MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1detdiag Structured version   Visualization version   GIF version

Theorem m1detdiag 22540
Description: The determinant of a 1-dimensional matrix equals its (single) entry. (Contributed by AV, 6-Aug-2019.)
Hypotheses
Ref Expression
mdetdiag.d 𝐷 = (𝑁 maDet 𝑅)
mdetdiag.a 𝐴 = (𝑁 Mat 𝑅)
mdetdiag.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
m1detdiag ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐷𝑀) = (𝐼𝑀𝐼))

Proof of Theorem m1detdiag
Dummy variables 𝑏 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetdiag.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
2 mdetdiag.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mdetdiag.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2736 . . . 4 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
5 eqid 2736 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
6 eqid 2736 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
7 eqid 2736 . . . 4 (.r𝑅) = (.r𝑅)
8 eqid 2736 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetleib 22530 . . 3 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
1093ad2ant3 1135 . 2 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
11 2fveq3 6886 . . . . . . . 8 (𝑁 = {𝐼} → (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{𝐼})))
1211adantr 480 . . . . . . 7 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{𝐼})))
13123ad2ant2 1134 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{𝐼})))
14 simp2r 1201 . . . . . . 7 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼𝑉)
15 eqid 2736 . . . . . . . 8 (SymGrp‘{𝐼}) = (SymGrp‘{𝐼})
16 eqid 2736 . . . . . . . 8 (Base‘(SymGrp‘{𝐼})) = (Base‘(SymGrp‘{𝐼}))
17 eqid 2736 . . . . . . . 8 {𝐼} = {𝐼}
1815, 16, 17symg1bas 19377 . . . . . . 7 (𝐼𝑉 → (Base‘(SymGrp‘{𝐼})) = {{⟨𝐼, 𝐼⟩}})
1914, 18syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(SymGrp‘{𝐼})) = {{⟨𝐼, 𝐼⟩}})
2013, 19eqtrd 2771 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) = {{⟨𝐼, 𝐼⟩}})
2120mpteq1d 5215 . . . 4 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))) = (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))))
22 snex 5411 . . . . . 6 {⟨𝐼, 𝐼⟩} ∈ V
2322a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {⟨𝐼, 𝐼⟩} ∈ V)
24 ovex 7443 . . . . 5 ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) ∈ V
25 fveq2 6881 . . . . . . . 8 (𝑝 = {⟨𝐼, 𝐼⟩} → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩}))
26 fveq1 6880 . . . . . . . . . . 11 (𝑝 = {⟨𝐼, 𝐼⟩} → (𝑝𝑥) = ({⟨𝐼, 𝐼⟩}‘𝑥))
2726oveq1d 7425 . . . . . . . . . 10 (𝑝 = {⟨𝐼, 𝐼⟩} → ((𝑝𝑥)𝑀𝑥) = (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))
2827mpteq2dv 5220 . . . . . . . . 9 (𝑝 = {⟨𝐼, 𝐼⟩} → (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)) = (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))
2928oveq2d 7426 . . . . . . . 8 (𝑝 = {⟨𝐼, 𝐼⟩} → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))) = ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))
3025, 29oveq12d 7428 . . . . . . 7 (𝑝 = {⟨𝐼, 𝐼⟩} → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))))
3130fmptsng 7165 . . . . . 6 (({⟨𝐼, 𝐼⟩} ∈ V ∧ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) ∈ V) → {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩} = (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))))
3231eqcomd 2742 . . . . 5 (({⟨𝐼, 𝐼⟩} ∈ V ∧ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) ∈ V) → (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))) = {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩})
3323, 24, 32sylancl 586 . . . 4 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))) = {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩})
34 eqid 2736 . . . . . . . . . . . . 13 (SymGrp‘𝑁) = (SymGrp‘𝑁)
35 eqid 2736 . . . . . . . . . . . . 13 {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin} = {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin}
3634, 4, 35, 6psgnfn 19487 . . . . . . . . . . . 12 (pmSgn‘𝑁) Fn {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin}
3718adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (Base‘(SymGrp‘{𝐼})) = {{⟨𝐼, 𝐼⟩}})
