Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnimage | Structured version Visualization version GIF version |
Description: Image𝑅 is a function over the set-like portion of 𝑅. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
fnimage | ⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimage 34157 | . 2 ⊢ Fun Image𝑅 | |
2 | vex 3426 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
3 | vex 3426 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | brimage 34155 | . . . . . . 7 ⊢ (𝑦Image𝑅𝑥 ↔ 𝑥 = (𝑅 “ 𝑦)) |
5 | eqvisset 3439 | . . . . . . 7 ⊢ (𝑥 = (𝑅 “ 𝑦) → (𝑅 “ 𝑦) ∈ V) | |
6 | 4, 5 | sylbi 216 | . . . . . 6 ⊢ (𝑦Image𝑅𝑥 → (𝑅 “ 𝑦) ∈ V) |
7 | 6 | exlimiv 1934 | . . . . 5 ⊢ (∃𝑥 𝑦Image𝑅𝑥 → (𝑅 “ 𝑦) ∈ V) |
8 | eqid 2738 | . . . . . . 7 ⊢ (𝑅 “ 𝑦) = (𝑅 “ 𝑦) | |
9 | brimageg 34156 | . . . . . . . 8 ⊢ ((𝑦 ∈ V ∧ (𝑅 “ 𝑦) ∈ V) → (𝑦Image𝑅(𝑅 “ 𝑦) ↔ (𝑅 “ 𝑦) = (𝑅 “ 𝑦))) | |
10 | 2, 9 | mpan 686 | . . . . . . 7 ⊢ ((𝑅 “ 𝑦) ∈ V → (𝑦Image𝑅(𝑅 “ 𝑦) ↔ (𝑅 “ 𝑦) = (𝑅 “ 𝑦))) |
11 | 8, 10 | mpbiri 257 | . . . . . 6 ⊢ ((𝑅 “ 𝑦) ∈ V → 𝑦Image𝑅(𝑅 “ 𝑦)) |
12 | breq2 5074 | . . . . . . 7 ⊢ (𝑥 = (𝑅 “ 𝑦) → (𝑦Image𝑅𝑥 ↔ 𝑦Image𝑅(𝑅 “ 𝑦))) | |
13 | 12 | spcegv 3526 | . . . . . 6 ⊢ ((𝑅 “ 𝑦) ∈ V → (𝑦Image𝑅(𝑅 “ 𝑦) → ∃𝑥 𝑦Image𝑅𝑥)) |
14 | 11, 13 | mpd 15 | . . . . 5 ⊢ ((𝑅 “ 𝑦) ∈ V → ∃𝑥 𝑦Image𝑅𝑥) |
15 | 7, 14 | impbii 208 | . . . 4 ⊢ (∃𝑥 𝑦Image𝑅𝑥 ↔ (𝑅 “ 𝑦) ∈ V) |
16 | 2 | eldm 5798 | . . . 4 ⊢ (𝑦 ∈ dom Image𝑅 ↔ ∃𝑥 𝑦Image𝑅𝑥) |
17 | imaeq2 5954 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑅 “ 𝑥) = (𝑅 “ 𝑦)) | |
18 | 17 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑅 “ 𝑥) ∈ V ↔ (𝑅 “ 𝑦) ∈ V)) |
19 | 2, 18 | elab 3602 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ↔ (𝑅 “ 𝑦) ∈ V) |
20 | 15, 16, 19 | 3bitr4i 302 | . . 3 ⊢ (𝑦 ∈ dom Image𝑅 ↔ 𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V}) |
21 | 20 | eqriv 2735 | . 2 ⊢ dom Image𝑅 = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
22 | df-fn 6421 | . 2 ⊢ (Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ↔ (Fun Image𝑅 ∧ dom Image𝑅 = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V})) | |
23 | 1, 21, 22 | mpbir2an 707 | 1 ⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 Vcvv 3422 class class class wbr 5070 dom cdm 5580 “ cima 5583 Fun wfun 6412 Fn wfn 6413 Imagecimage 34069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-symdif 4173 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-eprel 5486 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-txp 34083 df-image 34093 |
This theorem is referenced by: imageval 34159 |
Copyright terms: Public domain | W3C validator |