Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnimage Structured version   Visualization version   GIF version

Theorem fnimage 35205
Description: Image𝑅 is a function over the set-like portion of 𝑅. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fnimage Image𝑅 Fn {𝑥 ∣ (𝑅𝑥) ∈ V}
Distinct variable group:   𝑥,𝑅

Proof of Theorem fnimage
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funimage 35204 . 2 Fun Image𝑅
2 vex 3476 . . . . . . . 8 𝑦 ∈ V
3 vex 3476 . . . . . . . 8 𝑥 ∈ V
42, 3brimage 35202 . . . . . . 7 (𝑦Image𝑅𝑥𝑥 = (𝑅𝑦))
5 eqvisset 3490 . . . . . . 7 (𝑥 = (𝑅𝑦) → (𝑅𝑦) ∈ V)
64, 5sylbi 216 . . . . . 6 (𝑦Image𝑅𝑥 → (𝑅𝑦) ∈ V)
76exlimiv 1931 . . . . 5 (∃𝑥 𝑦Image𝑅𝑥 → (𝑅𝑦) ∈ V)
8 eqid 2730 . . . . . . 7 (𝑅𝑦) = (𝑅𝑦)
9 brimageg 35203 . . . . . . . 8 ((𝑦 ∈ V ∧ (𝑅𝑦) ∈ V) → (𝑦Image𝑅(𝑅𝑦) ↔ (𝑅𝑦) = (𝑅𝑦)))
102, 9mpan 686 . . . . . . 7 ((𝑅𝑦) ∈ V → (𝑦Image𝑅(𝑅𝑦) ↔ (𝑅𝑦) = (𝑅𝑦)))
118, 10mpbiri 257 . . . . . 6 ((𝑅𝑦) ∈ V → 𝑦Image𝑅(𝑅𝑦))
12 breq2 5151 . . . . . . 7 (𝑥 = (𝑅𝑦) → (𝑦Image𝑅𝑥𝑦Image𝑅(𝑅𝑦)))
1312spcegv 3586 . . . . . 6 ((𝑅𝑦) ∈ V → (𝑦Image𝑅(𝑅𝑦) → ∃𝑥 𝑦Image𝑅𝑥))
1411, 13mpd 15 . . . . 5 ((𝑅𝑦) ∈ V → ∃𝑥 𝑦Image𝑅𝑥)
157, 14impbii 208 . . . 4 (∃𝑥 𝑦Image𝑅𝑥 ↔ (𝑅𝑦) ∈ V)
162eldm 5899 . . . 4 (𝑦 ∈ dom Image𝑅 ↔ ∃𝑥 𝑦Image𝑅𝑥)
17 imaeq2 6054 . . . . . 6 (𝑥 = 𝑦 → (𝑅𝑥) = (𝑅𝑦))
1817eleq1d 2816 . . . . 5 (𝑥 = 𝑦 → ((𝑅𝑥) ∈ V ↔ (𝑅𝑦) ∈ V))
192, 18elab 3667 . . . 4 (𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V} ↔ (𝑅𝑦) ∈ V)
2015, 16, 193bitr4i 302 . . 3 (𝑦 ∈ dom Image𝑅𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V})
2120eqriv 2727 . 2 dom Image𝑅 = {𝑥 ∣ (𝑅𝑥) ∈ V}
22 df-fn 6545 . 2 (Image𝑅 Fn {𝑥 ∣ (𝑅𝑥) ∈ V} ↔ (Fun Image𝑅 ∧ dom Image𝑅 = {𝑥 ∣ (𝑅𝑥) ∈ V}))
231, 21, 22mpbir2an 707 1 Image𝑅 Fn {𝑥 ∣ (𝑅𝑥) ∈ V}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wex 1779  wcel 2104  {cab 2707  Vcvv 3472   class class class wbr 5147  dom cdm 5675  cima 5678  Fun wfun 6536   Fn wfn 6537  Imagecimage 35116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-symdif 4241  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-eprel 5579  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-1st 7977  df-2nd 7978  df-txp 35130  df-image 35140
This theorem is referenced by:  imageval  35206
  Copyright terms: Public domain W3C validator