MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothomex Structured version   Visualization version   GIF version

Theorem grothomex 10594
Description: The Tarski-Grothendieck Axiom implies the Axiom of Infinity (in the form of omex 9410). Note that our proof depends on neither the Axiom of Infinity nor Regularity. (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grothomex ω ∈ V

Proof of Theorem grothomex
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r111 9542 . . . 4 𝑅1:On–1-1→V
2 omsson 7725 . . . 4 ω ⊆ On
3 f1ores 6739 . . . 4 ((𝑅1:On–1-1→V ∧ ω ⊆ On) → (𝑅1 ↾ ω):ω–1-1-onto→(𝑅1 “ ω))
41, 2, 3mp2an 689 . . 3 (𝑅1 ↾ ω):ω–1-1-onto→(𝑅1 “ ω)
5 f1of1 6724 . . 3 ((𝑅1 ↾ ω):ω–1-1-onto→(𝑅1 “ ω) → (𝑅1 ↾ ω):ω–1-1→(𝑅1 “ ω))
64, 5ax-mp 5 . 2 (𝑅1 ↾ ω):ω–1-1→(𝑅1 “ ω)
7 r1fnon 9534 . . . . . . . 8 𝑅1 Fn On
8 fvelimab 6850 . . . . . . . 8 ((𝑅1 Fn On ∧ ω ⊆ On) → (𝑤 ∈ (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑤))
97, 2, 8mp2an 689 . . . . . . 7 (𝑤 ∈ (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑤)
10 fveq2 6783 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
1110eleq1d 2824 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑦 ↔ (𝑅1‘∅) ∈ 𝑦))
12 fveq2 6783 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑅1𝑥) = (𝑅1𝑤))
1312eleq1d 2824 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝑅1𝑥) ∈ 𝑦 ↔ (𝑅1𝑤) ∈ 𝑦))
14 fveq2 6783 . . . . . . . . . . 11 (𝑥 = suc 𝑤 → (𝑅1𝑥) = (𝑅1‘suc 𝑤))
1514eleq1d 2824 . . . . . . . . . 10 (𝑥 = suc 𝑤 → ((𝑅1𝑥) ∈ 𝑦 ↔ (𝑅1‘suc 𝑤) ∈ 𝑦))
16 r10 9535 . . . . . . . . . . . . 13 (𝑅1‘∅) = ∅
1716eleq1i 2830 . . . . . . . . . . . 12 ((𝑅1‘∅) ∈ 𝑦 ↔ ∅ ∈ 𝑦)
1817biimpri 227 . . . . . . . . . . 11 (∅ ∈ 𝑦 → (𝑅1‘∅) ∈ 𝑦)
1918adantr 481 . . . . . . . . . 10 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1‘∅) ∈ 𝑦)
20 pweq 4550 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅1𝑤) → 𝒫 𝑧 = 𝒫 (𝑅1𝑤))
2120eleq1d 2824 . . . . . . . . . . . . . 14 (𝑧 = (𝑅1𝑤) → (𝒫 𝑧𝑦 ↔ 𝒫 (𝑅1𝑤) ∈ 𝑦))
2221rspccv 3559 . . . . . . . . . . . . 13 (∀𝑧𝑦 𝒫 𝑧𝑦 → ((𝑅1𝑤) ∈ 𝑦 → 𝒫 (𝑅1𝑤) ∈ 𝑦))
23 nnon 7727 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ω → 𝑤 ∈ On)
24 r1suc 9537 . . . . . . . . . . . . . . . 16 (𝑤 ∈ On → (𝑅1‘suc 𝑤) = 𝒫 (𝑅1𝑤))
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝑤 ∈ ω → (𝑅1‘suc 𝑤) = 𝒫 (𝑅1𝑤))
2625eleq1d 2824 . . . . . . . . . . . . . 14 (𝑤 ∈ ω → ((𝑅1‘suc 𝑤) ∈ 𝑦 ↔ 𝒫 (𝑅1𝑤) ∈ 𝑦))
2726biimprcd 249 . . . . . . . . . . . . 13 (𝒫 (𝑅1𝑤) ∈ 𝑦 → (𝑤 ∈ ω → (𝑅1‘suc 𝑤) ∈ 𝑦))
2822, 27syl6 35 . . . . . . . . . . . 12 (∀𝑧𝑦 𝒫 𝑧𝑦 → ((𝑅1𝑤) ∈ 𝑦 → (𝑤 ∈ ω → (𝑅1‘suc 𝑤) ∈ 𝑦)))
2928com3r 87 . . . . . . . . . . 11 (𝑤 ∈ ω → (∀𝑧𝑦 𝒫 𝑧𝑦 → ((𝑅1𝑤) ∈ 𝑦 → (𝑅1‘suc 𝑤) ∈ 𝑦)))
3029adantld 491 . . . . . . . . . 10 (𝑤 ∈ ω → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → ((𝑅1𝑤) ∈ 𝑦 → (𝑅1‘suc 𝑤) ∈ 𝑦)))
