MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.12lem1 Structured version   Visualization version   GIF version

Theorem tz9.12lem1 9799
Description: Lemma for tz9.12 9802. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
tz9.12lem.1 𝐴 ∈ V
tz9.12lem.2 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
Assertion
Ref Expression
tz9.12lem1 (𝐹𝐴) ⊆ On
Distinct variable group:   𝑧,𝑣,𝐴
Allowed substitution hints:   𝐹(𝑧,𝑣)

Proof of Theorem tz9.12lem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imassrn 6058 . 2 (𝐹𝐴) ⊆ ran 𝐹
2 tz9.12lem.2 . . . 4 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
32rnmpt 5937 . . 3 ran 𝐹 = {𝑥 ∣ ∃𝑧 ∈ V 𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)}}
4 id 22 . . . . . 6 (𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} → 𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
5 ssrab2 4055 . . . . . . 7 {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ⊆ On
6 eqvisset 3479 . . . . . . . 8 (𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ∈ V)
7 intex 5314 . . . . . . . 8 ({𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ≠ ∅ ↔ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ∈ V)
86, 7sylibr 234 . . . . . . 7 (𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ≠ ∅)
9 oninton 7787 . . . . . . 7 (({𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ⊆ On ∧ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ≠ ∅) → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ∈ On)
105, 8, 9sylancr 587 . . . . . 6 (𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ∈ On)
114, 10eqeltrd 2834 . . . . 5 (𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} → 𝑥 ∈ On)
1211rexlimivw 3137 . . . 4 (∃𝑧 ∈ V 𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} → 𝑥 ∈ On)
1312abssi 4045 . . 3 {𝑥 ∣ ∃𝑧 ∈ V 𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)}} ⊆ On
143, 13eqsstri 4005 . 2 ran 𝐹 ⊆ On
151, 14sstri 3968 1 (𝐹𝐴) ⊆ On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  {cab 2713  wne 2932  wrex 3060  {crab 3415  Vcvv 3459  wss 3926  c0 4308   cint 4922  cmpt 5201  ran crn 5655  cima 5657  Oncon0 6352  cfv 6530  𝑅1cr1 9774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356
This theorem is referenced by:  tz9.12lem2  9800  tz9.12lem3  9801
  Copyright terms: Public domain W3C validator