| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpinfval | Structured version Visualization version GIF version | ||
| Description: The value of the extended sum of nonnegative terms, with at least one infinite term. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
| Ref | Expression |
|---|---|
| esumpinfval.0 | ⊢ Ⅎ𝑘𝜑 |
| esumpinfval.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumpinfval.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| esumpinfval.3 | ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) |
| Ref | Expression |
|---|---|
| esumpinfval | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr 13391 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 2 | esumpinfval.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | esumpinfval.0 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 4 | esumpinfval.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 5 | 4 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
| 6 | 3, 5 | ralrimi 3235 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
| 7 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
| 8 | 7 | esumcl 34020 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
| 9 | 2, 6, 8 | syl2anc 584 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
| 10 | 1, 9 | sselid 3944 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
| 11 | nfrab1 3426 | . . . . 5 ⊢ Ⅎ𝑘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} | |
| 12 | ssrab2 4043 | . . . . . 6 ⊢ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ⊆ 𝐴 | |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ⊆ 𝐴) |
| 14 | 0xr 11221 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 15 | pnfxr 11228 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 16 | 0lepnf 13093 | . . . . . . . 8 ⊢ 0 ≤ +∞ | |
| 17 | ubicc2 13426 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞)) | |
| 18 | 14, 15, 16, 17 | mp3an 1463 | . . . . . . 7 ⊢ +∞ ∈ (0[,]+∞) |
| 19 | 18 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = +∞) → +∞ ∈ (0[,]+∞)) |
| 20 | 0e0iccpnf 13420 | . . . . . . 7 ⊢ 0 ∈ (0[,]+∞) | |
| 21 | 20 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ¬ 𝐵 = +∞) → 0 ∈ (0[,]+∞)) |
| 22 | 19, 21 | ifclda 4524 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝐵 = +∞, +∞, 0) ∈ (0[,]+∞)) |
| 23 | eldif 3924 | . . . . . . . 8 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) | |
| 24 | rabid 3427 | . . . . . . . . . 10 ⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ↔ (𝑘 ∈ 𝐴 ∧ 𝐵 = +∞)) | |
| 25 | 24 | simplbi2 500 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝐴 → (𝐵 = +∞ → 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) |
| 26 | 25 | con3dimp 408 | . . . . . . . 8 ⊢ ((𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) → ¬ 𝐵 = +∞) |
| 27 | 23, 26 | sylbi 217 | . . . . . . 7 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) → ¬ 𝐵 = +∞) |
| 28 | 27 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) → ¬ 𝐵 = +∞) |
| 29 | 28 | iffalsed 4499 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) → if(𝐵 = +∞, +∞, 0) = 0) |
| 30 | 3, 11, 7, 13, 2, 22, 29 | esumss 34062 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = Σ*𝑘 ∈ 𝐴if(𝐵 = +∞, +∞, 0)) |
| 31 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} = {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) | |
| 32 | 24 | simprbi 496 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} → 𝐵 = +∞) |
| 33 | 32 | iftrued 4496 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} → if(𝐵 = +∞, +∞, 0) = +∞) |
| 34 | 33 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) → if(𝐵 = +∞, +∞, 0) = +∞) |
| 35 | 3, 31, 34 | esumeq12dvaf 34021 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}+∞) |
| 36 | 2, 13 | ssexd 5279 | . . . . . 6 ⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ∈ V) |
| 37 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑘+∞ | |
| 38 | 11, 37 | esumcst 34053 | . . . . . 6 ⊢ (({𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ∈ V ∧ +∞ ∈ (0[,]+∞)) → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}+∞ = ((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ·e +∞)) |
