![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreleqd | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence relation, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
eqvreleqd.1 | ⊢ (𝜑 → 𝑅 = 𝑆) |
Ref | Expression |
---|---|
eqvreleqd | ⊢ (𝜑 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreleqd.1 | . 2 ⊢ (𝜑 → 𝑅 = 𝑆) | |
2 | eqvreleq 37460 | . 2 ⊢ (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 EqvRel weqvrel 37048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-refrel 37370 df-symrel 37402 df-trrel 37432 df-eqvrel 37443 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |