![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz9.12lem1 | Structured version Visualization version GIF version |
Description: Lemma for tz9.12 9859. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
tz9.12lem.1 | ⊢ 𝐴 ∈ V |
tz9.12lem.2 | ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) |
Ref | Expression |
---|---|
tz9.12lem1 | ⊢ (𝐹 “ 𝐴) ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 6100 | . 2 ⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 | |
2 | tz9.12lem.2 | . . . 4 ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
3 | 2 | rnmpt 5980 | . . 3 ⊢ ran 𝐹 = {𝑥 ∣ ∃𝑧 ∈ V 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}} |
4 | id 22 | . . . . . 6 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
5 | ssrab2 4103 | . . . . . . 7 ⊢ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ⊆ On | |
6 | eqvisset 3508 | . . . . . . . 8 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ V) | |
7 | intex 5362 | . . . . . . . 8 ⊢ ({𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ≠ ∅ ↔ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ V) | |
8 | 6, 7 | sylibr 234 | . . . . . . 7 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ≠ ∅) |
9 | oninton 7831 | . . . . . . 7 ⊢ (({𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ⊆ On ∧ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ≠ ∅) → ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ On) | |
10 | 5, 8, 9 | sylancr 586 | . . . . . 6 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ On) |
11 | 4, 10 | eqeltrd 2844 | . . . . 5 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → 𝑥 ∈ On) |
12 | 11 | rexlimivw 3157 | . . . 4 ⊢ (∃𝑧 ∈ V 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → 𝑥 ∈ On) |
13 | 12 | abssi 4093 | . . 3 ⊢ {𝑥 ∣ ∃𝑧 ∈ V 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}} ⊆ On |
14 | 3, 13 | eqsstri 4043 | . 2 ⊢ ran 𝐹 ⊆ On |
15 | 1, 14 | sstri 4018 | 1 ⊢ (𝐹 “ 𝐴) ⊆ On |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {cab 2717 ≠ wne 2946 ∃wrex 3076 {crab 3443 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 ∩ cint 4970 ↦ cmpt 5249 ran crn 5701 “ cima 5703 Oncon0 6395 ‘cfv 6573 𝑅1cr1 9831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 |
This theorem is referenced by: tz9.12lem2 9857 tz9.12lem3 9858 |
Copyright terms: Public domain | W3C validator |