3812, 37eqtrd 2771 . . . . . . . . . . . . . . . 16 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (Base‘(SymGrp‘𝑁)) = {{⟨𝐼, 𝐼⟩}})
39383ad2ant2 1134 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) = {{⟨𝐼, 𝐼⟩}})
40 rabeq 3435 . . . . . . . . . . . . . . 15 ((Base‘(SymGrp‘𝑁)) = {{⟨𝐼, 𝐼⟩}} → {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin} = {𝑏 ∈ {{⟨𝐼, 𝐼⟩}} ∣ dom (𝑏 ∖ I ) ∈ Fin})
4139, 40syl 17 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin} = {𝑏 ∈ {{⟨𝐼, 𝐼⟩}} ∣ dom (𝑏 ∖ I ) ∈ Fin})
42 difeq1 4099 . . . . . . . . . . . . . . . . . 18 (𝑏 = {⟨𝐼, 𝐼⟩} → (𝑏 ∖ I ) = ({⟨𝐼, 𝐼⟩} ∖ I ))
4342dmeqd 5890 . . . . . . . . . . . . . . . . 17 (𝑏 = {⟨𝐼, 𝐼⟩} → dom (𝑏 ∖ I ) = dom ({⟨𝐼, 𝐼⟩} ∖ I ))
4443eleq1d 2820 . . . . . . . . . . . . . . . 16 (𝑏 = {⟨𝐼, 𝐼⟩} → (dom (𝑏 ∖ I ) ∈ Fin ↔ dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin))
4544rabsnif 4704 . . . . . . . . . . . . . . 15 {𝑏 ∈ {{⟨𝐼, 𝐼⟩}} ∣ dom (𝑏 ∖ I ) ∈ Fin} = if(dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin, {{⟨𝐼, 𝐼⟩}}, ∅)
4645a1i 11 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {𝑏 ∈ {{⟨𝐼, 𝐼⟩}} ∣ dom (𝑏 ∖ I ) ∈ Fin} = if(dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin, {{⟨𝐼, 𝐼⟩}}, ∅))
47 restidsing 6045 . . . . . . . . . . . . . . . . . . . 20 ( I ↾ {𝐼}) = ({𝐼} × {𝐼})
48 xpsng 7134 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝐼𝑉) → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
4948anidms 566 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝑉 → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
5047, 49eqtr2id 2784 . . . . . . . . . . . . . . . . . . 19 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼}))
51 fnsng 6593 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝐼𝑉) → {⟨𝐼, 𝐼⟩} Fn {𝐼})
5251anidms 566 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} Fn {𝐼})
53 fnnfpeq0 7175 . . . . . . . . . . . . . . . . . . . 20 ({⟨𝐼, 𝐼⟩} Fn {𝐼} → (dom ({⟨𝐼, 𝐼⟩} ∖ I ) = ∅ ↔ {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼})))
5452, 53syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼𝑉 → (dom ({⟨𝐼, 𝐼⟩} ∖ I ) = ∅ ↔ {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼})))
5550, 54mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝐼𝑉 → dom ({⟨𝐼, 𝐼⟩} ∖ I ) = ∅)
56 0fi 9061 . . . . . . . . . . . . . . . . . 18 ∅ ∈ Fin
5755, 56eqeltrdi 2843 . . . . . . . . . . . . . . . . 17 (𝐼𝑉 → dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin)
5857adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin)
59583ad2ant2 1134 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin)
6059iftrued 4513 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → if(dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin, {{⟨𝐼, 𝐼⟩}}, ∅) = {{⟨𝐼, 𝐼⟩}})
6141, 46, 603eqtrrd 2776 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {{⟨𝐼, 𝐼⟩}} = {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin})
6261fneq2d 6637 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((pmSgn‘𝑁) Fn {{⟨𝐼, 𝐼⟩}} ↔ (pmSgn‘𝑁) Fn {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin}))
6336, 62mpbiri 258 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (pmSgn‘𝑁) Fn {{⟨𝐼, 𝐼⟩}})
6422snid 4643 . . . . . . . . . . 11 {⟨𝐼, 𝐼⟩} ∈ {{⟨𝐼, 𝐼⟩}}
65 fvco2 6981 . . . . . . . . . . 11 (((pmSgn‘𝑁) Fn {{⟨𝐼, 𝐼⟩}} ∧ {⟨𝐼, 𝐼⟩} ∈ {{⟨𝐼, 𝐼⟩}}) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩}) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩})))
6663, 64, 65sylancl 586 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩}) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩})))
67 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑁 = {𝐼} → (pmSgn‘𝑁) = (pmSgn‘{𝐼}))
6867adantr 480 . . . . . . . . . . . . . 14 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (pmSgn‘𝑁) = (pmSgn‘{𝐼}))
69683ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (pmSgn‘𝑁) = (pmSgn‘{𝐼}))
7069fveq1d 6883 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩}) = ((pmSgn‘{𝐼})‘{⟨𝐼, 𝐼⟩}))
71 snidg 4641 . . . . . . . . . . . . . . . . . 18 ({⟨𝐼, 𝐼⟩} ∈ V → {⟨𝐼, 𝐼⟩} ∈ {{⟨𝐼, 𝐼⟩}})
7222, 71mp1i 13 . . . . . . . . . . . . . . . . 17 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} ∈ {{⟨𝐼, 𝐼⟩}})
7372, 18eleqtrrd 2838 . . . . . . . . . . . . . . . 16 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼})))
7473ancli 548 . . . . . . . . . . . . . . 15 (𝐼𝑉 → (𝐼𝑉 ∧ {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼}))))
7574adantl 481 . . . . . . . . . . . . . 14 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑉 ∧ {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼}))))
76753ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑉 ∧ {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼}))))
77 eqid 2736 . . . . . . . . . . . . . 14 (pmSgn‘{𝐼}) = (pmSgn‘{𝐼})
7817, 15, 16, 77psgnsn 19506 . . . . . . . . . . . . 13 ((𝐼𝑉 ∧ {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼}))) → ((pmSgn‘{𝐼})‘{⟨𝐼, 𝐼⟩}) = 1)
7976, 78syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((pmSgn‘{𝐼})‘{⟨𝐼, 𝐼⟩}) = 1)
8070, 79eqtrd 2771 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩}) = 1)
8180fveq2d 6885 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩})) = ((ℤRHom‘𝑅)‘1))
82 crngring 20210 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
83823ad2ant1 1133 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
84 eqid 2736 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
855, 84zrh1 21478 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((ℤRHom‘𝑅)‘1) = (1r𝑅))
8683, 85syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘1) = (1r𝑅))
8766, 81, 863eqtrd 2775 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩}) = (1r𝑅))
88 simp2l 1200 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑁 = {𝐼})
8988mpteq1d 5215 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)) = (𝑥 ∈ {𝐼} ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))
9089oveq2d 7426 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))) = ((mulGrp‘𝑅) Σg (𝑥 ∈ {𝐼} ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))
918ringmgp 20204 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
9282, 91syl 17 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ Mnd)
93923ad2ant1 1133 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (mulGrp‘𝑅) ∈ Mnd)
94 snidg 4641 . . . . . . . . . . . . . . . . 17 (𝐼𝑉𝐼 ∈ {𝐼})
9594adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼 ∈ {𝐼})
96 eleq2 2824 . . . . . . . . . . . . . . . . 17 (𝑁 = {𝐼} → (𝐼𝑁𝐼 ∈ {𝐼}))
9796adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑁𝐼 ∈ {𝐼}))
9895, 97mpbird 257 . . . . . . . . . . . . . . 15 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼𝑁)
993eleq2i 2827 . . . . . . . . . . . . . . . 16 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
10099biimpi 216 . . . . . . . . . . . . . . 15 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
101 simpl 482 . . . . . . . . . . . . . . . 16 ((𝐼𝑁𝑀 ∈ (Base‘𝐴)) → 𝐼𝑁)
102 simpr 484 . . . . . . . . . . . . . . . 16 ((𝐼𝑁𝑀 ∈ (Base‘𝐴)) → 𝑀 ∈ (Base‘𝐴))
103101, 101, 1023jca 1128 . . . . . . . . . . . . . . 15 ((𝐼𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)))
10498, 100, 103syl2an 596 . . . . . . . . . . . . . 14 (((𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)))
1051043adant1 1130 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)))
106 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
1072, 106matecl 22368 . . . . . . . . . . . . 13 ((𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
108105, 107syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
1098, 106mgpbas 20110 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
110108, 109eleqtrdi 2845 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑀𝐼) ∈ (Base‘(mulGrp‘𝑅)))
111 eqid 2736 . . . . . . . . . . . 12 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
112 fveq2 6881 . . . . . . . . . . . . . 14 (𝑥 = 𝐼 → ({⟨𝐼, 𝐼⟩}‘𝑥) = ({⟨𝐼, 𝐼⟩}‘𝐼))
113 eqvisset 3484 . . . . . . . . . . . . . . 15 (𝑥 = 𝐼𝐼 ∈ V)
114 fvsng 7177 . . . . . . . . . . . . . . 15 ((𝐼 ∈ V ∧ 𝐼 ∈ V) → ({⟨𝐼, 𝐼⟩}‘𝐼) = 𝐼)
115113, 113, 114syl2anc 584 . . . . . . . . . . . . . 14 (𝑥 = 𝐼 → ({⟨𝐼, 𝐼⟩}‘𝐼) = 𝐼)
116112, 115eqtrd 2771 . . . . . . . . . . . . 13 (𝑥 = 𝐼 → ({⟨𝐼, 𝐼⟩}‘𝑥) = 𝐼)
117 id 22 . . . . . . . . . . . . 13 (𝑥 = 𝐼𝑥 = 𝐼)
118116, 117oveq12d 7428 . . . . . . . . . . . 12 (𝑥 = 𝐼 → (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥) = (𝐼𝑀𝐼))
119111, 118gsumsn 19940 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑉 ∧ (𝐼𝑀𝐼) ∈ (Base‘(mulGrp‘𝑅))) → ((mulGrp‘𝑅) Σg (𝑥 ∈ {𝐼} ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))) = (𝐼𝑀𝐼))
12093, 14, 110, 119syl3anc 1373 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑥 ∈ {𝐼} ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))) = (𝐼𝑀𝐼))
12190, 120eqtrd 2771 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))) = (𝐼𝑀𝐼))
12287, 121oveq12d 7428 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) = ((1r𝑅)(.r𝑅)(𝐼𝑀𝐼)))
123983ad2ant2 1134 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼𝑁)
1241003ad2ant3 1135 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐴))
125123, 123, 124, 107syl3anc 1373 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
126106, 7, 84ringlidm 20234 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝐼𝑀𝐼) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(𝐼𝑀𝐼)) = (𝐼𝑀𝐼))
12783, 125, 126syl2anc 584 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((1r𝑅)(.r𝑅)(𝐼𝑀𝐼)) = (𝐼𝑀𝐼))
128122, 127eqtrd 2771 . . . . . . 7 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) = (𝐼𝑀𝐼))
129128opeq2d 4861 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩ = ⟨{⟨𝐼, 𝐼⟩}, (𝐼𝑀𝐼)⟩)
130129sneqd 4618 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩} = {⟨{⟨𝐼, 𝐼⟩}, (𝐼𝑀𝐼)⟩})
131 ovex 7443 . . . . . 6 (𝐼𝑀𝐼) ∈ V
132 eqidd 2737 . . . . . . 7 (𝑦 = {⟨𝐼, 𝐼⟩} → (𝐼𝑀𝐼) = (𝐼𝑀𝐼))
133132fmptsng 7165 . . . . . 6 (({⟨𝐼, 𝐼⟩} ∈ V ∧ (𝐼𝑀𝐼) ∈ V) → {⟨{⟨𝐼, 𝐼⟩}, (𝐼𝑀𝐼)⟩} = (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼)))
13423, 131, 133sylancl 586 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {⟨{⟨𝐼, 𝐼⟩}, (𝐼𝑀𝐼)⟩} = (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼)))
135130, 134eqtrd 2771 . . . 4 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩} = (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼)))
13621, 33, 1353eqtrd 2775 . . 3 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))) = (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼)))
137136oveq2d 7426 . 2 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))) = (𝑅 Σg (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼))))
138 ringmnd 20208 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
13982, 138syl 17 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Mnd)
1401393ad2ant1 1133 . . 3 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑅 ∈ Mnd)
141106, 132gsumsn 19940 . . 3 ((𝑅 ∈ Mnd ∧ {⟨𝐼, 𝐼⟩} ∈ V ∧ (𝐼𝑀𝐼) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼))) = (𝐼𝑀𝐼))
142140, 23, 125, 141syl3anc 1373 . 2 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑅 Σg (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼))) = (𝐼𝑀𝐼))
14310, 137, 1423eqtrd 2775 1 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐷𝑀) = (𝐼𝑀𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  cdif 3928  c0 4313  ifcif 4505  {csn 4606  cop 4612  cmpt 5206   I cid 5552   × cxp 5657  dom cdm 5659  cres 5661  ccom 5663   Fn wfn 6531  cfv 6536  (class class class)co 7410  Fincfn 8964  1c1 11135  Basecbs 17233  .rcmulr 17277   Σg cgsu 17459  Mndcmnd 18717  SymGrpcsymg 19355  pmSgncpsgn 19475  mulGrpcmgp 20105  1rcur 20146  Ringcrg 20198  CRingccrg 20199  ℤRHomczrh 21465   Mat cmat 22350   maDet cmdat 22527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-word 14537  df-lsw 14586  df-concat 14594  df-s1 14619  df-substr 14664  df-pfx 14694  df-splice 14773  df-reverse 14782  df-s2 14872  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-efmnd 18852  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-ghm 19201  df-gim 19247  df-cntz 19305  df-oppg 19334  df-symg 19356  df-pmtr 19428  df-psgn 19477  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-sra 21136  df-rgmod 21137  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-dsmm 21697  df-frlm 21712  df-mat 22351  df-mdet 22528
This theorem is referenced by:  chpmat1d  22779
  Copyright terms: Public domain W3C validator