Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnimage Structured version   Visualization version   GIF version

Theorem fnimage 35917
Description: Image𝑅 is a function over the set-like portion of 𝑅. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fnimage Image𝑅 Fn {𝑥 ∣ (𝑅𝑥) ∈ V}
Distinct variable group:   𝑥,𝑅

Proof of Theorem fnimage
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funimage 35916 . 2 Fun Image𝑅
2 vex 3451 . . . . . . . 8 𝑦 ∈ V
3 vex 3451 . . . . . . . 8 𝑥 ∈ V
42, 3brimage 35914 . . . . . . 7 (𝑦Image𝑅𝑥𝑥 = (𝑅𝑦))
5 eqvisset 3467 . . . . . . 7 (𝑥 = (𝑅𝑦) → (𝑅𝑦) ∈ V)
64, 5sylbi 217 . . . . . 6 (𝑦Image𝑅𝑥 → (𝑅𝑦) ∈ V)
76exlimiv 1930 . . . . 5 (∃𝑥 𝑦Image𝑅𝑥 → (𝑅𝑦) ∈ V)
8 eqid 2729 . . . . . . 7 (𝑅𝑦) = (𝑅𝑦)
9 brimageg 35915 . . . . . . . 8 ((𝑦 ∈ V ∧ (𝑅𝑦) ∈ V) → (𝑦Image𝑅(𝑅𝑦) ↔ (𝑅𝑦) = (𝑅𝑦)))
102, 9mpan 690 . . . . . . 7 ((𝑅𝑦) ∈ V → (𝑦Image𝑅(𝑅𝑦) ↔ (𝑅𝑦) = (𝑅𝑦)))
118, 10mpbiri 258 . . . . . 6 ((𝑅𝑦) ∈ V → 𝑦Image𝑅(𝑅𝑦))
12 breq2 5111 . . . . . . 7 (𝑥 = (𝑅𝑦) → (𝑦Image𝑅𝑥𝑦Image𝑅(𝑅𝑦)))
1312spcegv 3563 . . . . . 6 ((𝑅𝑦) ∈ V → (𝑦Image𝑅(𝑅𝑦) → ∃𝑥 𝑦Image𝑅𝑥))
1411, 13mpd 15 . . . . 5 ((𝑅𝑦) ∈ V → ∃𝑥 𝑦Image𝑅𝑥)
157, 14impbii 209 . . . 4 (∃𝑥 𝑦Image𝑅𝑥 ↔ (𝑅𝑦) ∈ V)
162eldm 5864 . . . 4 (𝑦 ∈ dom Image𝑅 ↔ ∃𝑥 𝑦Image𝑅𝑥)
17 imaeq2 6027 . . . . . 6 (𝑥 = 𝑦 → (𝑅𝑥) = (𝑅𝑦))
1817eleq1d 2813 . . . . 5 (𝑥 = 𝑦 → ((𝑅𝑥) ∈ V ↔ (𝑅𝑦) ∈ V))
192, 18elab 3646 . . . 4 (𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V} ↔ (𝑅𝑦) ∈ V)
2015, 16, 193bitr4i 303 . . 3 (𝑦 ∈ dom Image𝑅𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V})
2120eqriv 2726 . 2 dom Image𝑅 = {𝑥 ∣ (𝑅𝑥) ∈ V}
22 df-fn 6514 . 2 (Image𝑅 Fn {𝑥 ∣ (𝑅𝑥) ∈ V} ↔ (Fun Image𝑅 ∧ dom Image𝑅 = {𝑥 ∣ (𝑅𝑥) ∈ V}))
231, 21, 22mpbir2an 711 1 Image𝑅 Fn {𝑥 ∣ (𝑅𝑥) ∈ V}
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wex 1779  wcel 2109  {cab 2707  Vcvv 3447   class class class wbr 5107  dom cdm 5638  cima 5641  Fun wfun 6505   Fn wfn 6506  Imagecimage 35828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-symdif 4216  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1st 7968  df-2nd 7969  df-txp 35842  df-image 35852
This theorem is referenced by:  imageval  35918
  Copyright terms: Public domain W3C validator