MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdclem2 Structured version   Visualization version   GIF version

Theorem axdclem2 10418
Description: Lemma for axdc 10419. Using the full Axiom of Choice, we can construct a choice function 𝑔 on 𝒫 dom 𝑥. From this, we can build a sequence 𝐹 starting at any value 𝑠 ∈ dom 𝑥 by repeatedly applying 𝑔 to the set (𝐹𝑥) (where 𝑥 is the value from the previous iteration). (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdclem2.1 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
Assertion
Ref Expression
axdclem2 (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
Distinct variable groups:   𝑓,𝐹,𝑛   𝑦,𝐹,𝑧,𝑛   𝑓,𝑔,𝑥,𝑛   𝑔,𝑠,𝑦,𝑛   𝑧,𝑔   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑔,𝑠)

Proof of Theorem axdclem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 frfnom 8360 . . . . . . 7 (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω) Fn ω
2 axdclem2.1 . . . . . . . 8 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
32fneq1i 6583 . . . . . . 7 (𝐹 Fn ω ↔ (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω) Fn ω)
41, 3mpbir 231 . . . . . 6 𝐹 Fn ω
54a1i 11 . . . . 5 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → 𝐹 Fn ω)
6 omex 9540 . . . . . 6 ω ∈ V
76a1i 11 . . . . 5 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ω ∈ V)
85, 7fnexd 7158 . . . 4 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → 𝐹 ∈ V)
9 fveq2 6828 . . . . . . . 8 (𝑛 = ∅ → (𝐹𝑛) = (𝐹‘∅))
10 suceq 6379 . . . . . . . . 9 (𝑛 = ∅ → suc 𝑛 = suc ∅)
1110fveq2d 6832 . . . . . . . 8 (𝑛 = ∅ → (𝐹‘suc 𝑛) = (𝐹‘suc ∅))
129, 11breq12d 5106 . . . . . . 7 (𝑛 = ∅ → ((𝐹𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹‘∅)𝑥(𝐹‘suc ∅)))
13 fveq2 6828 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
14 suceq 6379 . . . . . . . . 9 (𝑛 = 𝑘 → suc 𝑛 = suc 𝑘)
1514fveq2d 6832 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹‘suc 𝑛) = (𝐹‘suc 𝑘))
1613, 15breq12d 5106 . . . . . . 7 (𝑛 = 𝑘 → ((𝐹𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹𝑘)𝑥(𝐹‘suc 𝑘)))
17 fveq2 6828 . . . . . . . 8 (𝑛 = suc 𝑘 → (𝐹𝑛) = (𝐹‘suc 𝑘))
18 suceq 6379 . . . . . . . . 9 (𝑛 = suc 𝑘 → suc 𝑛 = suc suc 𝑘)
1918fveq2d 6832 . . . . . . . 8 (𝑛 = suc 𝑘 → (𝐹‘suc 𝑛) = (𝐹‘suc suc 𝑘))
2017, 19breq12d 5106 . . . . . . 7 (𝑛 = suc 𝑘 → ((𝐹𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
212fveq1i 6829 . . . . . . . . . . . . 13 (𝐹‘∅) = ((rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)‘∅)
22 fr0g 8361 . . . . . . . . . . . . . 14 (𝑠 ∈ V → ((rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)‘∅) = 𝑠)
2322elv 3442 . . . . . . . . . . . . 13 ((rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)‘∅) = 𝑠
2421, 23eqtri 2756 . . . . . . . . . . . 12 (𝐹‘∅) = 𝑠
2524breq1i 5100 . . . . . . . . . . 11 ((𝐹‘∅)𝑥𝑧𝑠𝑥𝑧)
2625biimpri 228 . . . . . . . . . 10 (𝑠𝑥𝑧 → (𝐹‘∅)𝑥𝑧)
2726eximi 1836 . . . . . . . . 9 (∃𝑧 𝑠𝑥𝑧 → ∃𝑧(𝐹‘∅)𝑥𝑧)
28 peano1 7825 . . . . . . . . . 10 ∅ ∈ ω
292axdclem 10417 . . . . . . . . . 10 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘∅)𝑥𝑧) → (∅ ∈ ω → (𝐹‘∅)𝑥(𝐹‘suc ∅)))
3028, 29mpi 20 . . . . . . . . 9 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘∅)𝑥𝑧) → (𝐹‘∅)𝑥(𝐹‘suc ∅))
3127, 30syl3an3 1165 . . . . . . . 8 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧 𝑠𝑥𝑧) → (𝐹‘∅)𝑥(𝐹‘suc ∅))
32313com23 1126 . . . . . . 7 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝐹‘∅)𝑥(𝐹‘suc ∅))
33 fvex 6841 . . . . . . . . . . . . . 14 (𝐹𝑘) ∈ V
34 fvex 6841 . . . . . . . . . . . . . 14 (𝐹‘suc 𝑘) ∈ V
3533, 34brelrn 5886 . . . . . . . . . . . . 13 ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘) ∈ ran 𝑥)
36 ssel 3924 . . . . . . . . . . . . 13 (ran 𝑥 ⊆ dom 𝑥 → ((𝐹‘suc 𝑘) ∈ ran 𝑥 → (𝐹‘suc 𝑘) ∈ dom 𝑥))
3735, 36syl5 34 . . . . . . . . . . . 12 (ran 𝑥 ⊆ dom 𝑥 → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘) ∈ dom 𝑥))
3834eldm 5844 . . . . . . . . . . . 12 ((𝐹‘suc 𝑘) ∈ dom 𝑥 ↔ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧)
3937, 38imbitrdi 251 . . . . . . . . . . 11 (ran 𝑥 ⊆ dom 𝑥 → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧))
4039ad2antll 729 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧))
41 peano2 7826 . . . . . . . . . . . . . 14 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
422axdclem 10417 . . . . . . . . . . . . . 14 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧) → (suc 𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
4341, 42syl5 34 . . . . . . . . . . . . 13 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧) → (𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
44433expia 1121 . . . . . . . . . . . 12 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))))
4544com3r 87 . . . . . . . . . . 11 (𝑘 ∈ ω → ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))))
4645imp 406 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
4740, 46syld 47 . . . . . . . . 9 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
48473adantr2 1171 . . . . . . . 8 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
4948ex 412 . . . . . . 7 (𝑘 ∈ ω → ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))))
5012, 16, 20, 32, 49finds2 7834 . . . . . 6 (𝑛 ∈ ω → ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
5150com12 32 . . . . 5 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝑛 ∈ ω → (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
5251ralrimiv 3124 . . . 4 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∀𝑛 ∈ ω (𝐹𝑛)𝑥(𝐹‘suc 𝑛))
53 fveq1 6827 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑛) = (𝐹𝑛))
54 fveq1 6827 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘suc 𝑛) = (𝐹‘suc 𝑛))
5553, 54breq12d 5106 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
5655ralbidv 3156 . . . 4 (𝑓 = 𝐹 → (∀𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ ∀𝑛 ∈ ω (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
578, 52, 56spcedv 3549 . . 3 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
58573exp 1119 . 2 (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))))
59 vex 3441 . . . . 5 𝑥 ∈ V
6059dmex 7845 . . . 4 dom 𝑥 ∈ V
6160pwex 5320 . . 3 𝒫 dom 𝑥 ∈ V
6261ac4c 10374 . 2 𝑔𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)
6358, 62exlimiiv 1932 1 (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wne 2929  wral 3048  Vcvv 3437  wss 3898  c0 4282  𝒫 cpw 4549   class class class wbr 5093  cmpt 5174  dom cdm 5619  ran crn 5620  cres 5621  suc csuc 6313   Fn wfn 6481  cfv 6486  ωcom 7802  reccrdg 8334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-ac2 10361
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-ac 10014
This theorem is referenced by:  axdc  10419
  Copyright terms: Public domain W3C validator