MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.12lem1 Structured version   Visualization version   GIF version

Theorem tz9.12lem1 9529
Description: Lemma for tz9.12 9532. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
tz9.12lem.1 𝐴 ∈ V
tz9.12lem.2 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
Assertion
Ref Expression
tz9.12lem1 (𝐹𝐴) ⊆ On
Distinct variable group:   𝑧,𝑣,𝐴
Allowed substitution hints:   𝐹(𝑧,𝑣)

Proof of Theorem tz9.12lem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imassrn 5977 . 2 (𝐹𝐴) ⊆ ran 𝐹
2 tz9.12lem.2 . . . 4 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
32rnmpt 5861 . . 3 ran 𝐹 = {𝑥 ∣ ∃𝑧 ∈ V 𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)}}
4 id 22 . . . . . 6 (𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} → 𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
5 ssrab2 4017 . . . . . . 7 {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ⊆ On
6 eqvisset 3447 . . . . . . . 8 (𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ∈ V)
7 intex 5264 . . . . . . . 8 ({𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ≠ ∅ ↔ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ∈ V)
86, 7sylibr 233 . . . . . . 7 (𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ≠ ∅)
9 oninton 7635 . . . . . . 7 (({𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ⊆ On ∧ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ≠ ∅) → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ∈ On)
105, 8, 9sylancr 586 . . . . . 6 (𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ∈ On)
114, 10eqeltrd 2840 . . . . 5 (𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} → 𝑥 ∈ On)
1211rexlimivw 3212 . . . 4 (∃𝑧 ∈ V 𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} → 𝑥 ∈ On)
1312abssi 4007 . . 3 {𝑥 ∣ ∃𝑧 ∈ V 𝑥 = {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)}} ⊆ On
143, 13eqsstri 3959 . 2 ran 𝐹 ⊆ On
151, 14sstri 3934 1 (𝐹𝐴) ⊆ On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2109  {cab 2716  wne 2944  wrex 3066  {crab 3069  Vcvv 3430  wss 3891  c0 4261   cint 4884  cmpt 5161  ran crn 5589  cima 5591  Oncon0 6263  cfv 6430  𝑅1cr1 9504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ord 6266  df-on 6267
This theorem is referenced by:  tz9.12lem2  9530  tz9.12lem3  9531
  Copyright terms: Public domain W3C validator