| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnimage | Structured version Visualization version GIF version | ||
| Description: Image𝑅 is a function over the set-like portion of 𝑅. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| fnimage | ⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimage 35961 | . 2 ⊢ Fun Image𝑅 | |
| 2 | vex 3440 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 3 | vex 3440 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | 2, 3 | brimage 35959 | . . . . . . 7 ⊢ (𝑦Image𝑅𝑥 ↔ 𝑥 = (𝑅 “ 𝑦)) |
| 5 | eqvisset 3456 | . . . . . . 7 ⊢ (𝑥 = (𝑅 “ 𝑦) → (𝑅 “ 𝑦) ∈ V) | |
| 6 | 4, 5 | sylbi 217 | . . . . . 6 ⊢ (𝑦Image𝑅𝑥 → (𝑅 “ 𝑦) ∈ V) |
| 7 | 6 | exlimiv 1931 | . . . . 5 ⊢ (∃𝑥 𝑦Image𝑅𝑥 → (𝑅 “ 𝑦) ∈ V) |
| 8 | eqid 2731 | . . . . . . 7 ⊢ (𝑅 “ 𝑦) = (𝑅 “ 𝑦) | |
| 9 | brimageg 35960 | . . . . . . . 8 ⊢ ((𝑦 ∈ V ∧ (𝑅 “ 𝑦) ∈ V) → (𝑦Image𝑅(𝑅 “ 𝑦) ↔ (𝑅 “ 𝑦) = (𝑅 “ 𝑦))) | |
| 10 | 2, 9 | mpan 690 | . . . . . . 7 ⊢ ((𝑅 “ 𝑦) ∈ V → (𝑦Image𝑅(𝑅 “ 𝑦) ↔ (𝑅 “ 𝑦) = (𝑅 “ 𝑦))) |
| 11 | 8, 10 | mpbiri 258 | . . . . . 6 ⊢ ((𝑅 “ 𝑦) ∈ V → 𝑦Image𝑅(𝑅 “ 𝑦)) |
| 12 | breq2 5095 | . . . . . . 7 ⊢ (𝑥 = (𝑅 “ 𝑦) → (𝑦Image𝑅𝑥 ↔ 𝑦Image𝑅(𝑅 “ 𝑦))) | |
| 13 | 12 | spcegv 3552 | . . . . . 6 ⊢ ((𝑅 “ 𝑦) ∈ V → (𝑦Image𝑅(𝑅 “ 𝑦) → ∃𝑥 𝑦Image𝑅𝑥)) |
| 14 | 11, 13 | mpd 15 | . . . . 5 ⊢ ((𝑅 “ 𝑦) ∈ V → ∃𝑥 𝑦Image𝑅𝑥) |
| 15 | 7, 14 | impbii 209 | . . . 4 ⊢ (∃𝑥 𝑦Image𝑅𝑥 ↔ (𝑅 “ 𝑦) ∈ V) |
| 16 | 2 | eldm 5840 | . . . 4 ⊢ (𝑦 ∈ dom Image𝑅 ↔ ∃𝑥 𝑦Image𝑅𝑥) |
| 17 | imaeq2 6005 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑅 “ 𝑥) = (𝑅 “ 𝑦)) | |
| 18 | 17 | eleq1d 2816 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑅 “ 𝑥) ∈ V ↔ (𝑅 “ 𝑦) ∈ V)) |
| 19 | 2, 18 | elab 3635 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ↔ (𝑅 “ 𝑦) ∈ V) |
| 20 | 15, 16, 19 | 3bitr4i 303 | . . 3 ⊢ (𝑦 ∈ dom Image𝑅 ↔ 𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V}) |
| 21 | 20 | eqriv 2728 | . 2 ⊢ dom Image𝑅 = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
| 22 | df-fn 6484 | . 2 ⊢ (Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ↔ (Fun Image𝑅 ∧ dom Image𝑅 = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V})) | |
| 23 | 1, 21, 22 | mpbir2an 711 | 1 ⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 Vcvv 3436 class class class wbr 5091 dom cdm 5616 “ cima 5619 Fun wfun 6475 Fn wfn 6476 Imagecimage 35873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-symdif 4203 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-eprel 5516 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-txp 35887 df-image 35897 |
| This theorem is referenced by: imageval 35963 |
| Copyright terms: Public domain | W3C validator |