| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz9.12lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for tz9.12 9750. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| tz9.12lem.1 | ⊢ 𝐴 ∈ V |
| tz9.12lem.2 | ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) |
| Ref | Expression |
|---|---|
| tz9.12lem1 | ⊢ (𝐹 “ 𝐴) ⊆ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6045 | . 2 ⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 | |
| 2 | tz9.12lem.2 | . . . 4 ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
| 3 | 2 | rnmpt 5924 | . . 3 ⊢ ran 𝐹 = {𝑥 ∣ ∃𝑧 ∈ V 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}} |
| 4 | id 22 | . . . . . 6 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
| 5 | ssrab2 4046 | . . . . . . 7 ⊢ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ⊆ On | |
| 6 | eqvisset 3470 | . . . . . . . 8 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ V) | |
| 7 | intex 5302 | . . . . . . . 8 ⊢ ({𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ≠ ∅ ↔ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ V) | |
| 8 | 6, 7 | sylibr 234 | . . . . . . 7 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ≠ ∅) |
| 9 | oninton 7774 | . . . . . . 7 ⊢ (({𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ⊆ On ∧ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ≠ ∅) → ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ On) | |
| 10 | 5, 8, 9 | sylancr 587 | . . . . . 6 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ On) |
| 11 | 4, 10 | eqeltrd 2829 | . . . . 5 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → 𝑥 ∈ On) |
| 12 | 11 | rexlimivw 3131 | . . . 4 ⊢ (∃𝑧 ∈ V 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → 𝑥 ∈ On) |
| 13 | 12 | abssi 4036 | . . 3 ⊢ {𝑥 ∣ ∃𝑧 ∈ V 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}} ⊆ On |
| 14 | 3, 13 | eqsstri 3996 | . 2 ⊢ ran 𝐹 ⊆ On |
| 15 | 1, 14 | sstri 3959 | 1 ⊢ (𝐹 “ 𝐴) ⊆ On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2708 ≠ wne 2926 ∃wrex 3054 {crab 3408 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 ∩ cint 4913 ↦ cmpt 5191 ran crn 5642 “ cima 5644 Oncon0 6335 ‘cfv 6514 𝑅1cr1 9722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 |
| This theorem is referenced by: tz9.12lem2 9748 tz9.12lem3 9749 |
| Copyright terms: Public domain | W3C validator |