| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz9.12lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for tz9.12 9689. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| tz9.12lem.1 | ⊢ 𝐴 ∈ V |
| tz9.12lem.2 | ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) |
| Ref | Expression |
|---|---|
| tz9.12lem1 | ⊢ (𝐹 “ 𝐴) ⊆ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6025 | . 2 ⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 | |
| 2 | tz9.12lem.2 | . . . 4 ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
| 3 | 2 | rnmpt 5902 | . . 3 ⊢ ran 𝐹 = {𝑥 ∣ ∃𝑧 ∈ V 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}} |
| 4 | id 22 | . . . . . 6 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
| 5 | ssrab2 4029 | . . . . . . 7 ⊢ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ⊆ On | |
| 6 | eqvisset 3456 | . . . . . . . 8 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ V) | |
| 7 | intex 5284 | . . . . . . . 8 ⊢ ({𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ≠ ∅ ↔ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ V) | |
| 8 | 6, 7 | sylibr 234 | . . . . . . 7 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ≠ ∅) |
| 9 | oninton 7734 | . . . . . . 7 ⊢ (({𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ⊆ On ∧ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ≠ ∅) → ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ On) | |
| 10 | 5, 8, 9 | sylancr 587 | . . . . . 6 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ On) |
| 11 | 4, 10 | eqeltrd 2831 | . . . . 5 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → 𝑥 ∈ On) |
| 12 | 11 | rexlimivw 3129 | . . . 4 ⊢ (∃𝑧 ∈ V 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → 𝑥 ∈ On) |
| 13 | 12 | abssi 4016 | . . 3 ⊢ {𝑥 ∣ ∃𝑧 ∈ V 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}} ⊆ On |
| 14 | 3, 13 | eqsstri 3976 | . 2 ⊢ ran 𝐹 ⊆ On |
| 15 | 1, 14 | sstri 3939 | 1 ⊢ (𝐹 “ 𝐴) ⊆ On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 ≠ wne 2928 ∃wrex 3056 {crab 3395 Vcvv 3436 ⊆ wss 3897 ∅c0 4282 ∩ cint 4897 ↦ cmpt 5174 ran crn 5620 “ cima 5622 Oncon0 6312 ‘cfv 6487 𝑅1cr1 9661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6315 df-on 6316 |
| This theorem is referenced by: tz9.12lem2 9687 tz9.12lem3 9688 |
| Copyright terms: Public domain | W3C validator |