Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpinfval | Structured version Visualization version GIF version |
Description: The value of the extended sum of nonnegative terms, with at least one infinite term. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
Ref | Expression |
---|---|
esumpinfval.0 | ⊢ Ⅎ𝑘𝜑 |
esumpinfval.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumpinfval.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumpinfval.3 | ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) |
Ref | Expression |
---|---|
esumpinfval | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13162 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | esumpinfval.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | esumpinfval.0 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
4 | esumpinfval.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
5 | 4 | ex 413 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
6 | 3, 5 | ralrimi 3141 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
7 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
8 | 7 | esumcl 31998 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
9 | 2, 6, 8 | syl2anc 584 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
10 | 1, 9 | sselid 3919 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
11 | nfrab1 3317 | . . . . 5 ⊢ Ⅎ𝑘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} | |
12 | ssrab2 4013 | . . . . . 6 ⊢ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ⊆ 𝐴 | |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ⊆ 𝐴) |
14 | 0xr 11022 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
15 | pnfxr 11029 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
16 | 0lepnf 12868 | . . . . . . . 8 ⊢ 0 ≤ +∞ | |
17 | ubicc2 13197 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞)) | |
18 | 14, 15, 16, 17 | mp3an 1460 | . . . . . . 7 ⊢ +∞ ∈ (0[,]+∞) |
19 | 18 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = +∞) → +∞ ∈ (0[,]+∞)) |
20 | 0e0iccpnf 13191 | . . . . . . 7 ⊢ 0 ∈ (0[,]+∞) | |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ¬ 𝐵 = +∞) → 0 ∈ (0[,]+∞)) |
22 | 19, 21 | ifclda 4494 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝐵 = +∞, +∞, 0) ∈ (0[,]+∞)) |
23 | eldif 3897 | . . . . . . . 8 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) | |
24 | rabid 3310 | . . . . . . . . . 10 ⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ↔ (𝑘 ∈ 𝐴 ∧ 𝐵 = +∞)) | |
25 | 24 | simplbi2 501 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝐴 → (𝐵 = +∞ → 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) |
26 | 25 | con3dimp 409 | . . . . . . . 8 ⊢ ((𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) → ¬ 𝐵 = +∞) |
27 | 23, 26 | sylbi 216 | . . . . . . 7 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) → ¬ 𝐵 = +∞) |
28 | 27 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) → ¬ 𝐵 = +∞) |
29 | 28 | iffalsed 4470 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) → if(𝐵 = +∞, +∞, 0) = 0) |
30 | 3, 11, 7, 13, 2, 22, 29 | esumss 32040 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = Σ*𝑘 ∈ 𝐴if(𝐵 = +∞, +∞, 0)) |
31 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} = {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) | |
32 | 24 | simprbi 497 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} → 𝐵 = +∞) |
33 | 32 | iftrued 4467 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} → if(𝐵 = +∞, +∞, 0) = +∞) |
34 | 33 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) → if(𝐵 = +∞, +∞, 0) = +∞) |
35 | 3, 31, 34 | esumeq12dvaf 31999 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}+∞) |
36 | 2, 13 | ssexd 5248 | . . . . . 6 ⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ∈ V) |
37 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑘+∞ | |
38 | 11, 37 | esumcst 32031 | . . . . . 6 ⊢ (({𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ∈ V ∧ +∞ ∈ (0[,]+∞)) → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}+∞ = ((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ·e +∞)) |
39 | 36, 18, 38 | sylancl 586 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}+∞ = ((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ·e +∞)) |
40 | hashxrcl 14072 | . . . . . . 7 ⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ∈ V → (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ∈ ℝ*) | |
41 | 36, 40 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ∈ ℝ*) |
42 | esumpinfval.3 | . . . . . . . 8 ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) | |
43 | rabn0 4319 | . . . . . . . 8 ⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ≠ ∅ ↔ ∃𝑘 ∈ 𝐴 𝐵 = +∞) | |
44 | 42, 43 | sylibr 233 | . . . . . . 7 ⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ≠ ∅) |
45 | hashgt0 14103 | . . . . . . 7 ⊢ (({𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ∈ V ∧ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞} ≠ ∅) → 0 < (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) | |
46 | 36, 44, 45 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 0 < (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) |
47 | xmulpnf1 13008 | . . . . . 6 ⊢ (((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ∈ ℝ* ∧ 0 < (♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞})) → ((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ·e +∞) = +∞) | |
48 | 41, 46, 47 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((♯‘{𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}) ·e +∞) = +∞) |
49 | 35, 39, 48 | 3eqtrd 2782 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = +∞) |
50 | 30, 49 | eqtr3d 2780 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴if(𝐵 = +∞, +∞, 0) = +∞) |
51 | breq1 5077 | . . . . 5 ⊢ (+∞ = if(𝐵 = +∞, +∞, 0) → (+∞ ≤ 𝐵 ↔ if(𝐵 = +∞, +∞, 0) ≤ 𝐵)) | |
52 | breq1 5077 | . . . . 5 ⊢ (0 = if(𝐵 = +∞, +∞, 0) → (0 ≤ 𝐵 ↔ if(𝐵 = +∞, +∞, 0) ≤ 𝐵)) | |
53 | pnfge 12866 | . . . . . . . 8 ⊢ (+∞ ∈ ℝ* → +∞ ≤ +∞) | |
54 | 15, 53 | ax-mp 5 | . . . . . . 7 ⊢ +∞ ≤ +∞ |
55 | breq2 5078 | . . . . . . 7 ⊢ (𝐵 = +∞ → (+∞ ≤ 𝐵 ↔ +∞ ≤ +∞)) | |
56 | 54, 55 | mpbiri 257 | . . . . . 6 ⊢ (𝐵 = +∞ → +∞ ≤ 𝐵) |
57 | 56 | adantl 482 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = +∞) → +∞ ≤ 𝐵) |
58 | 4 | adantr 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ (0[,]+∞)) |
59 | iccgelb 13135 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵) | |
60 | 14, 15, 59 | mp3an12 1450 | . . . . . 6 ⊢ (𝐵 ∈ (0[,]+∞) → 0 ≤ 𝐵) |
61 | 58, 60 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ¬ 𝐵 = +∞) → 0 ≤ 𝐵) |
62 | 51, 52, 57, 61 | ifbothda 4497 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝐵 = +∞, +∞, 0) ≤ 𝐵) |
63 | 3, 7, 2, 22, 4, 62 | esumlef 32030 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴if(𝐵 = +∞, +∞, 0) ≤ Σ*𝑘 ∈ 𝐴𝐵) |
64 | 50, 63 | eqbrtrrd 5098 | . 2 ⊢ (𝜑 → +∞ ≤ Σ*𝑘 ∈ 𝐴𝐵) |
65 | xgepnf 12899 | . . 3 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘 ∈ 𝐴𝐵 ↔ Σ*𝑘 ∈ 𝐴𝐵 = +∞)) | |
66 | 65 | biimpd 228 | . 2 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘 ∈ 𝐴𝐵 → Σ*𝑘 ∈ 𝐴𝐵 = +∞)) |
67 | 10, 64, 66 | sylc 65 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 {crab 3068 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4256 ifcif 4459 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 ·e cxmu 12847 [,]cicc 13082 ♯chash 14044 Σ*cesum 31995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 df-sin 15779 df-cos 15780 df-pi 15782 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-ordt 17212 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-ps 18284 df-tsr 18285 df-plusf 18325 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-subrg 20022 df-abv 20077 df-lmod 20125 df-scaf 20126 df-sra 20434 df-rgmod 20435 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-haus 22466 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-tmd 23223 df-tgp 23224 df-tsms 23278 df-trg 23311 df-xms 23473 df-ms 23474 df-tms 23475 df-nm 23738 df-ngp 23739 df-nrg 23741 df-nlm 23742 df-ii 24040 df-cncf 24041 df-limc 25030 df-dv 25031 df-log 25712 df-esum 31996 |
This theorem is referenced by: hasheuni 32053 esumcvg 32054 esumcvgre 32059 voliune 32197 volfiniune 32198 |
Copyright terms: Public domain | W3C validator |