| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnimage | Structured version Visualization version GIF version | ||
| Description: Image𝑅 is a function over the set-like portion of 𝑅. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| fnimage | ⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimage 35951 | . 2 ⊢ Fun Image𝑅 | |
| 2 | vex 3468 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 3 | vex 3468 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | 2, 3 | brimage 35949 | . . . . . . 7 ⊢ (𝑦Image𝑅𝑥 ↔ 𝑥 = (𝑅 “ 𝑦)) |
| 5 | eqvisset 3484 | . . . . . . 7 ⊢ (𝑥 = (𝑅 “ 𝑦) → (𝑅 “ 𝑦) ∈ V) | |
| 6 | 4, 5 | sylbi 217 | . . . . . 6 ⊢ (𝑦Image𝑅𝑥 → (𝑅 “ 𝑦) ∈ V) |
| 7 | 6 | exlimiv 1930 | . . . . 5 ⊢ (∃𝑥 𝑦Image𝑅𝑥 → (𝑅 “ 𝑦) ∈ V) |
| 8 | eqid 2736 | . . . . . . 7 ⊢ (𝑅 “ 𝑦) = (𝑅 “ 𝑦) | |
| 9 | brimageg 35950 | . . . . . . . 8 ⊢ ((𝑦 ∈ V ∧ (𝑅 “ 𝑦) ∈ V) → (𝑦Image𝑅(𝑅 “ 𝑦) ↔ (𝑅 “ 𝑦) = (𝑅 “ 𝑦))) | |
| 10 | 2, 9 | mpan 690 | . . . . . . 7 ⊢ ((𝑅 “ 𝑦) ∈ V → (𝑦Image𝑅(𝑅 “ 𝑦) ↔ (𝑅 “ 𝑦) = (𝑅 “ 𝑦))) |
| 11 | 8, 10 | mpbiri 258 | . . . . . 6 ⊢ ((𝑅 “ 𝑦) ∈ V → 𝑦Image𝑅(𝑅 “ 𝑦)) |
| 12 | breq2 5128 | . . . . . . 7 ⊢ (𝑥 = (𝑅 “ 𝑦) → (𝑦Image𝑅𝑥 ↔ 𝑦Image𝑅(𝑅 “ 𝑦))) | |
| 13 | 12 | spcegv 3581 | . . . . . 6 ⊢ ((𝑅 “ 𝑦) ∈ V → (𝑦Image𝑅(𝑅 “ 𝑦) → ∃𝑥 𝑦Image𝑅𝑥)) |
| 14 | 11, 13 | mpd 15 | . . . . 5 ⊢ ((𝑅 “ 𝑦) ∈ V → ∃𝑥 𝑦Image𝑅𝑥) |
| 15 | 7, 14 | impbii 209 | . . . 4 ⊢ (∃𝑥 𝑦Image𝑅𝑥 ↔ (𝑅 “ 𝑦) ∈ V) |
| 16 | 2 | eldm 5885 | . . . 4 ⊢ (𝑦 ∈ dom Image𝑅 ↔ ∃𝑥 𝑦Image𝑅𝑥) |
| 17 | imaeq2 6048 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑅 “ 𝑥) = (𝑅 “ 𝑦)) | |
| 18 | 17 | eleq1d 2820 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑅 “ 𝑥) ∈ V ↔ (𝑅 “ 𝑦) ∈ V)) |
| 19 | 2, 18 | elab 3663 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ↔ (𝑅 “ 𝑦) ∈ V) |
| 20 | 15, 16, 19 | 3bitr4i 303 | . . 3 ⊢ (𝑦 ∈ dom Image𝑅 ↔ 𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V}) |
| 21 | 20 | eqriv 2733 | . 2 ⊢ dom Image𝑅 = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
| 22 | df-fn 6539 | . 2 ⊢ (Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ↔ (Fun Image𝑅 ∧ dom Image𝑅 = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V})) | |
| 23 | 1, 21, 22 | mpbir2an 711 | 1 ⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 Vcvv 3464 class class class wbr 5124 dom cdm 5659 “ cima 5662 Fun wfun 6530 Fn wfn 6531 Imagecimage 35863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-symdif 4233 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-eprel 5558 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-1st 7993 df-2nd 7994 df-txp 35877 df-image 35887 |
| This theorem is referenced by: imageval 35953 |
| Copyright terms: Public domain | W3C validator |