|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreleqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence relation, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| eqvreleqd.1 | ⊢ (𝜑 → 𝑅 = 𝑆) | 
| Ref | Expression | 
|---|---|
| eqvreleqd | ⊢ (𝜑 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqvreleqd.1 | . 2 ⊢ (𝜑 → 𝑅 = 𝑆) | |
| 2 | eqvreleq 38604 | . 2 ⊢ (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 EqvRel weqvrel 38200 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-refrel 38514 df-symrel 38546 df-trrel 38576 df-eqvrel 38587 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |