MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1detdiag Structured version   Visualization version   GIF version

Theorem m1detdiag 21134
Description: The determinant of a 1-dimensional matrix equals its (single) entry. (Contributed by AV, 6-Aug-2019.)
Hypotheses
Ref Expression
mdetdiag.d 𝐷 = (𝑁 maDet 𝑅)
mdetdiag.a 𝐴 = (𝑁 Mat 𝑅)
mdetdiag.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
m1detdiag ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐷𝑀) = (𝐼𝑀𝐼))

Proof of Theorem m1detdiag
Dummy variables 𝑏 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetdiag.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
2 mdetdiag.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mdetdiag.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2818 . . . 4 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
5 eqid 2818 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
6 eqid 2818 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
7 eqid 2818 . . . 4 (.r𝑅) = (.r𝑅)
8 eqid 2818 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetleib 21124 . . 3 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
1093ad2ant3 1127 . 2 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))))
11 2fveq3 6668 . . . . . . . 8 (𝑁 = {𝐼} → (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{𝐼})))
1211adantr 481 . . . . . . 7 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{𝐼})))
13123ad2ant2 1126 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{𝐼})))
14 simp2r 1192 . . . . . . 7 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼𝑉)
15 eqid 2818 . . . . . . . 8 (SymGrp‘{𝐼}) = (SymGrp‘{𝐼})
16 eqid 2818 . . . . . . . 8 (Base‘(SymGrp‘{𝐼})) = (Base‘(SymGrp‘{𝐼}))
17 eqid 2818 . . . . . . . 8 {𝐼} = {𝐼}
1815, 16, 17symg1bas 18453 . . . . . . 7 (𝐼𝑉 → (Base‘(SymGrp‘{𝐼})) = {{⟨𝐼, 𝐼⟩}})
1914, 18syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(SymGrp‘{𝐼})) = {{⟨𝐼, 𝐼⟩}})
2013, 19eqtrd 2853 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) = {{⟨𝐼, 𝐼⟩}})
2120mpteq1d 5146 . . . 4 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))) = (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))))
22 snex 5322 . . . . . 6 {⟨𝐼, 𝐼⟩} ∈ V
2322a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {⟨𝐼, 𝐼⟩} ∈ V)
24 ovex 7178 . . . . 5 ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) ∈ V
25 fveq2 6663 . . . . . . . 8 (𝑝 = {⟨𝐼, 𝐼⟩} → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩}))
26 fveq1 6662 . . . . . . . . . . 11 (𝑝 = {⟨𝐼, 𝐼⟩} → (𝑝𝑥) = ({⟨𝐼, 𝐼⟩}‘𝑥))
2726oveq1d 7160 . . . . . . . . . 10 (𝑝 = {⟨𝐼, 𝐼⟩} → ((𝑝𝑥)𝑀𝑥) = (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))
2827mpteq2dv 5153 . . . . . . . . 9 (𝑝 = {⟨𝐼, 𝐼⟩} → (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)) = (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))
2928oveq2d 7161 . . . . . . . 8 (𝑝 = {⟨𝐼, 𝐼⟩} → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))) = ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))
3025, 29oveq12d 7163 . . . . . . 7 (𝑝 = {⟨𝐼, 𝐼⟩} → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))))
3130fmptsng 6922 . . . . . 6 (({⟨𝐼, 𝐼⟩} ∈ V ∧ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) ∈ V) → {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩} = (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))))
