MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffi2 Structured version   Visualization version   GIF version

Theorem dffi2 9112
Description: The set of finite intersections is the smallest set that contains 𝐴 and is closed under pairwise intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
dffi2 (𝐴𝑉 → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝑉,𝑧
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem dffi2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝐴𝑉𝐴 ∈ V)
2 vex 3426 . . . . . . . . . 10 𝑡 ∈ V
3 elfi 9102 . . . . . . . . . 10 ((𝑡 ∈ V ∧ 𝐴 ∈ V) → (𝑡 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥))
42, 3mpan 686 . . . . . . . . 9 (𝐴 ∈ V → (𝑡 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥))
54biimpd 228 . . . . . . . 8 (𝐴 ∈ V → (𝑡 ∈ (fi‘𝐴) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥))
6 df-rex 3069 . . . . . . . . 9 (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥 ↔ ∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥))
7 fiint 9021 . . . . . . . . . . . 12 (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧))
8 elinel1 4125 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
98elpwid 4541 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
1093ad2ant2 1132 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥𝐴)
11 simp1 1134 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝐴𝑧)
1210, 11sstrd 3927 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥𝑧)
13 eqvisset 3439 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑥 𝑥 ∈ V)
14 intex 5256 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ≠ ∅ ↔ 𝑥 ∈ V)
1513, 14sylibr 233 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑥𝑥 ≠ ∅)
16153ad2ant3 1133 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥 ≠ ∅)
17 elinel2 4126 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
18173ad2ant2 1132 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥 ∈ Fin)
1912, 16, 183jca 1126 . . . . . . . . . . . . . . . . 17 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin))
20193expib 1120 . . . . . . . . . . . . . . . 16 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin)))
21 pm2.27 42 . . . . . . . . . . . . . . . 16 ((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → 𝑥𝑧))
2220, 21syl6 35 . . . . . . . . . . . . . . 15 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → 𝑥𝑧)))
23 eleq1 2826 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑥 → (𝑡𝑧 𝑥𝑧))
2423biimprd 247 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑥 → ( 𝑥𝑧𝑡𝑧))
2524adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → ( 𝑥𝑧𝑡𝑧))
2625a1i 11 . . . . . . . . . . . . . . 15 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → ( 𝑥𝑧𝑡𝑧)))
2722, 26syldd 72 . . . . . . . . . . . . . 14 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → 𝑡𝑧)))
2827com23 86 . . . . . . . . . . . . 13 (𝐴𝑧 → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧)))
2928alimdv 1920 . . . . . . . . . . . 12 (𝐴𝑧 → (∀𝑥((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧)))
307, 29syl5bi 241 . . . . . . . . . . 11 (𝐴𝑧 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧)))
3130imp 406 . . . . . . . . . 10 ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧))
32 19.23v 1946 . . . . . . . . . 10 (∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧) ↔ (∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧))
3331, 32sylib 217 . . . . . . . . 9 ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧))
346, 33syl5bi 241 . . . . . . . 8 ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥𝑡𝑧))
355, 34sylan9 507 . . . . . . 7 ((𝐴 ∈ V ∧ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)) → (𝑡 ∈ (fi‘𝐴) → 𝑡𝑧))
3635ssrdv 3923 . . . . . 6 ((𝐴 ∈ V ∧ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)) → (fi‘𝐴) ⊆ 𝑧)
3736ex 412 . . . . 5 (𝐴 ∈ V → ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧))
3837alrimiv 1931 . . . 4 (𝐴 ∈ V → ∀𝑧((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧))
39 ssintab 4893 . . . 4 ((fi‘𝐴) ⊆ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ↔ ∀𝑧((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧))
4038, 39sylibr 233 . . 3 (𝐴 ∈ V → (fi‘𝐴) ⊆ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
41 ssfii 9108 . . . . 5 (𝐴 ∈ V → 𝐴 ⊆ (fi‘𝐴))
42 fiin 9111 . . . . . 6 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥𝑦) ∈ (fi‘𝐴))
4342rgen2 3126 . . . . 5 𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)
44 fvex 6769 . . . . . 6 (fi‘𝐴) ∈ V
45 sseq2 3943 . . . . . . 7 (𝑧 = (fi‘𝐴) → (𝐴𝑧𝐴 ⊆ (fi‘𝐴)))
46 eleq2 2827 . . . . . . . . 9 (𝑧 = (fi‘𝐴) → ((𝑥𝑦) ∈ 𝑧 ↔ (𝑥𝑦) ∈ (fi‘𝐴)))
4746raleqbi1dv 3331 . . . . . . . 8 (𝑧 = (fi‘𝐴) → (∀𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)))
4847raleqbi1dv 3331 . . . . . . 7 (𝑧 = (fi‘𝐴) → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)))
4945, 48anbi12d 630 . . . . . 6 (𝑧 = (fi‘𝐴) → ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) ↔ (𝐴 ⊆ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴))))
5044, 49elab 3602 . . . . 5 ((fi‘𝐴) ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ↔ (𝐴 ⊆ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)))
5141, 43, 50sylanblrc 589 . . . 4 (𝐴 ∈ V → (fi‘𝐴) ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
52 intss1 4891 . . . 4 ((fi‘𝐴) ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} → {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ (fi‘𝐴))
5351, 52syl 17 . . 3 (𝐴 ∈ V → {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ (fi‘𝐴))
5440, 53eqssd 3934 . 2 (𝐴 ∈ V → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
551, 54syl 17 1 (𝐴𝑉 → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530   cint 4876  cfv 6418  Fincfn 8691  ficfi 9099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-fin 8695  df-fi 9100
This theorem is referenced by:  fiss  9113  inficl  9114  dffi3  9120  fbssfi  22896
  Copyright terms: Public domain W3C validator