Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpinfval Structured version   Visualization version   GIF version

Theorem esumpinfval 32041
Description: The value of the extended sum of nonnegative terms, with at least one infinite term. (Contributed by Thierry Arnoux, 19-Jun-2017.)
Hypotheses
Ref Expression
esumpinfval.0 𝑘𝜑
esumpinfval.1 (𝜑𝐴𝑉)
esumpinfval.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumpinfval.3 (𝜑 → ∃𝑘𝐴 𝐵 = +∞)
Assertion
Ref Expression
esumpinfval (𝜑 → Σ*𝑘𝐴𝐵 = +∞)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem esumpinfval
StepHypRef Expression
1 iccssxr 13162 . . 3 (0[,]+∞) ⊆ ℝ*
2 esumpinfval.1 . . . 4 (𝜑𝐴𝑉)
3 esumpinfval.0 . . . . 5 𝑘𝜑
4 esumpinfval.2 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
54ex 413 . . . . 5 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
63, 5ralrimi 3141 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
7 nfcv 2907 . . . . 5 𝑘𝐴
87esumcl 31998 . . . 4 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
92, 6, 8syl2anc 584 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
101, 9sselid 3919 . 2 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ℝ*)
11 nfrab1 3317 . . . . 5 𝑘{𝑘𝐴𝐵 = +∞}
12 ssrab2 4013 . . . . . 6 {𝑘𝐴𝐵 = +∞} ⊆ 𝐴
1312a1i 11 . . . . 5 (𝜑 → {𝑘𝐴𝐵 = +∞} ⊆ 𝐴)
14 0xr 11022 . . . . . . . 8 0 ∈ ℝ*
15 pnfxr 11029 . . . . . . . 8 +∞ ∈ ℝ*
16 0lepnf 12868 . . . . . . . 8 0 ≤ +∞
17 ubicc2 13197 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
1814, 15, 16, 17mp3an 1460 . . . . . . 7 +∞ ∈ (0[,]+∞)
1918a1i 11 . . . . . 6 (((𝜑𝑘𝐴) ∧ 𝐵 = +∞) → +∞ ∈ (0[,]+∞))
20 0e0iccpnf 13191 . . . . . . 7 0 ∈ (0[,]+∞)
2120a1i 11 . . . . . 6 (((𝜑𝑘𝐴) ∧ ¬ 𝐵 = +∞) → 0 ∈ (0[,]+∞))
2219, 21ifclda 4494 . . . . 5 ((𝜑𝑘𝐴) → if(𝐵 = +∞, +∞, 0) ∈ (0[,]+∞))
23 eldif 3897 . . . . . . . 8 (𝑘 ∈ (𝐴 ∖ {𝑘𝐴𝐵 = +∞}) ↔ (𝑘𝐴 ∧ ¬ 𝑘 ∈ {𝑘𝐴𝐵 = +∞}))
24 rabid 3310 . . . . . . . . . 10 (𝑘 ∈ {𝑘𝐴𝐵 = +∞} ↔ (𝑘𝐴𝐵 = +∞))
2524simplbi2 501 . . . . . . . . 9 (𝑘𝐴 → (𝐵 = +∞ → 𝑘 ∈ {𝑘𝐴𝐵 = +∞}))
2625con3dimp 409 . . . . . . . 8 ((𝑘𝐴 ∧ ¬ 𝑘 ∈ {𝑘𝐴𝐵 = +∞}) → ¬ 𝐵 = +∞)
2723, 26sylbi 216 . . . . . . 7 (𝑘 ∈ (𝐴 ∖ {𝑘𝐴𝐵 = +∞}) → ¬ 𝐵 = +∞)
2827adantl 482 . . . . . 6 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑘𝐴𝐵 = +∞})) → ¬ 𝐵 = +∞)
2928iffalsed 4470 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑘𝐴𝐵 = +∞})) → if(𝐵 = +∞, +∞, 0) = 0)
303, 11, 7, 13, 2, 22, 29esumss 32040 . . . 4 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = Σ*𝑘𝐴if(𝐵 = +∞, +∞, 0))
31 eqidd 2739 . . . . . 6 (𝜑 → {𝑘𝐴𝐵 = +∞} = {𝑘𝐴𝐵 = +∞})
3224simprbi 497 . . . . . . . 8 (𝑘 ∈ {𝑘𝐴𝐵 = +∞} → 𝐵 = +∞)
3332iftrued 4467 . . . . . . 7 (𝑘 ∈ {𝑘𝐴𝐵 = +∞} → if(𝐵 = +∞, +∞, 0) = +∞)
3433adantl 482 . . . . . 6 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = +∞}) → if(𝐵 = +∞, +∞, 0) = +∞)
353, 31, 34esumeq12dvaf 31999 . . . . 5 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}+∞)
362, 13ssexd 5248 . . . . . 6 (𝜑 → {𝑘𝐴𝐵 = +∞} ∈ V)
37 nfcv 2907 . . . . . . 7 𝑘+∞
3811, 37esumcst 32031 . . . . . 6 (({𝑘𝐴𝐵 = +∞} ∈ V ∧ +∞ ∈ (0[,]+∞)) → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}+∞ = ((♯‘{𝑘𝐴𝐵 = +∞}) ·e +∞))
3936, 18, 38sylancl 586 . . . . 5 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}+∞ = ((♯‘{𝑘𝐴𝐵 = +∞}) ·e +∞))
40 hashxrcl 14072 . . . . . . 7 ({𝑘𝐴𝐵 = +∞} ∈ V → (♯‘{𝑘𝐴𝐵 = +∞}) ∈ ℝ*)
4136, 40syl 17 . . . . . 6 (𝜑 → (♯‘{𝑘𝐴𝐵 = +∞}) ∈ ℝ*)
42 esumpinfval.3 . . . . . . . 8 (𝜑 → ∃𝑘𝐴 𝐵 = +∞)
43 rabn0 4319 . . . . . . . 8 ({𝑘𝐴𝐵 = +∞} ≠ ∅ ↔ ∃𝑘𝐴 𝐵 = +∞)
4442, 43sylibr 233 . . . . . . 7 (𝜑 → {𝑘𝐴𝐵 = +∞} ≠ ∅)
45 hashgt0 14103 . . . . . . 7 (({𝑘𝐴𝐵 = +∞} ∈ V ∧ {𝑘𝐴𝐵 = +∞} ≠ ∅) → 0 < (♯‘{𝑘𝐴𝐵 = +∞}))
4636, 44, 45syl2anc 584 . . . . . 6 (𝜑 → 0 < (♯‘{𝑘𝐴𝐵 = +∞}))
47 xmulpnf1 13008 . . . . . 6 (((♯‘{𝑘𝐴𝐵 = +∞}) ∈ ℝ* ∧ 0 < (♯‘{𝑘𝐴𝐵 = +∞})) → ((♯‘{𝑘𝐴𝐵 = +∞}) ·e +∞) = +∞)
4841, 46, 47syl2anc 584 . . . . 5 (𝜑 → ((♯‘{𝑘𝐴𝐵 = +∞}) ·e +∞) = +∞)
4935, 39, 483eqtrd 2782 . . . 4 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = +∞}if(𝐵 = +∞, +∞, 0) = +∞)
5030, 49eqtr3d 2780 . . 3 (𝜑 → Σ*𝑘𝐴if(𝐵 = +∞, +∞, 0) = +∞)
51 breq1 5077 . . . . 5 (+∞ = if(𝐵 = +∞, +∞, 0) → (+∞ ≤ 𝐵 ↔ if(𝐵 = +∞, +∞, 0) ≤ 𝐵))
52 breq1 5077 . . . . 5 (0 = if(𝐵 = +∞, +∞, 0) → (0 ≤ 𝐵 ↔ if(𝐵 = +∞, +∞, 0) ≤ 𝐵))
53 pnfge 12866 . . . . . . . 8 (+∞ ∈ ℝ* → +∞ ≤ +∞)
5415, 53ax-mp 5 . . . . . . 7 +∞ ≤ +∞
55 breq2 5078 . . . . . . 7 (𝐵 = +∞ → (+∞ ≤ 𝐵 ↔ +∞ ≤ +∞))
5654, 55mpbiri 257 . . . . . 6 (𝐵 = +∞ → +∞ ≤ 𝐵)
5756adantl 482 . . . . 5 (((𝜑𝑘𝐴) ∧ 𝐵 = +∞) → +∞ ≤ 𝐵)
584adantr 481 . . . . . 6 (((𝜑𝑘𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ (0[,]+∞))
59 iccgelb 13135 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
6014, 15, 59mp3an12 1450 . . . . . 6 (𝐵 ∈ (0[,]+∞) → 0 ≤ 𝐵)
6158, 60syl 17 . . . . 5 (((𝜑𝑘𝐴) ∧ ¬ 𝐵 = +∞) → 0 ≤ 𝐵)
6251, 52, 57, 61ifbothda 4497 . . . 4 ((𝜑𝑘𝐴) → if(𝐵 = +∞, +∞, 0) ≤ 𝐵)
633, 7, 2, 22, 4, 62esumlef 32030 . . 3 (𝜑 → Σ*𝑘𝐴if(𝐵 = +∞, +∞, 0) ≤ Σ*𝑘𝐴𝐵)
6450, 63eqbrtrrd 5098 . 2 (𝜑 → +∞ ≤ Σ*𝑘𝐴𝐵)
65 xgepnf 12899 . . 3 *𝑘𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘𝐴𝐵 ↔ Σ*𝑘𝐴𝐵 = +∞))
6665biimpd 228 . 2 *𝑘𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘𝐴𝐵 → Σ*𝑘𝐴𝐵 = +∞))
6710, 64, 66sylc 65 1 (𝜑 → Σ*𝑘𝐴𝐵 = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  wss 3887  c0 4256  ifcif 4459   class class class wbr 5074  cfv 6433  (class class class)co 7275  0cc0 10871  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010   ·e cxmu 12847  [,]cicc 13082  chash 14044  Σ*cesum 31995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-ordt 17212  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-ps 18284  df-tsr 18285  df-plusf 18325  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-abv 20077  df-lmod 20125  df-scaf 20126  df-sra 20434  df-rgmod 20435  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-tmd 23223  df-tgp 23224  df-tsms 23278  df-trg 23311  df-xms 23473  df-ms 23474  df-tms 23475  df-nm 23738  df-ngp 23739  df-nrg 23741  df-nlm 23742  df-ii 24040  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-esum 31996
This theorem is referenced by:  hasheuni  32053  esumcvg  32054  esumcvgre  32059  voliune  32197  volfiniune  32198
  Copyright terms: Public domain W3C validator