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥 ≠ ∅)
17 elinel2 4175 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
18173ad2ant2 1130 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥 ∈ Fin)
1912, 16, 183jca 1124 . . . . . . . . . . . . . . . . 17 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin))
20193expib 1118 . . . . . . . . . . . . . . . 16 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin)))
21 pm2.27 42 . . . . . . . . . . . . . . . 16 ((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → 𝑥𝑧))
2220, 21syl6 35 . . . . . . . . . . . . . . 15 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → 𝑥𝑧)))
23 eleq1 2902 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑥 → (𝑡𝑧 𝑥𝑧))
2423biimprd 250 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑥 → ( 𝑥𝑧𝑡𝑧))
2524adantl 484 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → ( 𝑥𝑧𝑡𝑧))
2625a1i 11 . . . . . . . . . . . . . . 15 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → ( 𝑥𝑧𝑡𝑧)))
2722, 26syldd 72 . . . . . . . . . . . . . 14 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → 𝑡𝑧)))
2827com23 86 . . . . . . . . . . . . 13 (𝐴𝑧 → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧)))
2928alimdv 1917 . . . . . . . . . . . 12 (𝐴𝑧 → (∀𝑥((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧)))
307, 29syl5bi 244 . . . . . . . . . . 11 (𝐴𝑧 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧)))
3130imp 409 . . . . . . . . . 10 ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧))
32 19.23v 1943 . . . . . . . . . 10 (∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧) ↔ (∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧))
3331, 32sylib 220 . . . . . . . . 9 ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧))
346, 33syl5bi 244 . . . . . . . 8 ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥𝑡𝑧))
355, 34sylan9 510 . . . . . . 7 ((𝐴 ∈ V ∧ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)) → (𝑡 ∈ (fi‘𝐴) → 𝑡𝑧))
3635ssrdv 3975 . . . . . 6 ((𝐴 ∈ V ∧ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)) → (fi‘𝐴) ⊆ 𝑧)
3736ex 415 . . . . 5 (𝐴 ∈ V → ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧))
3837alrimiv 1928 . . . 4 (𝐴 ∈ V → ∀𝑧((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧))
39 ssintab 4895 . . . 4 ((fi‘𝐴) ⊆ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ↔ ∀𝑧((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧))
4038, 39sylibr 236 . . 3 (𝐴 ∈ V → (fi‘𝐴) ⊆ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
41 ssfii 8885 . . . . 5 (𝐴 ∈ V → 𝐴 ⊆ (fi‘𝐴))
42 fiin 8888 . . . . . 6 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥𝑦) ∈ (fi‘𝐴))
4342rgen2 3205 . . . . 5 𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)
44 fvex 6685 . . . . . 6 (fi‘𝐴) ∈ V
45 sseq2 3995 . . . . . . 7 (𝑧 = (fi‘𝐴) → (𝐴𝑧𝐴 ⊆ (fi‘𝐴)))
46 eleq2 2903 . . . . . . . . 9 (𝑧 = (fi‘𝐴) → ((𝑥𝑦) ∈ 𝑧 ↔ (𝑥𝑦) ∈ (fi‘𝐴)))
4746raleqbi1dv 3405 . . . . . . . 8 (𝑧 = (fi‘𝐴) → (∀𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)))
4847raleqbi1dv 3405 . . . . . . 7 (𝑧 = (fi‘𝐴) → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)))
4945, 48anbi12d 632 . . . . . 6 (𝑧 = (fi‘𝐴) → ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) ↔ (𝐴 ⊆ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴))))
5044, 49elab 3669 . . . . 5 ((fi‘𝐴) ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ↔ (𝐴 ⊆ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)))
5141, 43, 50sylanblrc 592 . . . 4 (𝐴 ∈ V → (fi‘𝐴) ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
52 intss1 4893 . . . 4 ((fi‘𝐴) ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} → {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ (fi‘𝐴))
5351, 52syl 17 . . 3 (𝐴 ∈ V → {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ (fi‘𝐴))
5440, 53eqssd 3986 . 2 (𝐴 ∈ V → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
551, 54syl 17 1 (𝐴𝑉 → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wex 1780  wcel 2114  {cab 2801  wne 3018  wral 3140  wrex 3141  Vcvv 3496  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541   cint 4878  cfv 6357  Fincfn 8511  ficfi 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-fin 8515  df-fi 8877
This theorem is referenced by:  fiss  8890  inficl  8891  dffi3  8897  fbssfi  22447
  Copyright terms: Public domain W3C validator