![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreleqi | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence relation, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
eqvreleqi.1 | ⊢ 𝑅 = 𝑆 |
Ref | Expression |
---|---|
eqvreleqi | ⊢ ( EqvRel 𝑅 ↔ EqvRel 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreleqi.1 | . 2 ⊢ 𝑅 = 𝑆 | |
2 | eqvreleq 38204 | . 2 ⊢ (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ( EqvRel 𝑅 ↔ EqvRel 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 EqvRel weqvrel 37796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-refrel 38114 df-symrel 38146 df-trrel 38176 df-eqvrel 38187 |
This theorem is referenced by: dfcoeleqvrel 38224 eqvreldmqs2 38278 eldisjim2 38387 eqvrel0 38388 eqvrelid 38391 |
Copyright terms: Public domain | W3C validator |