3231eqcomd 2824 . . . . 5 (({⟨𝐼, 𝐼⟩} ∈ V ∧ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) ∈ V) → (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))) = {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩})
3323, 24, 32sylancl 586 . . . 4 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑝 ∈ {{⟨𝐼, 𝐼⟩}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))) = {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩})
34 eqid 2818 . . . . . . . . . . . . 13 (SymGrp‘𝑁) = (SymGrp‘𝑁)
35 eqid 2818 . . . . . . . . . . . . 13 {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin} = {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin}
3634, 4, 35, 6psgnfn 18558 . . . . . . . . . . . 12 (pmSgn‘𝑁) Fn {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin}
3718adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (Base‘(SymGrp‘{𝐼})) = {{⟨𝐼, 𝐼⟩}})
3812, 37eqtrd 2853 . . . . . . . . . . . . . . . 16 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (Base‘(SymGrp‘𝑁)) = {{⟨𝐼, 𝐼⟩}})
39383ad2ant2 1126 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) = {{⟨𝐼, 𝐼⟩}})
40 rabeq 3481 . . . . . . . . . . . . . . 15 ((Base‘(SymGrp‘𝑁)) = {{⟨𝐼, 𝐼⟩}} → {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin} = {𝑏 ∈ {{⟨𝐼, 𝐼⟩}} ∣ dom (𝑏 ∖ I ) ∈ Fin})
4139, 40syl 17 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin} = {𝑏 ∈ {{⟨𝐼, 𝐼⟩}} ∣ dom (𝑏 ∖ I ) ∈ Fin})
42 difeq1 4089 . . . . . . . . . . . . . . . . . 18 (𝑏 = {⟨𝐼, 𝐼⟩} → (𝑏 ∖ I ) = ({⟨𝐼, 𝐼⟩} ∖ I ))
4342dmeqd 5767 . . . . . . . . . . . . . . . . 17 (𝑏 = {⟨𝐼, 𝐼⟩} → dom (𝑏 ∖ I ) = dom ({⟨𝐼, 𝐼⟩} ∖ I ))
4443eleq1d 2894 . . . . . . . . . . . . . . . 16 (𝑏 = {⟨𝐼, 𝐼⟩} → (dom (𝑏 ∖ I ) ∈ Fin ↔ dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin))
4544rabsnif 4651 . . . . . . . . . . . . . . 15 {𝑏 ∈ {{⟨𝐼, 𝐼⟩}} ∣ dom (𝑏 ∖ I ) ∈ Fin} = if(dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin, {{⟨𝐼, 𝐼⟩}}, ∅)
4645a1i 11 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {𝑏 ∈ {{⟨𝐼, 𝐼⟩}} ∣ dom (𝑏 ∖ I ) ∈ Fin} = if(dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin, {{⟨𝐼, 𝐼⟩}}, ∅))
47 restidsing 5915 . . . . . . . . . . . . . . . . . . . 20 ( I ↾ {𝐼}) = ({𝐼} × {𝐼})
48 xpsng 6893 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝐼𝑉) → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
4948anidms 567 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝑉 → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
5047, 49syl5req 2866 . . . . . . . . . . . . . . . . . . 19 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼}))
51 fnsng 6399 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝐼𝑉) → {⟨𝐼, 𝐼⟩} Fn {𝐼})
5251anidms 567 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} Fn {𝐼})
53 fnnfpeq0 6932 . . . . . . . . . . . . . . . . . . . 20 ({⟨𝐼, 𝐼⟩} Fn {𝐼} → (dom ({⟨𝐼, 𝐼⟩} ∖ I ) = ∅ ↔ {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼})))
5452, 53syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼𝑉 → (dom ({⟨𝐼, 𝐼⟩} ∖ I ) = ∅ ↔ {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼})))
5550, 54mpbird 258 . . . . . . . . . . . . . . . . . 18 (𝐼𝑉 → dom ({⟨𝐼, 𝐼⟩} ∖ I ) = ∅)
56 0fin 8734 . . . . . . . . . . . . . . . . . 18 ∅ ∈ Fin
5755, 56syl6eqel 2918 . . . . . . . . . . . . . . . . 17 (𝐼𝑉 → dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin)
5857adantl 482 . . . . . . . . . . . . . . . 16 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin)
59583ad2ant2 1126 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin)
6059iftrued 4471 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → if(dom ({⟨𝐼, 𝐼⟩} ∖ I ) ∈ Fin, {{⟨𝐼, 𝐼⟩}}, ∅) = {{⟨𝐼, 𝐼⟩}})
6141, 46, 603eqtrrd 2858 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {{⟨𝐼, 𝐼⟩}} = {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin})
6261fneq2d 6440 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((pmSgn‘𝑁) Fn {{⟨𝐼, 𝐼⟩}} ↔ (pmSgn‘𝑁) Fn {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin}))
6336, 62mpbiri 259 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (pmSgn‘𝑁) Fn {{⟨𝐼, 𝐼⟩}})
6422snid 4591 . . . . . . . . . . 11 {⟨𝐼, 𝐼⟩} ∈ {{⟨𝐼, 𝐼⟩}}
65 fvco2 6751 . . . . . . . . . . 11 (((pmSgn‘𝑁) Fn {{⟨𝐼, 𝐼⟩}} ∧ {⟨𝐼, 𝐼⟩} ∈ {{⟨𝐼, 𝐼⟩}}) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩}) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩})))
6663, 64, 65sylancl 586 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩}) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩})))
67 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑁 = {𝐼} → (pmSgn‘𝑁) = (pmSgn‘{𝐼}))
6867adantr 481 . . . . . . . . . . . . . 14 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (pmSgn‘𝑁) = (pmSgn‘{𝐼}))
69683ad2ant2 1126 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (pmSgn‘𝑁) = (pmSgn‘{𝐼}))
7069fveq1d 6665 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩}) = ((pmSgn‘{𝐼})‘{⟨𝐼, 𝐼⟩}))
71 snidg 4589 . . . . . . . . . . . . . . . . . 18 ({⟨𝐼, 𝐼⟩} ∈ V → {⟨𝐼, 𝐼⟩} ∈ {{⟨𝐼, 𝐼⟩}})
7222, 71mp1i 13 . . . . . . . . . . . . . . . . 17 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} ∈ {{⟨𝐼, 𝐼⟩}})
7372, 18eleqtrrd 2913 . . . . . . . . . . . . . . . 16 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼})))
7473ancli 549 . . . . . . . . . . . . . . 15 (𝐼𝑉 → (𝐼𝑉 ∧ {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼}))))
7574adantl 482 . . . . . . . . . . . . . 14 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑉 ∧ {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼}))))
76753ad2ant2 1126 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑉 ∧ {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼}))))
77 eqid 2818 . . . . . . . . . . . . . 14 (pmSgn‘{𝐼}) = (pmSgn‘{𝐼})
7817, 15, 16, 77psgnsn 18577 . . . . . . . . . . . . 13 ((𝐼𝑉 ∧ {⟨𝐼, 𝐼⟩} ∈ (Base‘(SymGrp‘{𝐼}))) → ((pmSgn‘{𝐼})‘{⟨𝐼, 𝐼⟩}) = 1)
7976, 78syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((pmSgn‘{𝐼})‘{⟨𝐼, 𝐼⟩}) = 1)
8070, 79eqtrd 2853 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩}) = 1)
8180fveq2d 6667 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨𝐼, 𝐼⟩})) = ((ℤRHom‘𝑅)‘1))
82 crngring 19237 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
83823ad2ant1 1125 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
84 eqid 2818 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
855, 84zrh1 20588 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((ℤRHom‘𝑅)‘1) = (1r𝑅))
8683, 85syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘1) = (1r𝑅))
8766, 81, 863eqtrd 2857 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩}) = (1r𝑅))
88 simp2l 1191 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑁 = {𝐼})
8988mpteq1d 5146 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)) = (𝑥 ∈ {𝐼} ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))
9089oveq2d 7161 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))) = ((mulGrp‘𝑅) Σg (𝑥 ∈ {𝐼} ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))
918ringmgp 19232 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
9282, 91syl 17 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ Mnd)
93923ad2ant1 1125 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (mulGrp‘𝑅) ∈ Mnd)
94 snidg 4589 . . . . . . . . . . . . . . . . 17 (𝐼𝑉𝐼 ∈ {𝐼})
9594adantl 482 . . . . . . . . . . . . . . . 16 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼 ∈ {𝐼})
96 eleq2 2898 . . . . . . . . . . . . . . . . 17 (𝑁 = {𝐼} → (𝐼𝑁𝐼 ∈ {𝐼}))
9796adantr 481 . . . . . . . . . . . . . . . 16 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → (𝐼𝑁𝐼 ∈ {𝐼}))
9895, 97mpbird 258 . . . . . . . . . . . . . . 15 ((𝑁 = {𝐼} ∧ 𝐼𝑉) → 𝐼𝑁)
993eleq2i 2901 . . . . . . . . . . . . . . . 16 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
10099biimpi 217 . . . . . . . . . . . . . . 15 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
101 simpl 483 . . . . . . . . . . . . . . . 16 ((𝐼𝑁𝑀 ∈ (Base‘𝐴)) → 𝐼𝑁)
102 simpr 485 . . . . . . . . . . . . . . . 16 ((𝐼𝑁𝑀 ∈ (Base‘𝐴)) → 𝑀 ∈ (Base‘𝐴))
103101, 101, 1023jca 1120 . . . . . . . . . . . . . . 15 ((𝐼𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)))
10498, 100, 103syl2an 595 . . . . . . . . . . . . . 14 (((𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)))
1051043adant1 1122 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)))
106 eqid 2818 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
1072, 106matecl 20962 . . . . . . . . . . . . 13 ((𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
108105, 107syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
1098, 106mgpbas 19174 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
110108, 109eleqtrdi 2920 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑀𝐼) ∈ (Base‘(mulGrp‘𝑅)))
111 eqid 2818 . . . . . . . . . . . 12 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
112 fveq2 6663 . . . . . . . . . . . . . 14 (𝑥 = 𝐼 → ({⟨𝐼, 𝐼⟩}‘𝑥) = ({⟨𝐼, 𝐼⟩}‘𝐼))
113 eqvisset 3509 . . . . . . . . . . . . . . 15 (𝑥 = 𝐼𝐼 ∈ V)
114 fvsng 6934 . . . . . . . . . . . . . . 15 ((𝐼 ∈ V ∧ 𝐼 ∈ V) → ({⟨𝐼, 𝐼⟩}‘𝐼) = 𝐼)
115113, 113, 114syl2anc 584 . . . . . . . . . . . . . 14 (𝑥 = 𝐼 → ({⟨𝐼, 𝐼⟩}‘𝐼) = 𝐼)
116112, 115eqtrd 2853 . . . . . . . . . . . . 13 (𝑥 = 𝐼 → ({⟨𝐼, 𝐼⟩}‘𝑥) = 𝐼)
117 id 22 . . . . . . . . . . . . 13 (𝑥 = 𝐼𝑥 = 𝐼)
118116, 117oveq12d 7163 . . . . . . . . . . . 12 (𝑥 = 𝐼 → (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥) = (𝐼𝑀𝐼))
119111, 118gsumsn 19003 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑉 ∧ (𝐼𝑀𝐼) ∈ (Base‘(mulGrp‘𝑅))) → ((mulGrp‘𝑅) Σg (𝑥 ∈ {𝐼} ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))) = (𝐼𝑀𝐼))
12093, 14, 110, 119syl3anc 1363 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑥 ∈ {𝐼} ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))) = (𝐼𝑀𝐼))
12190, 120eqtrd 2853 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))) = (𝐼𝑀𝐼))
12287, 121oveq12d 7163 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) = ((1r𝑅)(.r𝑅)(𝐼𝑀𝐼)))
123983ad2ant2 1126 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝐼𝑁)
1241003ad2ant3 1127 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐴))
125123, 123, 124, 107syl3anc 1363 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
126106, 7, 84ringlidm 19250 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝐼𝑀𝐼) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(𝐼𝑀𝐼)) = (𝐼𝑀𝐼))
12783, 125, 126syl2anc 584 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((1r𝑅)(.r𝑅)(𝐼𝑀𝐼)) = (𝐼𝑀𝐼))
128122, 127eqtrd 2853 . . . . . . 7 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥)))) = (𝐼𝑀𝐼))
129128opeq2d 4802 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → ⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩ = ⟨{⟨𝐼, 𝐼⟩}, (𝐼𝑀𝐼)⟩)
130129sneqd 4569 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩} = {⟨{⟨𝐼, 𝐼⟩}, (𝐼𝑀𝐼)⟩})
131 ovex 7178 . . . . . 6 (𝐼𝑀𝐼) ∈ V
132 eqidd 2819 . . . . . . 7 (𝑦 = {⟨𝐼, 𝐼⟩} → (𝐼𝑀𝐼) = (𝐼𝑀𝐼))
133132fmptsng 6922 . . . . . 6 (({⟨𝐼, 𝐼⟩} ∈ V ∧ (𝐼𝑀𝐼) ∈ V) → {⟨{⟨𝐼, 𝐼⟩}, (𝐼𝑀𝐼)⟩} = (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼)))
13423, 131, 133sylancl 586 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {⟨{⟨𝐼, 𝐼⟩}, (𝐼𝑀𝐼)⟩} = (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼)))
135130, 134eqtrd 2853 . . . 4 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → {⟨{⟨𝐼, 𝐼⟩}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{⟨𝐼, 𝐼⟩})(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (({⟨𝐼, 𝐼⟩}‘𝑥)𝑀𝑥))))⟩} = (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼)))
13621, 33, 1353eqtrd 2857 . . 3 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥))))) = (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼)))
137136oveq2d 7161 . 2 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑀𝑥)))))) = (𝑅 Σg (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼))))
138 ringmnd 19235 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
13982, 138syl 17 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Mnd)
1401393ad2ant1 1125 . . 3 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → 𝑅 ∈ Mnd)
141106, 132gsumsn 19003 . . 3 ((𝑅 ∈ Mnd ∧ {⟨𝐼, 𝐼⟩} ∈ V ∧ (𝐼𝑀𝐼) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼))) = (𝐼𝑀𝐼))
142140, 23, 125, 141syl3anc 1363 . 2 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝑅 Σg (𝑦 ∈ {{⟨𝐼, 𝐼⟩}} ↦ (𝐼𝑀𝐼))) = (𝐼𝑀𝐼))
14310, 137, 1423eqtrd 2857 1 ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐷𝑀) = (𝐼𝑀𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  {crab 3139  Vcvv 3492  cdif 3930  c0 4288  ifcif 4463  {csn 4557  cop 4563  cmpt 5137   I cid 5452   × cxp 5546  dom cdm 5548  cres 5550  ccom 5552   Fn wfn 6343  cfv 6348  (class class class)co 7145  Fincfn 8497  1c1 10526  Basecbs 16471  .rcmulr 16554   Σg cgsu 16702  Mndcmnd 17899  SymGrpcsymg 18433  pmSgncpsgn 18546  mulGrpcmgp 19168  1rcur 19180  Ringcrg 19226  CRingccrg 19227  ℤRHomczrh 20575   Mat cmat 20944   maDet cmdat 21121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-xor 1496  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-ot 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-word 13850  df-lsw 13903  df-concat 13911  df-s1 13938  df-substr 13991  df-pfx 14021  df-splice 14100  df-reverse 14109  df-s2 14198  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-0g 16703  df-gsum 16704  df-prds 16709  df-pws 16711  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-mulg 18163  df-subg 18214  df-ghm 18294  df-gim 18337  df-cntz 18385  df-oppg 18412  df-symg 18434  df-pmtr 18499  df-psgn 18548  df-cmn 18837  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-rnghom 19396  df-subrg 19462  df-sra 19873  df-rgmod 19874  df-cnfld 20474  df-zring 20546  df-zrh 20579  df-dsmm 20804  df-frlm 20819  df-mat 20945  df-mdet 21122
This theorem is referenced by:  chpmat1d  21372
  Copyright terms: Public domain W3C validator