Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpinfval Structured version   Visualization version   GIF version

Theorem esumpinfval 33601
Description: The value of the extended sum of nonnegative terms, with at least one infinite term. (Contributed by Thierry Arnoux, 19-Jun-2017.)
Hypotheses
Ref Expression
esumpinfval.0 𝑘𝜑
esumpinfval.1 (𝜑𝐴𝑉)
esumpinfval.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumpinfval.3 (𝜑 → ∃𝑘𝐴 𝐵 = +∞)
Assertion
Ref Expression
esumpinfval (𝜑 → Σ*𝑘𝐴𝐵 = +∞)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem esumpinfval
StepHypRef Expression
1 iccssxr 13413 . . 3 (0[,]+∞) ⊆ ℝ*
2 esumpinfval.1 . . . 4 (𝜑𝐴𝑉)
3 esumpinfval.0 . . . . 5 𝑘𝜑
4 esumpinfval.2 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
54ex 412 . . . . 5 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
63, 5ralrimi 3248 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
7 nfcv 2897 . . . . 5 𝑘𝐴
87esumcl 33558 . . . 4 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
92, 6, 8syl2anc 583 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
101, 9sselid 3975 . 2 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ℝ*)
11 nfrab1 3445 . . . . 5 𝑘{𝑘𝐴𝐵 = +∞}
12 ssrab2 4072 . . . . . 6 {𝑘𝐴𝐵 = +∞} ⊆ 𝐴
1312a1i 11 . . . . 5 (𝜑 → {𝑘𝐴𝐵 = +∞} ⊆ 𝐴)
14 0xr 11265 . . . . . . . 8 0 ∈ ℝ*
15 pnfxr 11272 . . . . . . . 8 +∞ ∈ ℝ*
16 0lepnf 13118 . . . . . . . 8 0 ≤ +∞
17 ubicc2 13448 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
1814, 15, 16, 17mp3an 1457 . . . . . . 7 +∞ ∈ (0[,]+∞)
1918a1i 11 . . . . . 6 (((𝜑𝑘𝐴) ∧ 𝐵 = +∞) → +∞ ∈ (0[,]+∞))
20 0e0iccpnf 13442 . . . . . . 7 0 ∈ (0[,]+∞)
2120a1i 11 . . . . . 6 (((𝜑𝑘𝐴) ∧ ¬ 𝐵 = +∞) → 0 ∈ (0[,]+∞))
2219, 21ifclda 4558 . . . . 5 ((𝜑𝑘𝐴) → if(𝐵 = +∞, +∞, 0) ∈ (0[,]+∞))
23 eldif 3953 . . . . . . . 8 (𝑘 ∈ (𝐴 ∖ {𝑘𝐴𝐵 = +∞}) ↔ (𝑘𝐴 ∧ ¬ 𝑘 ∈ {𝑘𝐴𝐵 = +∞}))
24 rabid 3446 . . . . . . . . . 10 (𝑘 ∈ {𝑘𝐴𝐵 = +∞} ↔ (𝑘𝐴𝐵 = +∞))
2524simplbi2 500 . . . . . . . . 9 (𝑘𝐴 → (𝐵 = +∞ → 𝑘 ∈ {𝑘𝐴𝐵 = +∞}))
2625con3dimp 408 . . . . . . . 8 ((𝑘𝐴 ∧ ¬ 𝑘 ∈ {𝑘𝐴𝐵 = +∞}) → ¬ 𝐵 = +∞)
2723, 26sylbi 216 . . . . . . 7 (𝑘 ∈ (𝐴 ∖ {𝑘𝐴𝐵 = +∞}) → ¬ 𝐵 = +∞)
2827adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑘𝐴𝐵 = +∞})) → ¬ 𝐵 = +∞)
2928iffalsed 4534 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑘𝐴𝐵 = +∞})) → if(𝐵 = +∞, +∞, 0) = 0)
303, 11, 7, 13, 2, 22, 29esumss 33600 . . . 4 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = Σ*𝑘𝐴if(𝐵 = +∞, +∞, 0))
31 eqidd 2727 . . . . . 6 (𝜑 → {𝑘𝐴𝐵 = +∞} = {𝑘𝐴𝐵 = +∞})
3224simprbi 496 . . . . . . . 8 (𝑘 ∈ {𝑘𝐴𝐵 = +∞} → 𝐵 = +∞)
3332iftrued 4531 . . . . . . 7 (𝑘 ∈ {𝑘𝐴𝐵 = +∞} → if(𝐵 = +∞, +∞, 0) = +∞)
3433adantl 481 . . . . . 6 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = +∞}) → if(𝐵 = +∞, +∞, 0) = +∞)
353, 31, 34esumeq12dvaf 33559 . . . . 5 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}+∞)
362, 13ssexd 5317 . . . . . 6 (𝜑 → {𝑘𝐴𝐵 = +∞} ∈ V)
37 nfcv 2897 . . . . . . 7 𝑘+∞
3811, 37esumcst 33591 . . . . . 6 (({𝑘𝐴𝐵 = +∞} ∈ V ∧ +∞ ∈ (0[,]+∞)) → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}+∞ = ((♯‘{𝑘𝐴𝐵 = +∞}) ·e +∞))
3936, 18, 38sylancl 585 . . . . 5 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}+∞ = ((♯‘{𝑘𝐴𝐵 = +∞}) ·e +∞))
40 hashxrcl 14322 . . . . . . 7 ({𝑘𝐴𝐵 = +∞} ∈ V → (♯‘{𝑘𝐴𝐵 = +∞}) ∈ ℝ*)
4136, 40syl 17 . . . . . 6 (𝜑 → (♯‘{𝑘𝐴𝐵 = +∞}) ∈ ℝ*)
42 esumpinfval.3 . . . . . . . 8 (𝜑 → ∃𝑘𝐴 𝐵 = +∞)
43 rabn0 4380 . . . . . . . 8 ({𝑘𝐴𝐵 = +∞} ≠ ∅ ↔ ∃𝑘𝐴 𝐵 = +∞)
4442, 43sylibr 233 . . . . . . 7 (𝜑 → {𝑘𝐴𝐵 = +∞} ≠ ∅)
45 hashgt0 14353 . . . . . . 7 (({𝑘𝐴𝐵 = +∞} ∈ V ∧ {𝑘𝐴𝐵 = +∞} ≠ ∅) → 0 < (♯‘{𝑘𝐴𝐵 = +∞}))
4636, 44, 45syl2anc 583 . . . . . 6 (𝜑 → 0 < (♯‘{𝑘𝐴𝐵 = +∞}))
47 xmulpnf1 13259 . . . . . 6 (((♯‘{𝑘𝐴𝐵 = +∞}) ∈ ℝ* ∧ 0 < (♯‘{𝑘𝐴𝐵 = +∞})) → ((♯‘{𝑘𝐴𝐵 = +∞}) ·e +∞) = +∞)
4841, 46, 47syl2anc 583 . . . . 5 (𝜑 → ((♯‘{𝑘𝐴𝐵 = +∞}) ·e +∞) = +∞)
4935, 39, 483eqtrd 2770 . . . 4 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = +∞)
5030, 49eqtr3d 2768 . . 3 (𝜑 → Σ*𝑘𝐴if(𝐵 = +∞, +∞, 0) = +∞)
51 breq1 5144 . . . . 5 (+∞ = if(𝐵 = +∞, +∞, 0) → (+∞ ≤ 𝐵 ↔ if(𝐵 = +∞, +∞, 0) ≤ 𝐵))
52 breq1 5144 . . . . 5 (0 = if(𝐵 = +∞, +∞, 0) → (0 ≤ 𝐵 ↔ if(𝐵 = +∞, +∞, 0) ≤ 𝐵))
53 pnfge 13116 . . . . . . . 8 (+∞ ∈ ℝ* → +∞ ≤ +∞)
5415, 53ax-mp 5 . . . . . . 7 +∞ ≤ +∞
55 breq2 5145 . . . . . . 7 (𝐵 = +∞ → (+∞ ≤ 𝐵 ↔ +∞ ≤ +∞))
5654, 55mpbiri 258 . . . . . 6 (𝐵 = +∞ → +∞ ≤ 𝐵)
5756adantl 481 . . . . 5 (((𝜑𝑘𝐴) ∧ 𝐵 = +∞) → +∞ ≤ 𝐵)
584adantr 480 . . . . . 6 (((𝜑𝑘𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ (0[,]+∞))
59 iccgelb 13386 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
6014, 15, 59mp3an12 1447 . . . . . 6 (𝐵 ∈ (0[,]+∞) → 0 ≤ 𝐵)
6158, 60syl 17 . . . . 5 (((𝜑𝑘𝐴) ∧ ¬ 𝐵 = +∞) → 0 ≤ 𝐵)
6251, 52, 57, 61ifbothda 4561 . . . 4 ((𝜑𝑘𝐴) → if(𝐵 = +∞, +∞, 0) ≤ 𝐵)
633, 7, 2, 22, 4, 62esumlef 33590 . . 3 (𝜑 → Σ*𝑘𝐴if(𝐵 = +∞, +∞, 0) ≤ Σ*𝑘𝐴𝐵)
6450, 63eqbrtrrd 5165 . 2 (𝜑 → +∞ ≤ Σ*𝑘𝐴𝐵)
65 xgepnf 13150 . . 3 *𝑘𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘𝐴𝐵 ↔ Σ*𝑘𝐴𝐵 = +∞))
6665biimpd 228 . 2 *𝑘𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘𝐴𝐵 → Σ*𝑘𝐴𝐵 = +∞))
6710, 64, 66sylc 65 1 (𝜑 → Σ*𝑘𝐴𝐵 = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wnf 1777  wcel 2098  wne 2934  wral 3055  wrex 3064  {crab 3426  Vcvv 3468  cdif 3940  wss 3943  c0 4317  ifcif 4523   class class class wbr 5141  cfv 6537  (class class class)co 7405  0cc0 11112  +∞cpnf 11249  *cxr 11251   < clt 11252  cle 11253   ·e cxmu 13097  [,]cicc 13333  chash 14295  Σ*cesum 33555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-oadd 8471  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-xnn0 12549  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12981  df-xneg 13098  df-xadd 13099  df-xmul 13100  df-ioo 13334  df-ioc 13335  df-ico 13336  df-icc 13337  df-fz 13491  df-fzo 13634  df-fl 13763  df-mod 13841  df-seq 13973  df-exp 14033  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15020  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-limsup 15421  df-clim 15438  df-rlim 15439  df-sum 15639  df-ef 16017  df-sin 16019  df-cos 16020  df-pi 16022  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-starv 17221  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-unif 17229  df-hom 17230  df-cco 17231  df-rest 17377  df-topn 17378  df-0g 17396  df-gsum 17397  df-topgen 17398  df-pt 17399  df-prds 17402  df-ordt 17456  df-xrs 17457  df-qtop 17462  df-imas 17463  df-xps 17465  df-mre 17539  df-mrc 17540  df-acs 17542  df-ps 18531  df-tsr 18532  df-plusf 18572  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18713  df-submnd 18714  df-grp 18866  df-minusg 18867  df-sbg 18868  df-mulg 18996  df-subg 19050  df-cntz 19233  df-cmn 19702  df-abl 19703  df-mgp 20040  df-rng 20058  df-ur 20087  df-ring 20140  df-cring 20141  df-subrng 20446  df-subrg 20471  df-abv 20660  df-lmod 20708  df-scaf 20709  df-sra 21021  df-rgmod 21022  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22751  df-topon 22768  df-topsp 22790  df-bases 22804  df-cld 22878  df-ntr 22879  df-cls 22880  df-nei 22957  df-lp 22995  df-perf 22996  df-cn 23086  df-cnp 23087  df-haus 23174  df-tx 23421  df-hmeo 23614  df-fil 23705  df-fm 23797  df-flim 23798  df-flf 23799  df-tmd 23931  df-tgp 23932  df-tsms 23986  df-trg 24019  df-xms 24181  df-ms 24182  df-tms 24183  df-nm 24446  df-ngp 24447  df-nrg 24449  df-nlm 24450  df-ii 24752  df-cncf 24753  df-limc 25750  df-dv 25751  df-log 26445  df-esum 33556
This theorem is referenced by:  hasheuni  33613  esumcvg  33614  esumcvgre  33619  voliune  33757  volfiniune  33758
  Copyright terms: Public domain W3C validator