MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothomex Structured version   Visualization version   GIF version

Theorem grothomex 10867
Description: The Tarski-Grothendieck Axiom implies the Axiom of Infinity (in the form of omex 9681). Note that our proof depends on neither the Axiom of Infinity nor Regularity. (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grothomex ω ∈ V

Proof of Theorem grothomex
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r111 9813 . . . 4 𝑅1:On–1-1→V
2 omsson 7891 . . . 4 ω ⊆ On
3 f1ores 6863 . . . 4 ((𝑅1:On–1-1→V ∧ ω ⊆ On) → (𝑅1 ↾ ω):ω–1-1-onto→(𝑅1 “ ω))
41, 2, 3mp2an 692 . . 3 (𝑅1 ↾ ω):ω–1-1-onto→(𝑅1 “ ω)
5 f1of1 6848 . . 3 ((𝑅1 ↾ ω):ω–1-1-onto→(𝑅1 “ ω) → (𝑅1 ↾ ω):ω–1-1→(𝑅1 “ ω))
64, 5ax-mp 5 . 2 (𝑅1 ↾ ω):ω–1-1→(𝑅1 “ ω)
7 r1fnon 9805 . . . . . . . 8 𝑅1 Fn On
8 fvelimab 6981 . . . . . . . 8 ((𝑅1 Fn On ∧ ω ⊆ On) → (𝑤 ∈ (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑤))
97, 2, 8mp2an 692 . . . . . . 7 (𝑤 ∈ (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑤)
10 fveq2 6907 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
1110eleq1d 2824 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑦 ↔ (𝑅1‘∅) ∈ 𝑦))
12 fveq2 6907 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑅1𝑥) = (𝑅1𝑤))
1312eleq1d 2824 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝑅1𝑥) ∈ 𝑦 ↔ (𝑅1𝑤) ∈ 𝑦))
14 fveq2 6907 . . . . . . . . . . 11 (𝑥 = suc 𝑤 → (𝑅1𝑥) = (𝑅1‘suc 𝑤))
1514eleq1d 2824 . . . . . . . . . 10 (𝑥 = suc 𝑤 → ((𝑅1𝑥) ∈ 𝑦 ↔ (𝑅1‘suc 𝑤) ∈ 𝑦))
16 r10 9806 . . . . . . . . . . . . 13 (𝑅1‘∅) = ∅
1716eleq1i 2830 . . . . . . . . . . . 12 ((𝑅1‘∅) ∈ 𝑦 ↔ ∅ ∈ 𝑦)
1817biimpri 228 . . . . . . . . . . 11 (∅ ∈ 𝑦 → (𝑅1‘∅) ∈ 𝑦)
1918adantr 480 . . . . . . . . . 10 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1‘∅) ∈ 𝑦)
20 pweq 4619 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅1𝑤) → 𝒫 𝑧 = 𝒫 (𝑅1𝑤))
2120eleq1d 2824 . . . . . . . . . . . . . 14 (𝑧 = (𝑅1𝑤) → (𝒫 𝑧𝑦 ↔ 𝒫 (𝑅1𝑤) ∈ 𝑦))
2221rspccv 3619 . . . . . . . . . . . . 13 (∀𝑧𝑦 𝒫 𝑧𝑦 → ((𝑅1𝑤) ∈ 𝑦 → 𝒫 (𝑅1𝑤) ∈ 𝑦))
23 nnon 7893 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ω → 𝑤 ∈ On)
24 r1suc 9808 . . . . . . . . . . . . . . . 16 (𝑤 ∈ On → (𝑅1‘suc 𝑤) = 𝒫 (𝑅1𝑤))
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝑤 ∈ ω → (𝑅1‘suc 𝑤) = 𝒫 (𝑅1𝑤))
2625eleq1d 2824 . . . . . . . . . . . . . 14 (𝑤 ∈ ω → ((𝑅1‘suc 𝑤) ∈ 𝑦 ↔ 𝒫 (𝑅1𝑤) ∈ 𝑦))
2726biimprcd 250 . . . . . . . . . . . . 13 (𝒫 (𝑅1𝑤) ∈ 𝑦 → (𝑤 ∈ ω → (𝑅1‘suc 𝑤) ∈ 𝑦))
2822, 27syl6 35 . . . . . . . . . . . 12 (∀𝑧𝑦 𝒫 𝑧𝑦 → ((𝑅1𝑤) ∈ 𝑦 → (𝑤 ∈ ω → (𝑅1‘suc 𝑤) ∈ 𝑦)))
2928com3r 87 . . . . . . . . . . 11 (𝑤 ∈ ω → (∀𝑧𝑦 𝒫 𝑧𝑦 → ((𝑅1𝑤) ∈ 𝑦 → (𝑅1‘suc 𝑤) ∈ 𝑦)))