3111, 13, 15, 19, 30finds2 7756 . . . . . . . . 9 (𝑥 ∈ ω → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1𝑥) ∈ 𝑦))
32 eleq1 2827 . . . . . . . . . 10 ((𝑅1𝑥) = 𝑤 → ((𝑅1𝑥) ∈ 𝑦𝑤𝑦))
3332biimpd 228 . . . . . . . . 9 ((𝑅1𝑥) = 𝑤 → ((𝑅1𝑥) ∈ 𝑦𝑤𝑦))
3431, 33syl9 77 . . . . . . . 8 (𝑥 ∈ ω → ((𝑅1𝑥) = 𝑤 → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → 𝑤𝑦)))
3534rexlimiv 3210 . . . . . . 7 (∃𝑥 ∈ ω (𝑅1𝑥) = 𝑤 → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → 𝑤𝑦))
369, 35sylbi 216 . . . . . 6 (𝑤 ∈ (𝑅1 “ ω) → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → 𝑤𝑦))
3736com12 32 . . . . 5 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑤 ∈ (𝑅1 “ ω) → 𝑤𝑦))
3837ssrdv 3928 . . . 4 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1 “ ω) ⊆ 𝑦)
39 vex 3437 . . . . 5 𝑦 ∈ V
4039ssex 5246 . . . 4 ((𝑅1 “ ω) ⊆ 𝑦 → (𝑅1 “ ω) ∈ V)
4138, 40syl 17 . . 3 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1 “ ω) ∈ V)
42 0ex 5232 . . . 4 ∅ ∈ V
43 eleq1 2827 . . . . . 6 (𝑥 = ∅ → (𝑥𝑦 ↔ ∅ ∈ 𝑦))
4443anbi1d 630 . . . . 5 (𝑥 = ∅ → ((𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) ↔ (∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)))
4544exbidv 1925 . . . 4 (𝑥 = ∅ → (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) ↔ ∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)))
46 axgroth6 10593 . . . . 5 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
47 simpr 485 . . . . . . . 8 ((𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) → 𝒫 𝑧𝑦)
4847ralimi 3088 . . . . . . 7 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) → ∀𝑧𝑦 𝒫 𝑧𝑦)
4948anim2i 617 . . . . . 6 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦)) → (𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦))
50493adant3 1131 . . . . 5 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) → (𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦))
5146, 50eximii 1840 . . . 4 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)
5242, 45, 51vtocl 3499 . . 3 𝑦(∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)
5341, 52exlimiiv 1935 . 2 (𝑅1 “ ω) ∈ V
54 f1dmex 7808 . 2 (((𝑅1 ↾ ω):ω–1-1→(𝑅1 “ ω) ∧ (𝑅1 “ ω) ∈ V) → ω ∈ V)
556, 53, 54mp2an 689 1 ω ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2107  wral 3065  wrex 3066  Vcvv 3433  wss 3888  c0 4257  𝒫 cpw 4534   class class class wbr 5075  cres 5592  cima 5593  Oncon0 6270  suc csuc 6272   Fn wfn 6432  1-1wf1 6434  1-1-ontowf1o 6436  cfv 6437  ωcom 7721  csdm 8741  𝑅1cr1 9529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-groth 10588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-ov 7287  df-om 7722  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-r1 9531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator