MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1detdiag Structured version   Visualization version   GIF version

Theorem m1detdiag 20621
Description: The determinant of a 1-dimensional matrix equals its (single) entry. (Contributed by AV, 6-Aug-2019.)
Hypotheses
Ref Expression
mdetdiag.d 𝐷 = (𝑁 maDet 𝑅)
mdetdiag.a 𝐴 = (𝑁 Mat 𝑅)
mdetdiag.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
m1detdiag ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐷𝑀) = (𝐼𝑀𝐼))

Proof of Theorem m1detdiag
Dummy variables 𝑏 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetdiag.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
2 mdetdiag.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mdetdiag.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2771 . . . 4 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
5 eqid 2771 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
6 eqid 2771 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
7 eqid 2771 . . . 4 (.r𝑅) = (.r𝑅)
8 eqid 2771 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetleib 20611 . . 3 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
1093ad2ant3 1129 . 2 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
11 fveq2 6332 . . . . . . . . 9 (𝑁 = {𝐼} → (SymGrp‘𝑁) = (SymGrp‘{𝐼}))
1211fveq2d 6336 . . . . . . . 8 (𝑁 = {𝐼} → (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{𝐼})))
1312adantr 466 . . . . . . 7 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{𝐼})))
14133ad2ant2 1128 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{𝐼})))
15 simp2r 1242 . . . . . . 7 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼𝑉)
16 eqid 2771 . . . . . . . 8 (SymGrp‘{𝐼}) = (SymGrp‘{𝐼})
17 eqid 2771 . . . . . . . 8 (Base‘(SymGrp‘{𝐼})) = (Base‘(SymGrp‘{𝐼}))
18 eqid 2771 . . . . . . . 8 {𝐼} = {𝐼}
1916, 17, 18symg1bas 18023 . . . . . . 7 (𝐼𝑉 → (Base‘(SymGrp‘{𝐼})) = {{⟨𝐼, 𝐼⟩}})
2015, 19syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(SymGrp‘{𝐼})) = {{⟨𝐼, 𝐼⟩}})
2114, 20eqtrd 2805 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) = {{⟨𝐼, 𝐼⟩}})
2221mpteq1d 4872 . . . 4 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))) = (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))))
23 snex 5036 . . . . . 6 {⟨𝐼, 𝐼⟩} ∈ V
2423a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {⟨𝐼, 𝐼⟩} ∈ V)
25 ovex 6823 . . . . 5 ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) ∈ V
26 fveq2 6332 . . . . . . . 8 (𝑝 = {⟨𝐼, 𝐼⟩} → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩}))
27 fveq1 6331 . . . . . . . . . . 11 (𝑝 = {⟨𝐼, 𝐼⟩} → (𝑝𝑥) = ({⟨𝐼, 𝐼⟩}‘𝑥))
2827oveq1d 6808 . . . . . . . . . 10 (𝑝 = {⟨𝐼, 𝐼⟩} → ((𝑝𝑥)𝑀𝑥) = (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))
2928mpteq2dv 4879 . . . . . . . . 9 (𝑝 = {⟨𝐼, 𝐼⟩} → (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)) = (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))
3029oveq2d 6809 . . . . . . . 8 (𝑝 = {⟨𝐼, 𝐼⟩} → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))) = ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))
3126, 30oveq12d 6811 . . . . . . 7 (𝑝 = {⟨𝐼, 𝐼⟩} → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))))
3231fmptsng 6578 . . . . . 6 (({⟨𝐼, 𝐼⟩} ∈ V ∧ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) ∈ V) → {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩} = (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))))
