MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothomex Structured version   Visualization version   GIF version

Theorem grothomex 10727
Description: The Tarski-Grothendieck Axiom implies the Axiom of Infinity (in the form of omex 9540). Note that our proof depends on neither the Axiom of Infinity nor Regularity. (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grothomex ω ∈ V

Proof of Theorem grothomex
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r111 9675 . . . 4 𝑅1:On–1-1→V
2 omsson 7806 . . . 4 ω ⊆ On
3 f1ores 6782 . . . 4 ((𝑅1:On–1-1→V ∧ ω ⊆ On) → (𝑅1 ↾ ω):ω–1-1-onto→(𝑅1 “ ω))
41, 2, 3mp2an 692 . . 3 (𝑅1 ↾ ω):ω–1-1-onto→(𝑅1 “ ω)
5 f1of1 6767 . . 3 ((𝑅1 ↾ ω):ω–1-1-onto→(𝑅1 “ ω) → (𝑅1 ↾ ω):ω–1-1→(𝑅1 “ ω))
64, 5ax-mp 5 . 2 (𝑅1 ↾ ω):ω–1-1→(𝑅1 “ ω)
7 r1fnon 9667 . . . . . . . 8 𝑅1 Fn On
8 fvelimab 6900 . . . . . . . 8 ((𝑅1 Fn On ∧ ω ⊆ On) → (𝑤 ∈ (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑤))
97, 2, 8mp2an 692 . . . . . . 7 (𝑤 ∈ (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑤)
10 fveq2 6828 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
1110eleq1d 2818 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑦 ↔ (𝑅1‘∅) ∈ 𝑦))
12 fveq2 6828 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑅1𝑥) = (𝑅1𝑤))
1312eleq1d 2818 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝑅1𝑥) ∈ 𝑦 ↔ (𝑅1𝑤) ∈ 𝑦))
14 fveq2 6828 . . . . . . . . . . 11 (𝑥 = suc 𝑤 → (𝑅1𝑥) = (𝑅1‘suc 𝑤))
1514eleq1d 2818 . . . . . . . . . 10 (𝑥 = suc 𝑤 → ((𝑅1𝑥) ∈ 𝑦 ↔ (𝑅1‘suc 𝑤) ∈ 𝑦))
16 r10 9668 . . . . . . . . . . . . 13 (𝑅1‘∅) = ∅
1716eleq1i 2824 . . . . . . . . . . . 12 ((𝑅1‘∅) ∈ 𝑦 ↔ ∅ ∈ 𝑦)
1817biimpri 228 . . . . . . . . . . 11 (∅ ∈ 𝑦 → (𝑅1‘∅) ∈ 𝑦)
1918adantr 480 . . . . . . . . . 10 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1‘∅) ∈ 𝑦)
20 pweq 4563 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅1𝑤) → 𝒫 𝑧 = 𝒫 (𝑅1𝑤))
2120eleq1d 2818 . . . . . . . . . . . . . 14 (𝑧 = (𝑅1𝑤) → (𝒫 𝑧𝑦 ↔ 𝒫 (𝑅1𝑤) ∈ 𝑦))
2221rspccv 3570 . . . . . . . . . . . . 13 (∀𝑧𝑦 𝒫 𝑧𝑦 → ((𝑅1𝑤) ∈ 𝑦 → 𝒫 (𝑅1𝑤) ∈ 𝑦))
23 nnon 7808 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ω → 𝑤 ∈ On)
24 r1suc 9670 . . . . . . . . . . . . . . . 16 (𝑤 ∈ On → (𝑅1‘suc 𝑤) = 𝒫 (𝑅1𝑤))
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝑤 ∈ ω → (𝑅1‘suc 𝑤) = 𝒫 (𝑅1𝑤))
2625eleq1d 2818 . . . . . . . . . . . . . 14 (𝑤 ∈ ω → ((𝑅1‘suc 𝑤) ∈ 𝑦 ↔ 𝒫 (𝑅1𝑤) ∈ 𝑦))
2726biimprcd 250 . . . . . . . . . . . . 13 (𝒫 (𝑅1𝑤) ∈ 𝑦 → (𝑤 ∈ ω → (𝑅1‘suc 𝑤) ∈ 𝑦))
2822, 27syl6 35 . . . . . . . . . . . 12 (∀𝑧𝑦 𝒫 𝑧𝑦 → ((𝑅1𝑤) ∈ 𝑦 → (𝑤 ∈ ω → (𝑅1‘suc 𝑤) ∈ 𝑦)))
2928com3r 87 . . . . . . . . . . 11 (𝑤 ∈ ω → (∀𝑧𝑦 𝒫 𝑧𝑦 → ((𝑅1𝑤) ∈ 𝑦 → (𝑅1‘suc 𝑤) ∈ 𝑦)))
3029adantld 490 . . . . . . . . . 10 (𝑤 ∈ ω → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → ((𝑅1𝑤) ∈ 𝑦 → (𝑅1‘suc 𝑤) ∈ 𝑦)))
