MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdclem2 Structured version   Visualization version   GIF version

Theorem axdclem2 10433
Description: Lemma for axdc 10434. Using the full Axiom of Choice, we can construct a choice function 𝑔 on 𝒫 dom 𝑥. From this, we can build a sequence 𝐹 starting at any value 𝑠 ∈ dom 𝑥 by repeatedly applying 𝑔 to the set (𝐹𝑥) (where 𝑥 is the value from the previous iteration). (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdclem2.1 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
Assertion
Ref Expression
axdclem2 (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
Distinct variable groups:   𝑓,𝐹,𝑛   𝑦,𝐹,𝑧,𝑛   𝑓,𝑔,𝑥,𝑛   𝑔,𝑠,𝑦,𝑛   𝑧,𝑔   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑔,𝑠)

Proof of Theorem axdclem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 frfnom 8364 . . . . . . 7 (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω) Fn ω
2 axdclem2.1 . . . . . . . 8 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
32fneq1i 6583 . . . . . . 7 (𝐹 Fn ω ↔ (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω) Fn ω)
41, 3mpbir 231 . . . . . 6 𝐹 Fn ω
54a1i 11 . . . . 5 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → 𝐹 Fn ω)
6 omex 9558 . . . . . 6 ω ∈ V
76a1i 11 . . . . 5 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ω ∈ V)
85, 7fnexd 7158 . . . 4 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → 𝐹 ∈ V)
9 fveq2 6826 . . . . . . . 8 (𝑛 = ∅ → (𝐹𝑛) = (𝐹‘∅))
10 suceq 6379 . . . . . . . . 9 (𝑛 = ∅ → suc 𝑛 = suc ∅)
1110fveq2d 6830 . . . . . . . 8 (𝑛 = ∅ → (𝐹‘suc 𝑛) = (𝐹‘suc ∅))
129, 11breq12d 5108 . . . . . . 7 (𝑛 = ∅ → ((𝐹𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹‘∅)𝑥(𝐹‘suc ∅)))
13 fveq2 6826 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
14 suceq 6379 . . . . . . . . 9 (𝑛 = 𝑘 → suc 𝑛 = suc 𝑘)
1514fveq2d 6830 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹‘suc 𝑛) = (𝐹‘suc 𝑘))
1613, 15breq12d 5108 . . . . . . 7 (𝑛 = 𝑘 → ((𝐹𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹𝑘)𝑥(𝐹‘suc 𝑘)))
17 fveq2 6826 . . . . . . . 8 (𝑛 = suc 𝑘 → (𝐹𝑛) = (𝐹‘suc 𝑘))
18 suceq 6379 . . . . . . . . 9 (𝑛 = suc 𝑘 → suc 𝑛 = suc suc 𝑘)
1918fveq2d 6830 . . . . . . . 8 (𝑛 = suc 𝑘 → (𝐹‘suc 𝑛) = (𝐹‘suc suc 𝑘))
2017, 19breq12d 5108 . . . . . . 7 (𝑛 = suc 𝑘 → ((𝐹𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
212fveq1i 6827 . . . . . . . . . . . . 13 (𝐹‘∅) = ((rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)‘∅)
22 fr0g 8365 . . . . . . . . . . . . . 14 (𝑠 ∈ V → ((rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)‘∅) = 𝑠)
2322elv 3443 . . . . . . . . . . . . 13 ((rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)‘∅) = 𝑠
2421, 23eqtri 2752 . . . . . . . . . . . 12 (𝐹‘∅) = 𝑠
2524breq1i 5102 . . . . . . . . . . 11 ((𝐹‘∅)𝑥𝑧𝑠𝑥𝑧)
2625biimpri 228 . . . . . . . . . 10 (𝑠𝑥𝑧 → (𝐹‘∅)𝑥𝑧)
2726eximi 1835 . . . . . . . . 9 (∃𝑧 𝑠𝑥𝑧 → ∃𝑧(𝐹‘∅)𝑥𝑧)
28 peano1 7829 . . . . . . . . . 10 ∅ ∈ ω
292axdclem 10432 . . . . . . . . . 10 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘∅)𝑥𝑧) → (∅ ∈ ω → (𝐹‘∅)𝑥(𝐹‘suc ∅)))
3028, 29mpi 20 . . . . . . . . 9 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘∅)𝑥𝑧) → (𝐹‘∅)𝑥(𝐹‘suc ∅))
3127, 30syl3an3 1165 . . . . . . . 8 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧 𝑠𝑥𝑧) → (𝐹‘∅)𝑥(𝐹‘suc ∅))
