Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnimage Structured version   Visualization version   GIF version

Theorem fnimage 34158
Description: Image𝑅 is a function over the set-like portion of 𝑅. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fnimage Image𝑅 Fn {𝑥 ∣ (𝑅𝑥) ∈ V}
Distinct variable group:   𝑥,𝑅

Proof of Theorem fnimage
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funimage 34157 . 2 Fun Image𝑅
2 vex 3426 . . . . . . . 8 𝑦 ∈ V
3 vex 3426 . . . . . . . 8 𝑥 ∈ V
42, 3brimage 34155 . . . . . . 7 (𝑦Image𝑅𝑥𝑥 = (𝑅𝑦))
5 eqvisset 3439 . . . . . . 7 (𝑥 = (𝑅𝑦) → (𝑅𝑦) ∈ V)
64, 5sylbi 216 . . . . . 6 (𝑦Image𝑅𝑥 → (𝑅𝑦) ∈ V)
76exlimiv 1934 . . . . 5 (∃𝑥 𝑦Image𝑅𝑥 → (𝑅𝑦) ∈ V)
8 eqid 2738 . . . . . . 7 (𝑅𝑦) = (𝑅𝑦)
9 brimageg 34156 . . . . . . . 8 ((𝑦 ∈ V ∧ (𝑅𝑦) ∈ V) → (𝑦Image𝑅(𝑅𝑦) ↔ (𝑅𝑦) = (𝑅𝑦)))
102, 9mpan 686 . . . . . . 7 ((𝑅𝑦) ∈ V → (𝑦Image𝑅(𝑅𝑦) ↔ (𝑅𝑦) = (𝑅𝑦)))
118, 10mpbiri 257 . . . . . 6 ((𝑅𝑦) ∈ V → 𝑦Image𝑅(𝑅𝑦))
12 breq2 5074 . . . . . . 7 (𝑥 = (𝑅𝑦) → (𝑦Image𝑅𝑥𝑦Image𝑅(𝑅𝑦)))
1312spcegv 3526 . . . . . 6 ((𝑅𝑦) ∈ V → (𝑦Image𝑅(𝑅𝑦) → ∃𝑥 𝑦Image𝑅𝑥))
1411, 13mpd 15 . . . . 5 ((𝑅𝑦) ∈ V → ∃𝑥 𝑦Image𝑅𝑥)
157, 14impbii 208 . . . 4 (∃𝑥 𝑦Image𝑅𝑥 ↔ (𝑅𝑦) ∈ V)
162eldm 5798 . . . 4 (𝑦 ∈ dom Image𝑅 ↔ ∃𝑥 𝑦Image𝑅𝑥)
17 imaeq2 5954 . . . . . 6 (𝑥 = 𝑦 → (𝑅𝑥) = (𝑅𝑦))
1817eleq1d 2823 . . . . 5 (𝑥 = 𝑦 → ((𝑅𝑥) ∈ V ↔ (𝑅𝑦) ∈ V))
192, 18elab 3602 . . . 4 (𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V} ↔ (𝑅𝑦) ∈ V)
2015, 16, 193bitr4i 302 . . 3 (𝑦 ∈ dom Image𝑅𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V})
2120eqriv 2735 . 2 dom Image𝑅 = {𝑥 ∣ (𝑅𝑥) ∈ V}
22 df-fn 6421 . 2 (Image𝑅 Fn {𝑥 ∣ (𝑅𝑥) ∈ V} ↔ (Fun Image𝑅 ∧ dom Image𝑅 = {𝑥 ∣ (𝑅𝑥) ∈ V}))
231, 21, 22mpbir2an 707 1 Image𝑅 Fn {𝑥 ∣ (𝑅𝑥) ∈ V}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wex 1783  wcel 2108  {cab 2715  Vcvv 3422   class class class wbr 5070  dom cdm 5580  cima 5583  Fun wfun 6412   Fn wfn 6413  Imagecimage 34069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-symdif 4173  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-txp 34083  df-image 34093
This theorem is referenced by:  imageval  34159
  Copyright terms: Public domain W3C validator