Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3 Structured version   Visualization version   GIF version

Theorem inf3 9085
 Description: Our Axiom of Infinity ax-inf 9088 implies the standard Axiom of Infinity. The hypothesis is a variant of our Axiom of Infinity provided by inf2 9073, and the conclusion is the version of the Axiom of Infinity shown as Axiom 7 in [TakeutiZaring] p. 43. (Other standard versions are proved later as axinf2 9090 and zfinf2 9092.) The main proof is provided by inf3lema 9074 through inf3lem7 9084, and this final piece eliminates the auxiliary hypothesis of inf3lem7 9084. This proof is due to Ian Sutherland, Richard Heck, and Norman Megill and was posted on Usenet as shown below. Although the result is not new, the authors were unable to find a published proof.  (As posted to sci.logic on 30-Oct-1996, with annotations added.) Theorem: The statement "There exists a nonempty set that is a subset of its union" implies the Axiom of Infinity. Proof: Let X be a nonempty set which is a subset of its union; the latter property is equivalent to saying that for any y in X, there exists a z in X such that y is in z. Define by finite recursion a function F:omega-->(power X) such that F_0 = 0 (See inf3lemb 9075.) F_n+1 = {y y^(X-F_n) = 0, we have F_n+1 = {y m. Basis: F_m proper_subset F_m+1 by Lemma 4. Induction: Assume F_m proper_subset F_n. Then since F_n proper_subset F_n+1, F_m proper_subset F_n+1 by transitivity of proper subset. By Lemma 5, F_m =/= F_n for m =/= n, so F is 1-1. (See inf3lem6 9083.) Thus, the inverse of F is a function with range omega and domain a subset of power X, so omega exists by Replacement. (See inf3lem7 9084.) Q.E.D.  (Contributed by NM, 29-Oct-1996.)
Hypothesis
Ref Expression
inf3.1 𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥)
Assertion
Ref Expression
inf3 ω ∈ V

Proof of Theorem inf3
Dummy variables 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 eqid 2798 . . 3 (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω)
3 vex 3444 . . 3 𝑥 ∈ V
41, 2, 3, 3inf3lem7 9084 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ∈ V)
5 inf3.1 . 2 𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥)
64, 5exlimiiv 1932 1 ω ∈ V
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399  ∃wex 1781   ∈ wcel 2111   ≠ wne 2987  {crab 3110  Vcvv 3441   ∩ cin 3880   ⊆ wss 3881  ∅c0 4243  ∪ cuni 4801   ↦ cmpt 5111   ↾ cres 5522  ωcom 7563  reccrdg 8031 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-reg 9043 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-om 7564  df-wrecs 7933  df-recs 7994  df-rdg 8032 This theorem is referenced by:  axinf2  9090
 Copyright terms: Public domain W3C validator