32313com23 1126 . . . . . . 7 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝐹‘∅)𝑥(𝐹‘suc ∅))
33 fvex 6839 . . . . . . . . . . . . . 14 (𝐹𝑘) ∈ V
34 fvex 6839 . . . . . . . . . . . . . 14 (𝐹‘suc 𝑘) ∈ V
3533, 34brelrn 5888 . . . . . . . . . . . . 13 ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘) ∈ ran 𝑥)
36 ssel 3931 . . . . . . . . . . . . 13 (ran 𝑥 ⊆ dom 𝑥 → ((𝐹‘suc 𝑘) ∈ ran 𝑥 → (𝐹‘suc 𝑘) ∈ dom 𝑥))
3735, 36syl5 34 . . . . . . . . . . . 12 (ran 𝑥 ⊆ dom 𝑥 → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘) ∈ dom 𝑥))
3834eldm 5847 . . . . . . . . . . . 12 ((𝐹‘suc 𝑘) ∈ dom 𝑥 ↔ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧)
3937, 38imbitrdi 251 . . . . . . . . . . 11 (ran 𝑥 ⊆ dom 𝑥 → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧))
4039ad2antll 729 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧))
41 peano2 7830 . . . . . . . . . . . . . 14 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
422axdclem 10432 . . . . . . . . . . . . . 14 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧) → (suc 𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
4341, 42syl5 34 . . . . . . . . . . . . 13 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧) → (𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
44433expia 1121 . . . . . . . . . . . 12 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))))
4544com3r 87 . . . . . . . . . . 11 (𝑘 ∈ ω → ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))))
4645imp 406 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
4740, 46syld 47 . . . . . . . . 9 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
48473adantr2 1171 . . . . . . . 8 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
4948ex 412 . . . . . . 7 (𝑘 ∈ ω → ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))))
5012, 16, 20, 32, 49finds2 7838 . . . . . 6 (𝑛 ∈ ω → ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
5150com12 32 . . . . 5 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝑛 ∈ ω → (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
5251ralrimiv 3120 . . . 4 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∀𝑛 ∈ ω (𝐹𝑛)𝑥(𝐹‘suc 𝑛))
53 fveq1 6825 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑛) = (𝐹𝑛))
54 fveq1 6825 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘suc 𝑛) = (𝐹‘suc 𝑛))
5553, 54breq12d 5108 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
5655ralbidv 3152 . . . 4 (𝑓 = 𝐹 → (∀𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ ∀𝑛 ∈ ω (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
578, 52, 56spcedv 3555 . . 3 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
58573exp 1119 . 2 (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))))
59 vex 3442 . . . . 5 𝑥 ∈ V
6059dmex 7849 . . . 4 dom 𝑥 ∈ V
6160pwex 5322 . . 3 𝒫 dom 𝑥 ∈ V
6261ac4c 10389 . 2 𝑔𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)
6358, 62exlimiiv 1931 1 (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  Vcvv 3438  wss 3905  c0 4286  𝒫 cpw 4553   class class class wbr 5095  cmpt 5176  dom cdm 5623  ran crn 5624  cres 5625  suc csuc 6313   Fn wfn 6481  cfv 6486  ωcom 7806  reccrdg 8338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-ac2 10376
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-ac 10029
This theorem is referenced by:  axdc  10434
  Copyright terms: Public domain W3C validator