![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpinfval | Structured version Visualization version GIF version |
Description: The value of the extended sum of nonnegative terms, with at least one infinite term. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
Ref | Expression |
---|---|
esumpinfval.0 | ⊢ Ⅎ𝑘𝜑 |
esumpinfval.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumpinfval.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumpinfval.3 | ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) |
Ref | Expression |
---|---|
esumpinfval | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13413 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | esumpinfval.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | esumpinfval.0 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
4 | esumpinfval.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
5 | 4 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
6 | 3, 5 | ralrimi 3248 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
7 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
8 | 7 | esumcl 33558 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
9 | 2, 6, 8 | syl2anc 583 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
10 | 1, 9 | sselid 3975 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
11 | nfrab1 3445 | . . . . 5 ⊢ Ⅎ𝑘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} | |
12 | ssrab2 4072 | . . . . . 6 ⊢ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ⊆ 𝐴 | |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ⊆ 𝐴) |
14 | 0xr 11265 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
15 | pnfxr 11272 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
16 | 0lepnf 13118 | . . . . . . . 8 ⊢ 0 ≤ +∞ | |
17 | ubicc2 13448 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞)) | |
18 | 14, 15, 16, 17 | mp3an 1457 | . . . . . . 7 ⊢ +∞ ∈ (0[,]+∞) |
19 | 18 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = +∞) → +∞ ∈ (0[,]+∞)) |
20 | 0e0iccpnf 13442 | . . . . . . 7 ⊢ 0 ∈ (0[,]+∞) | |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ¬ 𝐵 = +∞) → 0 ∈ (0[,]+∞)) |
22 | 19, 21 | ifclda 4558 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝐵 = +∞, +∞, 0) ∈ (0[,]+∞)) |
23 | eldif 3953 | . . . . . . . 8 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) | |
24 | rabid 3446 | . . . . . . . . . 10 ⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ↔ (𝑘 ∈ 𝐴 ∧ 𝐵 = +∞)) | |
25 | 24 | simplbi2 500 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝐴 → (𝐵 = +∞ → 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) |
26 | 25 | con3dimp 408 | . . . . . . . 8 ⊢ ((𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) → ¬ 𝐵 = +∞) |
27 | 23, 26 | sylbi 216 | . . . . . . 7 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) → ¬ 𝐵 = +∞) |
28 | 27 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) → ¬ 𝐵 = +∞) |
29 | 28 | iffalsed 4534 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) → if(𝐵 = +∞, +∞, 0) = 0) |
30 | 3, 11, 7, 13, 2, 22, 29 | esumss 33600 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = Σ*𝑘 ∈ 𝐴if(𝐵 = +∞, +∞, 0)) |
31 | eqidd 2727 | . . . . . 6 ⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} = {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) | |
32 | 24 | simprbi 496 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} → 𝐵 = +∞) |
33 | 32 | iftrued 4531 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} → if(𝐵 = +∞, +∞, 0) = +∞) |
34 | 33 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) → if(𝐵 = +∞, +∞, 0) = +∞) |
35 | 3, 31, 34 | esumeq12dvaf 33559 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}+∞) |
36 | 2, 13 | ssexd 5317 | . . . . . 6 ⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ∈ V) |
37 | nfcv 2897 | . . . . . . 7 ⊢ Ⅎ𝑘+∞ | |
38 | 11, 37 | esumcst 33591 | . . . . . 6 ⊢ (({𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ∈ V ∧ +∞ ∈ (0[,]+∞)) → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}+∞ = ((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ·e +∞)) |
39 | 36, 18, 38 | sylancl 585 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}+∞ = ((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ·e +∞)) |
40 | hashxrcl 14322 | . . . . . . 7 ⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ∈ V → (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ∈ ℝ*) | |
41 | 36, 40 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ∈ ℝ*) |
42 | esumpinfval.3 | . . . . . . . 8 ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) | |
43 | rabn0 4380 | . . . . . . . 8 ⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ≠ ∅ ↔ ∃𝑘 ∈ 𝐴 𝐵 = +∞) | |
44 | 42, 43 | sylibr 233 | . . . . . . 7 ⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ≠ ∅) |
45 | hashgt0 14353 | . . . . . . 7 ⊢ (({𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ∈ V ∧ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ≠ ∅) → 0 < (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) | |
46 | 36, 44, 45 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → 0 < (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) |
47 | xmulpnf1 13259 | . . . . . 6 ⊢ (((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ∈ ℝ* ∧ 0 < (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) → ((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ·e +∞) = +∞) | |
48 | 41, 46, 47 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ·e +∞) = +∞) |
49 | 35, 39, 48 | 3eqtrd 2770 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = +∞) |
50 | 30, 49 | eqtr3d 2768 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴if(𝐵 = +∞, +∞, 0) = +∞) |
51 | breq1 5144 | . . . . 5 ⊢ (+∞ = if(𝐵 = +∞, +∞, 0) → (+∞ ≤ 𝐵 ↔ if(𝐵 = +∞, +∞, 0) ≤ 𝐵)) | |
52 | breq1 5144 | . . . . 5 ⊢ (0 = if(𝐵 = +∞, +∞, 0) → (0 ≤ 𝐵 ↔ if(𝐵 = +∞, +∞, 0) ≤ 𝐵)) | |
53 | pnfge 13116 | . . . . . . . 8 ⊢ (+∞ ∈ ℝ* → +∞ ≤ +∞) | |
54 | 15, 53 | ax-mp 5 | . . . . . . 7 ⊢ +∞ ≤ +∞ |
55 | breq2 5145 | . . . . . . 7 ⊢ (𝐵 = +∞ → (+∞ ≤ 𝐵 ↔ +∞ ≤ +∞)) | |
56 | 54, 55 | mpbiri 258 | . . . . . 6 ⊢ (𝐵 = +∞ → +∞ ≤ 𝐵) |
57 | 56 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = +∞) → +∞ ≤ 𝐵) |
58 | 4 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ (0[,]+∞)) |
59 | iccgelb 13386 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵) | |
60 | 14, 15, 59 | mp3an12 1447 | . . . . . 6 ⊢ (𝐵 ∈ (0[,]+∞) → 0 ≤ 𝐵) |
61 | 58, 60 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ¬ 𝐵 = +∞) → 0 ≤ 𝐵) |
62 | 51, 52, 57, 61 | ifbothda 4561 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝐵 = +∞, +∞, 0) ≤ 𝐵) |
63 | 3, 7, 2, 22, 4, 62 | esumlef 33590 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴if(𝐵 = +∞, +∞, 0) ≤ Σ*𝑘 ∈ 𝐴𝐵) |
64 | 50, 63 | eqbrtrrd 5165 | . 2 ⊢ (𝜑 → +∞ ≤ Σ*𝑘 ∈ 𝐴𝐵) |
65 | xgepnf 13150 | . . 3 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘 ∈ 𝐴𝐵 ↔ Σ*𝑘 ∈ 𝐴𝐵 = +∞)) | |
66 | 65 | biimpd 228 | . 2 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘 ∈ 𝐴𝐵 → Σ*𝑘 ∈ 𝐴𝐵 = +∞)) |
67 | 10, 64, 66 | sylc 65 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 ≠ wne 2934 ∀wral 3055 ∃wrex 3064 {crab 3426 Vcvv 3468 ∖ cdif 3940 ⊆ wss 3943 ∅c0 4317 ifcif 4523 class class class wbr 5141 ‘cfv 6537 (class class class)co 7405 0cc0 11112 +∞cpnf 11249 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 ·e cxmu 13097 [,]cicc 13333 ♯chash 14295 Σ*cesum 33555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-oadd 8471 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-xnn0 12549 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ioo 13334 df-ioc 13335 df-ico 13336 df-icc 13337 df-fz 13491 df-fzo 13634 df-fl 13763 df-mod 13841 df-seq 13973 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15020 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-limsup 15421 df-clim 15438 df-rlim 15439 df-sum 15639 df-ef 16017 df-sin 16019 df-cos 16020 df-pi 16022 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-hom 17230 df-cco 17231 df-rest 17377 df-topn 17378 df-0g 17396 df-gsum 17397 df-topgen 17398 df-pt 17399 df-prds 17402 df-ordt 17456 df-xrs 17457 df-qtop 17462 df-imas 17463 df-xps 17465 df-mre 17539 df-mrc 17540 df-acs 17542 df-ps 18531 df-tsr 18532 df-plusf 18572 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18713 df-submnd 18714 df-grp 18866 df-minusg 18867 df-sbg 18868 df-mulg 18996 df-subg 19050 df-cntz 19233 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-cring 20141 df-subrng 20446 df-subrg 20471 df-abv 20660 df-lmod 20708 df-scaf 20709 df-sra 21021 df-rgmod 21022 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22751 df-topon 22768 df-topsp 22790 df-bases 22804 df-cld 22878 df-ntr 22879 df-cls 22880 df-nei 22957 df-lp 22995 df-perf 22996 df-cn 23086 df-cnp 23087 df-haus 23174 df-tx 23421 df-hmeo 23614 df-fil 23705 df-fm 23797 df-flim 23798 df-flf 23799 df-tmd 23931 df-tgp 23932 df-tsms 23986 df-trg 24019 df-xms 24181 df-ms 24182 df-tms 24183 df-nm 24446 df-ngp 24447 df-nrg 24449 df-nlm 24450 df-ii 24752 df-cncf 24753 df-limc 25750 df-dv 25751 df-log 26445 df-esum 33556 |
This theorem is referenced by: hasheuni 33613 esumcvg 33614 esumcvgre 33619 voliune 33757 volfiniune 33758 |
Copyright terms: Public domain | W3C validator |