MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothomex Structured version   Visualization version   GIF version

Theorem grothomex 10789
Description: The Tarski-Grothendieck Axiom implies the Axiom of Infinity (in the form of omex 9603). Note that our proof depends on neither the Axiom of Infinity nor Regularity. (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grothomex ω ∈ V

Proof of Theorem grothomex
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r111 9735 . . . 4 𝑅1:On–1-1→V
2 omsson 7849 . . . 4 ω ⊆ On
3 f1ores 6817 . . . 4 ((𝑅1:On–1-1→V ∧ ω ⊆ On) → (𝑅1 ↾ ω):ω–1-1-onto→(𝑅1 “ ω))
41, 2, 3mp2an 692 . . 3 (𝑅1 ↾ ω):ω–1-1-onto→(𝑅1 “ ω)
5 f1of1 6802 . . 3 ((𝑅1 ↾ ω):ω–1-1-onto→(𝑅1 “ ω) → (𝑅1 ↾ ω):ω–1-1→(𝑅1 “ ω))
64, 5ax-mp 5 . 2 (𝑅1 ↾ ω):ω–1-1→(𝑅1 “ ω)
7 r1fnon 9727 . . . . . . . 8 𝑅1 Fn On
8 fvelimab 6936 . . . . . . . 8 ((𝑅1 Fn On ∧ ω ⊆ On) → (𝑤 ∈ (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑤))
97, 2, 8mp2an 692 . . . . . . 7 (𝑤 ∈ (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑤)
10 fveq2 6861 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
1110eleq1d 2814 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑦 ↔ (𝑅1‘∅) ∈ 𝑦))
12 fveq2 6861 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑅1𝑥) = (𝑅1𝑤))
1312eleq1d 2814 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝑅1𝑥) ∈ 𝑦 ↔ (𝑅1𝑤) ∈ 𝑦))
14 fveq2 6861 . . . . . . . . . . 11 (𝑥 = suc 𝑤 → (𝑅1𝑥) = (𝑅1‘suc 𝑤))
1514eleq1d 2814 . . . . . . . . . 10 (𝑥 = suc 𝑤 → ((𝑅1𝑥) ∈ 𝑦 ↔ (𝑅1‘suc 𝑤) ∈ 𝑦))
16 r10 9728 . . . . . . . . . . . . 13 (𝑅1‘∅) = ∅
1716eleq1i 2820 . . . . . . . . . . . 12 ((𝑅1‘∅) ∈ 𝑦 ↔ ∅ ∈ 𝑦)
1817biimpri 228 . . . . . . . . . . 11 (∅ ∈ 𝑦 → (𝑅1‘∅) ∈ 𝑦)
1918adantr 480 . . . . . . . . . 10 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1‘∅) ∈ 𝑦)
20 pweq 4580 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅1𝑤) → 𝒫 𝑧 = 𝒫 (𝑅1𝑤))
2120eleq1d 2814 . . . . . . . . . . . . . 14 (𝑧 = (𝑅1𝑤) → (𝒫 𝑧𝑦 ↔ 𝒫 (𝑅1𝑤) ∈ 𝑦))
2221rspccv 3588 . . . . . . . . . . . . 13 (∀𝑧𝑦 𝒫 𝑧𝑦 → ((𝑅1𝑤) ∈ 𝑦 → 𝒫 (𝑅1𝑤) ∈ 𝑦))
23 nnon 7851 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ω → 𝑤 ∈ On)
24 r1suc 9730 . . . . . . . . . . . . . . . 16 (𝑤 ∈ On → (𝑅1‘suc 𝑤) = 𝒫 (𝑅1𝑤))
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝑤 ∈ ω → (𝑅1‘suc 𝑤) = 𝒫 (𝑅1𝑤))
2625eleq1d 2814 . . . . . . . . . . . . . 14 (𝑤 ∈ ω → ((𝑅1‘suc 𝑤) ∈ 𝑦 ↔ 𝒫 (𝑅1𝑤) ∈ 𝑦))
2726biimprcd 250 . . . . . . . . . . . . 13 (𝒫 (𝑅1𝑤) ∈ 𝑦 → (𝑤 ∈ ω → (𝑅1‘suc 𝑤) ∈ 𝑦))
2822, 27syl6 35 . . . . . . . . . . . 12 (∀𝑧𝑦 𝒫 𝑧𝑦 → ((𝑅1𝑤) ∈ 𝑦 → (𝑤 ∈ ω → (𝑅1‘suc 𝑤) ∈ 𝑦)))
2928com3r 87 . . . . . . . . . . 11 (𝑤 ∈ ω → (∀𝑧𝑦 𝒫 𝑧𝑦 → ((𝑅1𝑤) ∈ 𝑦 → (𝑅1‘suc 𝑤) ∈ 𝑦)))
3029adantld 490 . . . . . . . . . 10 (𝑤 ∈ ω → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → ((𝑅1𝑤) ∈ 𝑦 → (𝑅1‘suc 𝑤) ∈ 𝑦)))
3111, 13, 15, 19, 30finds2 7877 . . . . . . . . 9 (𝑥 ∈ ω → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1𝑥) ∈ 𝑦))
32 eleq1 2817 . . . . . . . . . 10 ((𝑅1𝑥) = 𝑤 → ((𝑅1𝑥) ∈ 𝑦𝑤𝑦))
3332biimpd 229 . . . . . . . . 9 ((𝑅1𝑥) = 𝑤 → ((𝑅1𝑥) ∈ 𝑦𝑤𝑦))
3431, 33syl9 77 . . . . . . . 8 (𝑥 ∈ ω → ((𝑅1𝑥) = 𝑤 → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → 𝑤𝑦)))
3534rexlimiv 3128 . . . . . . 7 (∃𝑥 ∈ ω (𝑅1𝑥) = 𝑤 → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → 𝑤𝑦))
369, 35sylbi 217 . . . . . 6 (𝑤 ∈ (𝑅1 “ ω) → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → 𝑤𝑦))
3736com12 32 . . . . 5 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑤 ∈ (𝑅1 “ ω) → 𝑤𝑦))
3837ssrdv 3955 . . . 4 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1 “ ω) ⊆ 𝑦)
39 vex 3454 . . . . 5 𝑦 ∈ V
4039ssex 5279 . . . 4 ((𝑅1 “ ω) ⊆ 𝑦 → (𝑅1 “ ω) ∈ V)
4138, 40syl 17 . . 3 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1 “ ω) ∈ V)
42 0ex 5265 . . . 4 ∅ ∈ V
43 eleq1 2817 . . . . . 6 (𝑥 = ∅ → (𝑥𝑦 ↔ ∅ ∈ 𝑦))
4443anbi1d 631 . . . . 5 (𝑥 = ∅ → ((𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) ↔ (∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)))
4544exbidv 1921 . . . 4 (𝑥 = ∅ → (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) ↔ ∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)))
46 axgroth6 10788 . . . . 5 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
47 simpr 484 . . . . . . . 8 ((𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) → 𝒫 𝑧𝑦)
4847ralimi 3067 . . . . . . 7 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) → ∀𝑧𝑦 𝒫 𝑧𝑦)
4948anim2i 617 . . . . . 6 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦)) → (𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦))
50493adant3 1132 . . . . 5 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) → (𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦))
5146, 50eximii 1837 . . . 4 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)
5242, 45, 51vtocl 3527 . . 3 𝑦(∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)
5341, 52exlimiiv 1931 . 2 (𝑅1 “ ω) ∈ V
54 f1dmex 7938 . 2 (((𝑅1 ↾ ω):ω–1-1→(𝑅1 “ ω) ∧ (𝑅1 “ ω) ∈ V) → ω ∈ V)
556, 53, 54mp2an 692 1 ω ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566   class class class wbr 5110  cres 5643  cima 5644  Oncon0 6335  suc csuc 6337   Fn wfn 6509  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  ωcom 7845  csdm 8920  𝑅1cr1 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-groth 10783
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-r1 9724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator