Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpinfval Structured version   Visualization version   GIF version

Theorem esumpinfval 34040
Description: The value of the extended sum of nonnegative terms, with at least one infinite term. (Contributed by Thierry Arnoux, 19-Jun-2017.)
Hypotheses
Ref Expression
esumpinfval.0 𝑘𝜑
esumpinfval.1 (𝜑𝐴𝑉)
esumpinfval.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumpinfval.3 (𝜑 → ∃𝑘𝐴 𝐵 = +∞)
Assertion
Ref Expression
esumpinfval (𝜑 → Σ*𝑘𝐴𝐵 = +∞)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem esumpinfval
StepHypRef Expression
1 iccssxr 13333 . . 3 (0[,]+∞) ⊆ ℝ*
2 esumpinfval.1 . . . 4 (𝜑𝐴𝑉)
3 esumpinfval.0 . . . . 5 𝑘𝜑
4 esumpinfval.2 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
54ex 412 . . . . 5 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
63, 5ralrimi 3227 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
7 nfcv 2891 . . . . 5 𝑘𝐴
87esumcl 33997 . . . 4 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
92, 6, 8syl2anc 584 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
101, 9sselid 3933 . 2 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ℝ*)
11 nfrab1 3415 . . . . 5 𝑘{𝑘𝐴𝐵 = +∞}
12 ssrab2 4031 . . . . . 6 {𝑘𝐴𝐵 = +∞} ⊆ 𝐴
1312a1i 11 . . . . 5 (𝜑 → {𝑘𝐴𝐵 = +∞} ⊆ 𝐴)
14 0xr 11162 . . . . . . . 8 0 ∈ ℝ*
15 pnfxr 11169 . . . . . . . 8 +∞ ∈ ℝ*
16 0lepnf 13035 . . . . . . . 8 0 ≤ +∞
17 ubicc2 13368 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
1814, 15, 16, 17mp3an 1463 . . . . . . 7 +∞ ∈ (0[,]+∞)
1918a1i 11 . . . . . 6 (((𝜑𝑘𝐴) ∧ 𝐵 = +∞) → +∞ ∈ (0[,]+∞))
20 0e0iccpnf 13362 . . . . . . 7 0 ∈ (0[,]+∞)
2120a1i 11 . . . . . 6 (((𝜑𝑘𝐴) ∧ ¬ 𝐵 = +∞) → 0 ∈ (0[,]+∞))
2219, 21ifclda 4512 . . . . 5 ((𝜑𝑘𝐴) → if(𝐵 = +∞, +∞, 0) ∈ (0[,]+∞))
23 eldif 3913 . . . . . . . 8 (𝑘 ∈ (𝐴 ∖ {𝑘𝐴𝐵 = +∞}) ↔ (𝑘𝐴 ∧ ¬ 𝑘 ∈ {𝑘𝐴𝐵 = +∞}))
24 rabid 3416 . . . . . . . . . 10 (𝑘 ∈ {𝑘𝐴𝐵 = +∞} ↔ (𝑘𝐴𝐵 = +∞))
2524simplbi2 500 . . . . . . . . 9 (𝑘𝐴 → (𝐵 = +∞ → 𝑘 ∈ {𝑘𝐴𝐵 = +∞}))
2625con3dimp 408 . . . . . . . 8 ((𝑘𝐴 ∧ ¬ 𝑘 ∈ {𝑘𝐴𝐵 = +∞}) → ¬ 𝐵 = +∞)
2723, 26sylbi 217 . . . . . . 7 (𝑘 ∈ (𝐴 ∖ {𝑘𝐴𝐵 = +∞}) → ¬ 𝐵 = +∞)
2827adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑘𝐴𝐵 = +∞})) → ¬ 𝐵 = +∞)
2928iffalsed 4487 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑘𝐴𝐵 = +∞})) → if(𝐵 = +∞, +∞, 0) = 0)
303, 11, 7, 13, 2, 22, 29esumss 34039 . . . 4 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = Σ*𝑘𝐴if(𝐵 = +∞, +∞, 0))
31 eqidd 2730 . . . . . 6 (𝜑 → {𝑘𝐴𝐵 = +∞} = {𝑘𝐴𝐵 = +∞})
3224simprbi 496 . . . . . . . 8 (𝑘 ∈ {𝑘𝐴𝐵 = +∞} → 𝐵 = +∞)
3332iftrued 4484 . . . . . . 7 (𝑘 ∈ {𝑘𝐴𝐵 = +∞} → if(𝐵 = +∞, +∞, 0) = +∞)
3433adantl 481 . . . . . 6 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = +∞}) → if(𝐵 = +∞, +∞, 0) = +∞)
353, 31, 34esumeq12dvaf 33998 . . . . 5 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}+∞)
362, 13ssexd 5263 . . . . . 6 (𝜑 → {𝑘𝐴𝐵 = +∞} ∈ V)
37 nfcv 2891 . . . . . . 7 𝑘+∞
3811, 37esumcst 34030 . . . . . 6 (({𝑘𝐴𝐵 = +∞} ∈ V ∧ +∞ ∈ (0[,]+∞)) → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}+∞ = ((♯‘{𝑘𝐴𝐵 = +∞}) ·e +∞))
3936, 18, 38sylancl 586 . . . . 5 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}+∞ = ((♯‘{𝑘𝐴𝐵 = +∞}) ·e +∞))
40 hashxrcl 14264 . . . . . . 7 ({𝑘𝐴𝐵 = +∞} ∈ V → (♯‘{𝑘𝐴𝐵 = +∞}) ∈ ℝ*)
4136, 40syl 17 . . . . . 6 (𝜑 → (♯‘{𝑘𝐴𝐵 = +∞}) ∈ ℝ*)
42 esumpinfval.3 . . . . . . . 8 (𝜑 → ∃𝑘𝐴 𝐵 = +∞)
43 rabn0 4340 . . . . . . . 8 ({𝑘𝐴𝐵 = +∞} ≠ ∅ ↔ ∃𝑘𝐴 𝐵 = +∞)
4442, 43sylibr 234 . . . . . . 7 (𝜑 → {𝑘𝐴𝐵 = +∞} ≠ ∅)
45 hashgt0 14295 . . . . . . 7 (({𝑘𝐴𝐵 = +∞} ∈ V ∧ {𝑘𝐴𝐵 = +∞} ≠ ∅) → 0 < (♯‘{𝑘𝐴𝐵 = +∞}))
4636, 44, 45syl2anc 584 . . . . . 6 (𝜑 → 0 < (♯‘{𝑘𝐴𝐵 = +∞}))
47 xmulpnf1 13176 . . . . . 6 (((♯‘{𝑘𝐴𝐵 = +∞}) ∈ ℝ* ∧ 0 < (♯‘{𝑘𝐴𝐵 = +∞})) → ((♯‘{𝑘𝐴𝐵 = +∞}) ·e +∞) = +∞)
4841, 46, 47syl2anc 584 . . . . 5 (𝜑 → ((♯‘{𝑘𝐴𝐵 = +∞}) ·e +∞) = +∞)
4935, 39, 483eqtrd 2768 . . . 4 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = +∞)
5030, 49eqtr3d 2766 . . 3 (𝜑 → Σ*𝑘𝐴if(𝐵 = +∞, +∞, 0) = +∞)
51 breq1 5095 . . . . 5 (+∞ = if(𝐵 = +∞, +∞, 0) → (+∞ ≤ 𝐵 ↔ if(𝐵 = +∞, +∞, 0) ≤ 𝐵))
52 breq1 5095 . . . . 5 (0 = if(𝐵 = +∞, +∞, 0) → (0 ≤ 𝐵 ↔ if(𝐵 = +∞, +∞, 0) ≤ 𝐵))
53 pnfge 13032 . . . . . . . 8 (+∞ ∈ ℝ* → +∞ ≤ +∞)
5415, 53ax-mp 5 . . . . . . 7 +∞ ≤ +∞
55 breq2 5096 . . . . . . 7 (𝐵 = +∞ → (+∞ ≤ 𝐵 ↔ +∞ ≤ +∞))
5654, 55mpbiri 258 . . . . . 6 (𝐵 = +∞ → +∞ ≤ 𝐵)
5756adantl 481 . . . . 5 (((𝜑𝑘𝐴) ∧ 𝐵 = +∞) → +∞ ≤ 𝐵)
584adantr 480 . . . . . 6 (((𝜑𝑘𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ (0[,]+∞))
59 iccgelb 13305 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
6014, 15, 59mp3an12 1453 . . . . . 6 (𝐵 ∈ (0[,]+∞) → 0 ≤ 𝐵)
6158, 60syl 17 . . . . 5 (((𝜑𝑘𝐴) ∧ ¬ 𝐵 = +∞) → 0 ≤ 𝐵)
6251, 52, 57, 61ifbothda 4515 . . . 4 ((𝜑𝑘𝐴) → if(𝐵 = +∞, +∞, 0) ≤ 𝐵)
633, 7, 2, 22, 4, 62esumlef 34029 . . 3 (𝜑 → Σ*𝑘𝐴if(𝐵 = +∞, +∞, 0) ≤ Σ*𝑘𝐴𝐵)
6450, 63eqbrtrrd 5116 . 2 (𝜑 → +∞ ≤ Σ*𝑘𝐴𝐵)
65 xgepnf 13067 . . 3 *𝑘𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘𝐴𝐵 ↔ Σ*𝑘𝐴𝐵 = +∞))
6665biimpd 229 . 2 *𝑘𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘𝐴𝐵 → Σ*𝑘𝐴𝐵 = +∞))
6710, 64, 66sylc 65 1 (𝜑 → Σ*𝑘𝐴𝐵 = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  wss 3903  c0 4284  ifcif 4476   class class class wbr 5092  cfv 6482  (class class class)co 7349  0cc0 11009  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150   ·e cxmu 13013  [,]cicc 13251  chash 14237  Σ*cesum 33994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-ordt 17405  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-plusf 18513  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-abv 20694  df-lmod 20765  df-scaf 20766  df-sra 21077  df-rgmod 21078  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-tmd 23957  df-tgp 23958  df-tsms 24012  df-trg 24045  df-xms 24206  df-ms 24207  df-tms 24208  df-nm 24468  df-ngp 24469  df-nrg 24471  df-nlm 24472  df-ii 24768  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-esum 33995
This theorem is referenced by:  hasheuni  34052  esumcvg  34053  esumcvgre  34058  voliune  34196  volfiniune  34197
  Copyright terms: Public domain W3C validator