3029adantld 490 . . . . . . . . . 10 (𝑤 ∈ ω → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → ((𝑅1𝑤) ∈ 𝑦 → (𝑅1‘suc 𝑤) ∈ 𝑦)))
3111, 13, 15, 19, 30finds2 7921 . . . . . . . . 9 (𝑥 ∈ ω → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1𝑥) ∈ 𝑦))
32 eleq1 2827 . . . . . . . . . 10 ((𝑅1𝑥) = 𝑤 → ((𝑅1𝑥) ∈ 𝑦𝑤𝑦))
3332biimpd 229 . . . . . . . . 9 ((𝑅1𝑥) = 𝑤 → ((𝑅1𝑥) ∈ 𝑦𝑤𝑦))
3431, 33syl9 77 . . . . . . . 8 (𝑥 ∈ ω → ((𝑅1𝑥) = 𝑤 → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → 𝑤𝑦)))
3534rexlimiv 3146 . . . . . . 7 (∃𝑥 ∈ ω (𝑅1𝑥) = 𝑤 → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → 𝑤𝑦))
369, 35sylbi 217 . . . . . 6 (𝑤 ∈ (𝑅1 “ ω) → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → 𝑤𝑦))
3736com12 32 . . . . 5 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑤 ∈ (𝑅1 “ ω) → 𝑤𝑦))
3837ssrdv 4001 . . . 4 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1 “ ω) ⊆ 𝑦)
39 vex 3482 . . . . 5 𝑦 ∈ V
4039ssex 5327 . . . 4 ((𝑅1 “ ω) ⊆ 𝑦 → (𝑅1 “ ω) ∈ V)
4138, 40syl 17 . . 3 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1 “ ω) ∈ V)
42 0ex 5313 . . . 4 ∅ ∈ V
43 eleq1 2827 . . . . . 6 (𝑥 = ∅ → (𝑥𝑦 ↔ ∅ ∈ 𝑦))
4443anbi1d 631 . . . . 5 (𝑥 = ∅ → ((𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) ↔ (∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)))
4544exbidv 1919 . . . 4 (𝑥 = ∅ → (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) ↔ ∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)))
46 axgroth6 10866 . . . . 5 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
47 simpr 484 . . . . . . . 8 ((𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) → 𝒫 𝑧𝑦)
4847ralimi 3081 . . . . . . 7 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) → ∀𝑧𝑦 𝒫 𝑧𝑦)
4948anim2i 617 . . . . . 6 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦)) → (𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦))
50493adant3 1131 . . . . 5 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) → (𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦))
5146, 50eximii 1834 . . . 4 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)
5242, 45, 51vtocl 3558 . . 3 𝑦(∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)
5341, 52exlimiiv 1929 . 2 (𝑅1 “ ω) ∈ V
54 f1dmex 7980 . 2 (((𝑅1 ↾ ω):ω–1-1→(𝑅1 “ ω) ∧ (𝑅1 “ ω) ∈ V) → ω ∈ V)
556, 53, 54mp2an 692 1 ω ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  wss 3963  c0 4339  𝒫 cpw 4605   class class class wbr 5148  cres 5691  cima 5692  Oncon0 6386  suc csuc 6388   Fn wfn 6558  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563  ωcom 7887  csdm 8983  𝑅1cr1 9800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-groth 10861
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-r1 9802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator