MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3 Structured version   Visualization version   GIF version

Theorem inf3 9100
Description: Our Axiom of Infinity ax-inf 9103 implies the standard Axiom of Infinity. The hypothesis is a variant of our Axiom of Infinity provided by inf2 9088, and the conclusion is the version of the Axiom of Infinity shown as Axiom 7 in [TakeutiZaring] p. 43. (Other standard versions are proved later as axinf2 9105 and zfinf2 9107.) The main proof is provided by inf3lema 9089 through inf3lem7 9099, and this final piece eliminates the auxiliary hypothesis of inf3lem7 9099. This proof is due to Ian Sutherland, Richard Heck, and Norman Megill and was posted on Usenet as shown below. Although the result is not new, the authors were unable to find a published proof.
       (As posted to sci.logic on 30-Oct-1996, with annotations added.)

       Theorem:  The statement "There exists a nonempty set that is a subset
       of its union" implies the Axiom of Infinity.

       Proof:  Let X be a nonempty set which is a subset of its union; the
       latter
       property is equivalent to saying that for any y in X, there exists a z
       in X
       such that y is in z.

       Define by finite recursion a function F:omega-->(power X) such that
       F_0 = 0  (See inf3lemb 9090.)
       F_n+1 = {y<X | y^X subset F_n}  (See inf3lemc 9091.)
       Note: ^ means intersect, < means \in ("element of").
       (Finite recursion as typically done requires the existence of omega;
       to avoid this we can just use transfinite recursion restricted to omega.
       F is a class-term that is not necessarily a set at this point.)

       Lemma 1.  F_n subset F_n+1.  (See inf3lem1 9093.)
       Proof:  By induction:  F_0 subset F_1.  If y < F_n+1, then y^X subset
       F_n,
       so if F_n subset F_n+1, then y^X subset F_n+1, so y < F_n+2.

       Lemma 2.  F_n =/= X.  (See inf3lem2 9094.)
       Proof:  By induction:  F_0 =/= X because X is not empty.  Assume F_n =/=
       X.
       Then there is a y in X that is not in F_n.  By definition of X, there is
       a
       z in X that contains y.  Suppose F_n+1 = X.  Then z is in F_n+1, and z^X
       contains y, so z^X is not a subset of F_n, contrary to the definition of
       F_n+1.

       Lemma 3.  F_n =/= F_n+1.  (See inf3lem3 9095.)
       Proof:  Using the identity y^X subset F_n <-> y^(X-F_n) = 0, we have
       F_n+1 = {y<X | y^(X-F_n) = 0}.  Let q = {y<X-F_n | y^(X-F_n) = 0}.
       Then q subset F_n+1.  Since X-F_n is not empty by Lemma 2 and q is the
       set of \in-minimal elements of X-F_n, by Foundation q is not empty, so q
       and therefore F_n+1 have an element not in F_n.

       Lemma 4.  F_n proper_subset F_n+1.  (See inf3lem4 9096.)
       Proof:  Lemmas 1 and 3.

       Lemma 5.  F_m proper_subset F_n, m < n.  (See inf3lem5 9097.)
       Proof:  Fix m and use induction on n > m.  Basis: F_m proper_subset
       F_m+1
       by Lemma 4.  Induction:  Assume F_m proper_subset F_n.  Then since F_n
       proper_subset F_n+1, F_m proper_subset F_n+1 by transitivity of proper
       subset.

       By Lemma 5, F_m =/= F_n for m =/= n, so F is 1-1.  (See inf3lem6 9098.)
       Thus, the inverse of F is a function with range omega and domain a
       subset
       of power X, so omega exists by Replacement.  (See inf3lem7 9099.)
       Q.E.D.
       
(Contributed by NM, 29-Oct-1996.)
Hypothesis
Ref Expression
inf3.1 𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥)
Assertion
Ref Expression
inf3 ω ∈ V

Proof of Theorem inf3
Dummy variables 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . 3 (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 eqid 2823 . . 3 (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω)
3 vex 3499 . . 3 𝑥 ∈ V
41, 2, 3, 3inf3lem7 9099 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ∈ V)
5 inf3.1 . 2 𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥)
64, 5exlimiiv 1932 1 ω ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 398  wex 1780  wcel 2114  wne 3018  {crab 3144  Vcvv 3496  cin 3937  wss 3938  c0 4293   cuni 4840  cmpt 5148  cres 5559  ωcom 7582  reccrdg 8047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-reg 9058
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048
This theorem is referenced by:  axinf2  9105
  Copyright terms: Public domain W3C validator