3332eqcomd 2777 . . . . 5 (({⟨𝐼, 𝐼⟩} ∈ V ∧ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) ∈ V) → (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))) = {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩})
3424, 25, 33sylancl 574 . . . 4 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))) = {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩})
35 eqid 2771 . . . . . . . . . . . . 13 (SymGrp‘𝑁) = (SymGrp‘𝑁)
36 eqid 2771 . . . . . . . . . . . . 13 {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin} = {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin}
3735, 4, 36, 6psgnfn 18128 . . . . . . . . . . . 12 (pmSgn‘𝑁) Fn {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin}
3819adantl 467 . . . . . . . . . . . . . . . . 17 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (Base‘(SymGrp‘{𝐼})) = {{⟨𝐼, 𝐼⟩}})
3913, 38eqtrd 2805 . . . . . . . . . . . . . . . 16 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (Base‘(SymGrp‘𝑁)) = {{⟨𝐼, 𝐼⟩}})
40393ad2ant2 1128 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) = {{⟨𝐼, 𝐼⟩}})
41 rabeq 3342 . . . . . . . . . . . . . . 15 ((Base‘(SymGrp‘𝑁)) = {{⟨𝐼, 𝐼⟩}} → {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin} = {𝑏 ∈ {{⟨𝐼, 𝐼⟩}} ∣ dom (𝑏 ∖ I ) ∈ Fin})
4240, 41syl 17 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin} = {𝑏 ∈ {{⟨𝐼, 𝐼⟩}} ∣ dom (𝑏 ∖ I ) ∈ Fin})
43 difeq1 3872 . . . . . . . . . . . . . . . . . 18 (𝑏 = {⟨𝐼, 𝐼⟩} → (𝑏 ∖ I ) = ({⟨𝐼, 𝐼⟩} ∖ I ))
4443dmeqd 5464 . . . . . . . . . . . . . . . . 17 (𝑏 = {⟨𝐼, 𝐼⟩} → dom (𝑏 ∖ I ) = dom ({⟨𝐼, 𝐼⟩} ∖ I ))
4544eleq1d 2835 . . . . . . . . . . . . . . . 16 (𝑏 = {⟨𝐼, 𝐼⟩} → (dom (𝑏 ∖ I ) ∈ Fin ↔ dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin))
4645rabsnif 4394 . . . . . . . . . . . . . . 15 {𝑏 ∈ {{⟨𝐼, 𝐼⟩}} ∣ dom (𝑏 ∖ I ) ∈ Fin} = if(dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin, {{⟨𝐼, 𝐼⟩}}, ∅)
4746a1i 11 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {𝑏 ∈ {{⟨𝐼, 𝐼⟩}} ∣ dom (𝑏 ∖ I ) ∈ Fin} = if(dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin, {{⟨𝐼, 𝐼⟩}}, ∅))
48 restidsing 5599 . . . . . . . . . . . . . . . . . . . 20 ( I ↾ {𝐼}) = ({𝐼} × {𝐼})
49 xpsng 6549 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝐼𝑉) → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
5049anidms 556 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝑉 → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
5148, 50syl5req 2818 . . . . . . . . . . . . . . . . . . 19 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼}))
52 fnsng 6081 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝐼𝑉) → {⟨𝐼, 𝐼⟩} Fn {𝐼})
5352anidms 556 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} Fn {𝐼})
54 fnnfpeq0 6588 . . . . . . . . . . . . . . . . . . . 20 ({⟨𝐼, 𝐼⟩} Fn {𝐼} → (dom ({⟨𝐼, 𝐼⟩} ∖ I ) = ∅ ↔ {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼})))
5553, 54syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼𝑉 → (dom ({⟨𝐼, 𝐼⟩} ∖ I ) = ∅ ↔ {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼})))
5651, 55mpbird 247 . . . . . . . . . . . . . . . . . 18 (𝐼𝑉 → dom ({⟨𝐼, 𝐼⟩} ∖ I ) = ∅)
57 0fin 8344 . . . . . . . . . . . . . . . . . 18 ∅ ∈ Fin
5856, 57syl6eqel 2858 . . . . . . . . . . . . . . . . 17 (𝐼𝑉 → dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin)
5958adantl 467 . . . . . . . . . . . . . . . 16 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin)
60593ad2ant2 1128 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin)
6160iftrued 4233 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → if(dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin, {{⟨𝐼, 𝐼⟩}}, ∅) = {{⟨𝐼, 𝐼⟩}})
6242, 47, 613eqtrrd 2810 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {{⟨𝐼, 𝐼⟩}} = {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin})
6362fneq2d 6122 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((pmSgn‘𝑁) Fn {{⟨𝐼, 𝐼⟩}} ↔ (pmSgn‘𝑁) Fn {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin}))
6437, 63mpbiri 248 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (pmSgn‘𝑁) Fn {{⟨𝐼, 𝐼⟩}})
6523snid 4347 . . . . . . . . . . 11 {⟨𝐼, 𝐼⟩} ∈ {{⟨𝐼, 𝐼⟩}}
66 fvco2 6415 . . . . . . . . . . 11 (((pmSgn‘𝑁) Fn {{⟨𝐼, 𝐼⟩}} ∧ {⟨𝐼, 𝐼⟩} ∈ {{⟨𝐼, 𝐼⟩}}) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩}) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩})))
6764, 65, 66sylancl 574 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩}) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩})))
68 fveq2 6332 . . . . . . . . . . . . . . 15 (𝑁 = {𝐼} → (pmSgn‘𝑁) = (pmSgn‘{𝐼}))
6968adantr 466 . . . . . . . . . . . . . 14 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (pmSgn‘𝑁) = (pmSgn‘{𝐼}))
70693ad2ant2 1128 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (pmSgn‘𝑁) = (pmSgn‘{𝐼}))
7170fveq1d 6334 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩}) = ((pmSgn‘{𝐼})‘{⟨𝐼, 𝐼⟩}))
72 snidg 4345 . . . . . . . . . . . . . . . . . 18 ({⟨𝐼, 𝐼⟩} ∈ V → {⟨𝐼, 𝐼⟩} ∈ {{⟨𝐼, 𝐼⟩}})
7323, 72mp1i 13 . . . . . . . . . . . . . . . . 17 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} ∈ {{⟨𝐼, 𝐼⟩}})
7473, 19eleqtrrd 2853 . . . . . . . . . . . . . . . 16 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼})))
7574ancli 538 . . . . . . . . . . . . . . 15 (𝐼𝑉 → (𝐼𝑉 ∧ {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼}))))
7675adantl 467 . . . . . . . . . . . . . 14 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑉 ∧ {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼}))))
77763ad2ant2 1128 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑉 ∧ {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼}))))
78 eqid 2771 . . . . . . . . . . . . . 14 (pmSgn‘{𝐼}) = (pmSgn‘{𝐼})
7918, 16, 17, 78psgnsn 18147 . . . . . . . . . . . . 13 ((𝐼𝑉 ∧ {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼}))) → ((pmSgn‘{𝐼})‘{⟨𝐼, 𝐼⟩}) = 1)
8077, 79syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((pmSgn‘{𝐼})‘{⟨𝐼, 𝐼⟩}) = 1)
8171, 80eqtrd 2805 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩}) = 1)
8281fveq2d 6336 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩})) = ((ℤRHom‘𝑅)‘1))
83 crngring 18766 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
84833ad2ant1 1127 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
85 eqid 2771 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
865, 85zrh1 20076 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((ℤRHom‘𝑅)‘1) = (1r𝑅))
8784, 86syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘1) = (1r𝑅))
8867, 82, 873eqtrd 2809 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩}) = (1r𝑅))
89 simp2l 1241 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑁 = {𝐼})
9089mpteq1d 4872 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)) = (𝑥 ∈ {𝐼} ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))
9190oveq2d 6809 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))) = ((mulGrp‘𝑅) Σg (𝑥 ∈ {𝐼} ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))
928ringmgp 18761 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
9383, 92syl 17 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ Mnd)
94933ad2ant1 1127 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (mulGrp‘𝑅) ∈ Mnd)
95 snidg 4345 . . . . . . . . . . . . . . . . 17 (𝐼𝑉𝐼 ∈ {𝐼})
9695adantl 467 . . . . . . . . . . . . . . . 16 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼 ∈ {𝐼})
97 eleq2 2839 . . . . . . . . . . . . . . . . 17 (𝑁 = {𝐼} → (𝐼𝑁𝐼 ∈ {𝐼}))
9897adantr 466 . . . . . . . . . . . . . . . 16 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑁𝐼 ∈ {𝐼}))
9996, 98mpbird 247 . . . . . . . . . . . . . . 15 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼𝑁)
1003eleq2i 2842 . . . . . . . . . . . . . . . 16 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
101100biimpi 206 . . . . . . . . . . . . . . 15 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
102 simpl 468 . . . . . . . . . . . . . . . 16 ((𝐼𝑁𝑀 ∈ (Base‘𝐴)) → 𝐼𝑁)
103 simpr 471 . . . . . . . . . . . . . . . 16 ((𝐼𝑁𝑀 ∈ (Base‘𝐴)) → 𝑀 ∈ (Base‘𝐴))
104102, 102, 1033jca 1122 . . . . . . . . . . . . . . 15 ((𝐼𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)))
10599, 101, 104syl2an 583 . . . . . . . . . . . . . 14 (((𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)))
1061053adant1 1124 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)))
107 eqid 2771 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
1082, 107matecl 20448 . . . . . . . . . . . . 13 ((𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
109106, 108syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
1108, 107mgpbas 18703 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
111109, 110syl6eleq 2860 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑀𝐼) ∈ (Base‘(mulGrp‘𝑅)))
112 eqid 2771 . . . . . . . . . . . 12 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
113 fveq2 6332 . . . . . . . . . . . . . 14 (𝑥 = 𝐼 → ({⟨𝐼, 𝐼⟩}‘𝑥) = ({⟨𝐼, 𝐼⟩}‘𝐼))
114 eqvisset 3363 . . . . . . . . . . . . . . 15 (𝑥 = 𝐼𝐼 ∈ V)
115 fvsng 6591 . . . . . . . . . . . . . . 15 ((𝐼 ∈ V ∧ 𝐼 ∈ V) → ({⟨𝐼, 𝐼⟩}‘𝐼) = 𝐼)
116114, 114, 115syl2anc 573 . . . . . . . . . . . . . 14 (𝑥 = 𝐼 → ({⟨𝐼, 𝐼⟩}‘𝐼) = 𝐼)
117113, 116eqtrd 2805 . . . . . . . . . . . . 13 (𝑥 = 𝐼 → ({⟨𝐼, 𝐼⟩}‘𝑥) = 𝐼)
118 id 22 . . . . . . . . . . . . 13 (𝑥 = 𝐼𝑥 = 𝐼)
119117, 118oveq12d 6811 . . . . . . . . . . . 12 (𝑥 = 𝐼 → (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥) = (𝐼𝑀𝐼))
120112, 119gsumsn 18561 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑉 ∧ (𝐼𝑀𝐼) ∈ (Base‘(mulGrp‘𝑅))) → ((mulGrp‘𝑅) Σg (𝑥 ∈ {𝐼} ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))) = (𝐼𝑀𝐼))
12194, 15, 111, 120syl3anc 1476 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑥 ∈ {𝐼} ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))) = (𝐼𝑀𝐼))
12291, 121eqtrd 2805 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))) = (𝐼𝑀𝐼))
12388, 122oveq12d 6811 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) = ((1r𝑅)(.r𝑅)(𝐼𝑀𝐼)))
124993ad2ant2 1128 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼𝑁)
1251013ad2ant3 1129 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐴))
126124, 124, 125, 108syl3anc 1476 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
127107, 7, 85ringlidm 18779 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝐼𝑀𝐼) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(𝐼𝑀𝐼)) = (𝐼𝑀𝐼))
12884, 126, 127syl2anc 573 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((1r𝑅)(.r𝑅)(𝐼𝑀𝐼)) = (𝐼𝑀𝐼))
129123, 128eqtrd 2805 . . . . . . 7 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) = (𝐼𝑀𝐼))
130129opeq2d 4546 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩ = ⟨{⟨𝐼, 𝐼⟩}, (𝐼𝑀𝐼)⟩)
131130sneqd 4328 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩} = {⟨{⟨𝐼, 𝐼⟩}, (𝐼𝑀𝐼)⟩})
132 ovex 6823 . . . . . 6 (𝐼𝑀𝐼) ∈ V
133 eqidd 2772 . . . . . . 7 (𝑦 = {⟨𝐼, 𝐼⟩} → (𝐼𝑀𝐼) = (𝐼𝑀𝐼))
134133fmptsng 6578 . . . . . 6 (({⟨𝐼, 𝐼⟩} ∈ V ∧ (𝐼𝑀𝐼) ∈ V) → {⟨{⟨𝐼, 𝐼⟩}, (𝐼𝑀𝐼)⟩} = (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼)))
13524, 132, 134sylancl 574 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {⟨{⟨𝐼, 𝐼⟩}, (𝐼𝑀𝐼)⟩} = (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼)))
136131, 135eqtrd 2805 . . . 4 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩} = (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼)))
13722, 34, 1363eqtrd 2809 . . 3 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))) = (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼)))
138137oveq2d 6809 . 2 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))) = (𝑅 Σg (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼))))
139 ringmnd 18764 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
14083, 139syl 17 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Mnd)
1411403ad2ant1 1127 . . 3 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑅 ∈ Mnd)
142107, 133gsumsn 18561 . . 3 ((𝑅 ∈ Mnd ∧ {⟨𝐼, 𝐼⟩} ∈ V ∧ (𝐼𝑀𝐼) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼))) = (𝐼𝑀𝐼))
143141, 24, 126, 142syl3anc 1476 . 2 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑅 Σg (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼))) = (𝐼𝑀𝐼))
14410, 138, 1433eqtrd 2809 1 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐷𝑀) = (𝐼𝑀𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  {crab 3065  Vcvv 3351  cdif 3720  c0 4063  ifcif 4225  {csn 4316  cop 4322  cmpt 4863   I cid 5156   × cxp 5247  dom cdm 5249  cres 5251  ccom 5253   Fn wfn 6026  cfv 6031  (class class class)co 6793  Fincfn 8109  1c1 10139  Basecbs 16064  .rcmulr 16150   Σg cgsu 16309  Mndcmnd 17502  SymGrpcsymg 18004  pmSgncpsgn 18116  mulGrpcmgp 18697  1rcur 18709  Ringcrg 18755  CRingccrg 18756  ℤRHomczrh 20063   Mat cmat 20430   maDet cmdat 20608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-xor 1613  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-ot 4325  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-xnn0 11566  df-z 11580  df-dec 11696  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-word 13495  df-lsw 13496  df-concat 13497  df-s1 13498  df-substr 13499  df-splice 13500  df-reverse 13501  df-s2 13802  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-0g 16310  df-gsum 16311  df-prds 16316  df-pws 16318  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-mulg 17749  df-subg 17799  df-ghm 17866  df-gim 17909  df-cntz 17957  df-oppg 17983  df-symg 18005  df-pmtr 18069  df-psgn 18118  df-cmn 18402  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-rnghom 18925  df-subrg 18988  df-sra 19387  df-rgmod 19388  df-cnfld 19962  df-zring 20034  df-zrh 20067  df-dsmm 20293  df-frlm 20308  df-mat 20431  df-mdet 20609
This theorem is referenced by:  chpmat1d  20861
  Copyright terms: Public domain W3C validator