Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnimage | Structured version Visualization version GIF version |
Description: Image𝑅 is a function over the set-like portion of 𝑅. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
fnimage | ⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimage 34230 | . 2 ⊢ Fun Image𝑅 | |
2 | vex 3436 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
3 | vex 3436 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | brimage 34228 | . . . . . . 7 ⊢ (𝑦Image𝑅𝑥 ↔ 𝑥 = (𝑅 “ 𝑦)) |
5 | eqvisset 3449 | . . . . . . 7 ⊢ (𝑥 = (𝑅 “ 𝑦) → (𝑅 “ 𝑦) ∈ V) | |
6 | 4, 5 | sylbi 216 | . . . . . 6 ⊢ (𝑦Image𝑅𝑥 → (𝑅 “ 𝑦) ∈ V) |
7 | 6 | exlimiv 1933 | . . . . 5 ⊢ (∃𝑥 𝑦Image𝑅𝑥 → (𝑅 “ 𝑦) ∈ V) |
8 | eqid 2738 | . . . . . . 7 ⊢ (𝑅 “ 𝑦) = (𝑅 “ 𝑦) | |
9 | brimageg 34229 | . . . . . . . 8 ⊢ ((𝑦 ∈ V ∧ (𝑅 “ 𝑦) ∈ V) → (𝑦Image𝑅(𝑅 “ 𝑦) ↔ (𝑅 “ 𝑦) = (𝑅 “ 𝑦))) | |
10 | 2, 9 | mpan 687 | . . . . . . 7 ⊢ ((𝑅 “ 𝑦) ∈ V → (𝑦Image𝑅(𝑅 “ 𝑦) ↔ (𝑅 “ 𝑦) = (𝑅 “ 𝑦))) |
11 | 8, 10 | mpbiri 257 | . . . . . 6 ⊢ ((𝑅 “ 𝑦) ∈ V → 𝑦Image𝑅(𝑅 “ 𝑦)) |
12 | breq2 5078 | . . . . . . 7 ⊢ (𝑥 = (𝑅 “ 𝑦) → (𝑦Image𝑅𝑥 ↔ 𝑦Image𝑅(𝑅 “ 𝑦))) | |
13 | 12 | spcegv 3536 | . . . . . 6 ⊢ ((𝑅 “ 𝑦) ∈ V → (𝑦Image𝑅(𝑅 “ 𝑦) → ∃𝑥 𝑦Image𝑅𝑥)) |
14 | 11, 13 | mpd 15 | . . . . 5 ⊢ ((𝑅 “ 𝑦) ∈ V → ∃𝑥 𝑦Image𝑅𝑥) |
15 | 7, 14 | impbii 208 | . . . 4 ⊢ (∃𝑥 𝑦Image𝑅𝑥 ↔ (𝑅 “ 𝑦) ∈ V) |
16 | 2 | eldm 5809 | . . . 4 ⊢ (𝑦 ∈ dom Image𝑅 ↔ ∃𝑥 𝑦Image𝑅𝑥) |
17 | imaeq2 5965 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑅 “ 𝑥) = (𝑅 “ 𝑦)) | |
18 | 17 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑅 “ 𝑥) ∈ V ↔ (𝑅 “ 𝑦) ∈ V)) |
19 | 2, 18 | elab 3609 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ↔ (𝑅 “ 𝑦) ∈ V) |
20 | 15, 16, 19 | 3bitr4i 303 | . . 3 ⊢ (𝑦 ∈ dom Image𝑅 ↔ 𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V}) |
21 | 20 | eqriv 2735 | . 2 ⊢ dom Image𝑅 = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
22 | df-fn 6436 | . 2 ⊢ (Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ↔ (Fun Image𝑅 ∧ dom Image𝑅 = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V})) | |
23 | 1, 21, 22 | mpbir2an 708 | 1 ⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 Vcvv 3432 class class class wbr 5074 dom cdm 5589 “ cima 5592 Fun wfun 6427 Fn wfn 6428 Imagecimage 34142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-symdif 4176 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-1st 7831 df-2nd 7832 df-txp 34156 df-image 34166 |
This theorem is referenced by: imageval 34232 |
Copyright terms: Public domain | W3C validator |