3111, 13, 15, 19, 30finds2 7834 . . . . . . . . 9 (𝑥 ∈ ω → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1𝑥) ∈ 𝑦))
32 eleq1 2821 . . . . . . . . . 10 ((𝑅1𝑥) = 𝑤 → ((𝑅1𝑥) ∈ 𝑦𝑤𝑦))
3332biimpd 229 . . . . . . . . 9 ((𝑅1𝑥) = 𝑤 → ((𝑅1𝑥) ∈ 𝑦𝑤𝑦))
3431, 33syl9 77 . . . . . . . 8 (𝑥 ∈ ω → ((𝑅1𝑥) = 𝑤 → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → 𝑤𝑦)))
3534rexlimiv 3127 . . . . . . 7 (∃𝑥 ∈ ω (𝑅1𝑥) = 𝑤 → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → 𝑤𝑦))
369, 35sylbi 217 . . . . . 6 (𝑤 ∈ (𝑅1 “ ω) → ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → 𝑤𝑦))
3736com12 32 . . . . 5 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑤 ∈ (𝑅1 “ ω) → 𝑤𝑦))
3837ssrdv 3936 . . . 4 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1 “ ω) ⊆ 𝑦)
39 vex 3441 . . . . 5 𝑦 ∈ V
4039ssex 5261 . . . 4 ((𝑅1 “ ω) ⊆ 𝑦 → (𝑅1 “ ω) ∈ V)
4138, 40syl 17 . . 3 ((∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) → (𝑅1 “ ω) ∈ V)
42 0ex 5247 . . . 4 ∅ ∈ V
43 eleq1 2821 . . . . . 6 (𝑥 = ∅ → (𝑥𝑦 ↔ ∅ ∈ 𝑦))
4443anbi1d 631 . . . . 5 (𝑥 = ∅ → ((𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) ↔ (∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)))
4544exbidv 1922 . . . 4 (𝑥 = ∅ → (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) ↔ ∃𝑦(∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)))
46 axgroth6 10726 . . . . 5 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
47 simpr 484 . . . . . . . 8 ((𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) → 𝒫 𝑧𝑦)
4847ralimi 3070 . . . . . . 7 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) → ∀𝑧𝑦 𝒫 𝑧𝑦)
4948anim2i 617 . . . . . 6 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦)) → (𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦))
50493adant3 1132 . . . . 5 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) → (𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦))
5146, 50eximii 1838 . . . 4 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)
5242, 45, 51vtocl 3512 . . 3 𝑦(∅ ∈ 𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦)
5341, 52exlimiiv 1932 . 2 (𝑅1 “ ω) ∈ V
54 f1dmex 7895 . 2 (((𝑅1 ↾ ω):ω–1-1→(𝑅1 “ ω) ∧ (𝑅1 “ ω) ∈ V) → ω ∈ V)
556, 53, 54mp2an 692 1 ω ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  wss 3898  c0 4282  𝒫 cpw 4549   class class class wbr 5093  cres 5621  cima 5622  Oncon0 6311  suc csuc 6313   Fn wfn 6481  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  ωcom 7802  csdm 8874  𝑅1cr1 9662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-groth 10721
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-r1 9664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator