![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnimage | Structured version Visualization version GIF version |
Description: Image𝑅 is a function over the set-like portion of 𝑅. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
fnimage | ⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimage 35892 | . 2 ⊢ Fun Image𝑅 | |
2 | vex 3492 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
3 | vex 3492 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | brimage 35890 | . . . . . . 7 ⊢ (𝑦Image𝑅𝑥 ↔ 𝑥 = (𝑅 “ 𝑦)) |
5 | eqvisset 3508 | . . . . . . 7 ⊢ (𝑥 = (𝑅 “ 𝑦) → (𝑅 “ 𝑦) ∈ V) | |
6 | 4, 5 | sylbi 217 | . . . . . 6 ⊢ (𝑦Image𝑅𝑥 → (𝑅 “ 𝑦) ∈ V) |
7 | 6 | exlimiv 1929 | . . . . 5 ⊢ (∃𝑥 𝑦Image𝑅𝑥 → (𝑅 “ 𝑦) ∈ V) |
8 | eqid 2740 | . . . . . . 7 ⊢ (𝑅 “ 𝑦) = (𝑅 “ 𝑦) | |
9 | brimageg 35891 | . . . . . . . 8 ⊢ ((𝑦 ∈ V ∧ (𝑅 “ 𝑦) ∈ V) → (𝑦Image𝑅(𝑅 “ 𝑦) ↔ (𝑅 “ 𝑦) = (𝑅 “ 𝑦))) | |
10 | 2, 9 | mpan 689 | . . . . . . 7 ⊢ ((𝑅 “ 𝑦) ∈ V → (𝑦Image𝑅(𝑅 “ 𝑦) ↔ (𝑅 “ 𝑦) = (𝑅 “ 𝑦))) |
11 | 8, 10 | mpbiri 258 | . . . . . 6 ⊢ ((𝑅 “ 𝑦) ∈ V → 𝑦Image𝑅(𝑅 “ 𝑦)) |
12 | breq2 5170 | . . . . . . 7 ⊢ (𝑥 = (𝑅 “ 𝑦) → (𝑦Image𝑅𝑥 ↔ 𝑦Image𝑅(𝑅 “ 𝑦))) | |
13 | 12 | spcegv 3610 | . . . . . 6 ⊢ ((𝑅 “ 𝑦) ∈ V → (𝑦Image𝑅(𝑅 “ 𝑦) → ∃𝑥 𝑦Image𝑅𝑥)) |
14 | 11, 13 | mpd 15 | . . . . 5 ⊢ ((𝑅 “ 𝑦) ∈ V → ∃𝑥 𝑦Image𝑅𝑥) |
15 | 7, 14 | impbii 209 | . . . 4 ⊢ (∃𝑥 𝑦Image𝑅𝑥 ↔ (𝑅 “ 𝑦) ∈ V) |
16 | 2 | eldm 5925 | . . . 4 ⊢ (𝑦 ∈ dom Image𝑅 ↔ ∃𝑥 𝑦Image𝑅𝑥) |
17 | imaeq2 6085 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑅 “ 𝑥) = (𝑅 “ 𝑦)) | |
18 | 17 | eleq1d 2829 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑅 “ 𝑥) ∈ V ↔ (𝑅 “ 𝑦) ∈ V)) |
19 | 2, 18 | elab 3694 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ↔ (𝑅 “ 𝑦) ∈ V) |
20 | 15, 16, 19 | 3bitr4i 303 | . . 3 ⊢ (𝑦 ∈ dom Image𝑅 ↔ 𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V}) |
21 | 20 | eqriv 2737 | . 2 ⊢ dom Image𝑅 = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
22 | df-fn 6576 | . 2 ⊢ (Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ↔ (Fun Image𝑅 ∧ dom Image𝑅 = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V})) | |
23 | 1, 21, 22 | mpbir2an 710 | 1 ⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 Vcvv 3488 class class class wbr 5166 dom cdm 5700 “ cima 5703 Fun wfun 6567 Fn wfn 6568 Imagecimage 35804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-symdif 4272 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-1st 8030 df-2nd 8031 df-txp 35818 df-image 35828 |
This theorem is referenced by: imageval 35894 |
Copyright terms: Public domain | W3C validator |