| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreleqi | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence relation, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| eqvreleqi.1 | ⊢ 𝑅 = 𝑆 |
| Ref | Expression |
|---|---|
| eqvreleqi | ⊢ ( EqvRel 𝑅 ↔ EqvRel 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvreleqi.1 | . 2 ⊢ 𝑅 = 𝑆 | |
| 2 | eqvreleq 38586 | . 2 ⊢ (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ( EqvRel 𝑅 ↔ EqvRel 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 EqvRel weqvrel 38179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-refrel 38496 df-symrel 38528 df-trrel 38558 df-eqvrel 38569 |
| This theorem is referenced by: dfcoeleqvrel 38606 eqvreldmqs2 38661 eldisjim2 38770 eqvrel0 38771 eqvrelid 38774 |
| Copyright terms: Public domain | W3C validator |