| 39 | 36, 18, 38 | sylancl 586 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}+∞ = ((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ·e +∞)) |
| 40 | hashxrcl 14322 | . . . . . . 7 ⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ∈ V → (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ∈ ℝ*) | |
| 41 | 36, 40 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ∈ ℝ*) |
| 42 | esumpinfval.3 | . . . . . . . 8 ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) | |
| 43 | rabn0 4352 | . . . . . . . 8 ⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ≠ ∅ ↔ ∃𝑘 ∈ 𝐴 𝐵 = +∞) | |
| 44 | 42, 43 | sylibr 234 | . . . . . . 7 ⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ≠ ∅) |
| 45 | hashgt0 14353 | . . . . . . 7 ⊢ (({𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ∈ V ∧ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ≠ ∅) → 0 < (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) | |
| 46 | 36, 44, 45 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 0 < (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) |
| 47 | xmulpnf1 13234 | . . . . . 6 ⊢ (((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ∈ ℝ* ∧ 0 < (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) → ((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ·e +∞) = +∞) | |
| 48 | 41, 46, 47 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ·e +∞) = +∞) |
| 49 | 35, 39, 48 | 3eqtrd 2768 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = +∞) |
| 50 | 30, 49 | eqtr3d 2766 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴if(𝐵 = +∞, +∞, 0) = +∞) |
| 51 | breq1 5110 | . . . . 5 ⊢ (+∞ = if(𝐵 = +∞, +∞, 0) → (+∞ ≤ 𝐵 ↔ if(𝐵 = +∞, +∞, 0) ≤ 𝐵)) | |
| 52 | breq1 5110 | . . . . 5 ⊢ (0 = if(𝐵 = +∞, +∞, 0) → (0 ≤ 𝐵 ↔ if(𝐵 = +∞, +∞, 0) ≤ 𝐵)) | |
| 53 | pnfge 13090 | . . . . . . . 8 ⊢ (+∞ ∈ ℝ* → +∞ ≤ +∞) | |
| 54 | 15, 53 | ax-mp 5 | . . . . . . 7 ⊢ +∞ ≤ +∞ |
| 55 | breq2 5111 | . . . . . . 7 ⊢ (𝐵 = +∞ → (+∞ ≤ 𝐵 ↔ +∞ ≤ +∞)) | |
| 56 | 54, 55 | mpbiri 258 | . . . . . 6 ⊢ (𝐵 = +∞ → +∞ ≤ 𝐵) |
| 57 | 56 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = +∞) → +∞ ≤ 𝐵) |
| 58 | 4 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ (0[,]+∞)) |
| 59 | iccgelb 13363 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵) | |
| 60 | 14, 15, 59 | mp3an12 1453 | . . . . . 6 ⊢ (𝐵 ∈ (0[,]+∞) → 0 ≤ 𝐵) |
| 61 | 58, 60 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ¬ 𝐵 = +∞) → 0 ≤ 𝐵) |
| 62 | 51, 52, 57, 61 | ifbothda 4527 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝐵 = +∞, +∞, 0) ≤ 𝐵) |
| 63 | 3, 7, 2, 22, 4, 62 | esumlef 34052 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴if(𝐵 = +∞, +∞, 0) ≤ Σ*𝑘 ∈ 𝐴𝐵) |
| 64 | 50, 63 | eqbrtrrd 5131 | . 2 ⊢ (𝜑 → +∞ ≤ Σ*𝑘 ∈ 𝐴𝐵) |
| 65 | xgepnf 13125 | . . 3 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘 ∈ 𝐴𝐵 ↔ Σ*𝑘 ∈ 𝐴𝐵 = +∞)) | |
| 66 | 65 | biimpd 229 | . 2 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘 ∈ 𝐴𝐵 → Σ*𝑘 ∈ 𝐴𝐵 = +∞)) |
| 67 | 10, 64, 66 | sylc 65 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3405 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 ifcif 4488 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 ·e cxmu 13071 [,]cicc 13309 ♯chash 14295 Σ*cesum 34017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-ordt 17464 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-ps 18525 df-tsr 18526 df-plusf 18566 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-subrng 20455 df-subrg 20479 df-abv 20718 df-lmod 20768 df-scaf 20769 df-sra 21080 df-rgmod 21081 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-tmd 23959 df-tgp 23960 df-tsms 24014 df-trg 24047 df-xms 24208 df-ms 24209 df-tms 24210 df-nm 24470 df-ngp 24471 df-nrg 24473 df-nlm 24474 df-ii 24770 df-cncf 24771 df-limc 25767 df-dv 25768 df-log 26465 df-esum 34018 |
| This theorem is referenced by: hasheuni 34075 esumcvg 34076 esumcvgre 34081 voliune 34219 volfiniune 34220 |
| Copyright terms: Public domain | W3C validator |