Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreleqi Structured version   Visualization version   GIF version

Theorem eqvreleqi 36725
Description: Equality theorem for equivalence relation, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.)
Hypothesis
Ref Expression
eqvreleqi.1 𝑅 = 𝑆
Assertion
Ref Expression
eqvreleqi ( EqvRel 𝑅 ↔ EqvRel 𝑆)

Proof of Theorem eqvreleqi
StepHypRef Expression
1 eqvreleqi.1 . 2 𝑅 = 𝑆
2 eqvreleq 36724 . 2 (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆))
31, 2ax-mp 5 1 ( EqvRel 𝑅 ↔ EqvRel 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542   EqvRel weqvrel 36359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-refrel 36639  df-symrel 36667  df-trrel 36697  df-eqvrel 36707
This theorem is referenced by:  dfcoeleqvrel  36744
  Copyright terms: Public domain W3C validator