MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdclem2 Structured version   Visualization version   GIF version

Theorem axdclem2 10207
Description: Lemma for axdc 10208. Using the full Axiom of Choice, we can construct a choice function 𝑔 on 𝒫 dom 𝑥. From this, we can build a sequence 𝐹 starting at any value 𝑠 ∈ dom 𝑥 by repeatedly applying 𝑔 to the set (𝐹𝑥) (where 𝑥 is the value from the previous iteration). (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdclem2.1 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
Assertion
Ref Expression
axdclem2 (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
Distinct variable groups:   𝑓,𝐹,𝑛   𝑦,𝐹,𝑧,𝑛   𝑓,𝑔,𝑥,𝑛   𝑔,𝑠,𝑦,𝑛   𝑧,𝑔   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑔,𝑠)

Proof of Theorem axdclem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 frfnom 8236 . . . . . . 7 (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω) Fn ω
2 axdclem2.1 . . . . . . . 8 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
32fneq1i 6514 . . . . . . 7 (𝐹 Fn ω ↔ (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω) Fn ω)
41, 3mpbir 230 . . . . . 6 𝐹 Fn ω
54a1i 11 . . . . 5 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → 𝐹 Fn ω)
6 omex 9331 . . . . . 6 ω ∈ V
76a1i 11 . . . . 5 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ω ∈ V)
85, 7fnexd 7076 . . . 4 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → 𝐹 ∈ V)
9 fveq2 6756 . . . . . . . 8 (𝑛 = ∅ → (𝐹𝑛) = (𝐹‘∅))
10 suceq 6316 . . . . . . . . 9 (𝑛 = ∅ → suc 𝑛 = suc ∅)
1110fveq2d 6760 . . . . . . . 8 (𝑛 = ∅ → (𝐹‘suc 𝑛) = (𝐹‘suc ∅))
129, 11breq12d 5083 . . . . . . 7 (𝑛 = ∅ → ((𝐹𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹‘∅)𝑥(𝐹‘suc ∅)))
13 fveq2 6756 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
14 suceq 6316 . . . . . . . . 9 (𝑛 = 𝑘 → suc 𝑛 = suc 𝑘)
1514fveq2d 6760 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹‘suc 𝑛) = (𝐹‘suc 𝑘))
1613, 15breq12d 5083 . . . . . . 7 (𝑛 = 𝑘 → ((𝐹𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹𝑘)𝑥(𝐹‘suc 𝑘)))
17 fveq2 6756 . . . . . . . 8 (𝑛 = suc 𝑘 → (𝐹𝑛) = (𝐹‘suc 𝑘))
18 suceq 6316 . . . . . . . . 9 (𝑛 = suc 𝑘 → suc 𝑛 = suc suc 𝑘)
1918fveq2d 6760 . . . . . . . 8 (𝑛 = suc 𝑘 → (𝐹‘suc 𝑛) = (𝐹‘suc suc 𝑘))
2017, 19breq12d 5083 . . . . . . 7 (𝑛 = suc 𝑘 → ((𝐹𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
212fveq1i 6757 . . . . . . . . . . . . 13 (𝐹‘∅) = ((rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)‘∅)
22 fr0g 8237 . . . . . . . . . . . . . 14 (𝑠 ∈ V → ((rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)‘∅) = 𝑠)
2322elv 3428 . . . . . . . . . . . . 13 ((rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)‘∅) = 𝑠
2421, 23eqtri 2766 . . . . . . . . . . . 12 (𝐹‘∅) = 𝑠
2524breq1i 5077 . . . . . . . . . . 11 ((𝐹‘∅)𝑥𝑧𝑠𝑥𝑧)
2625biimpri 227 . . . . . . . . . 10 (𝑠𝑥𝑧 → (𝐹‘∅)𝑥𝑧)
2726eximi 1838 . . . . . . . . 9 (∃𝑧 𝑠𝑥𝑧 → ∃𝑧(𝐹‘∅)𝑥𝑧)
28 peano1 7710 . . . . . . . . . 10 ∅ ∈ ω
292axdclem 10206 . . . . . . . . . 10 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘∅)𝑥𝑧) → (∅ ∈ ω → (𝐹‘∅)𝑥(𝐹‘suc ∅)))
3028, 29mpi 20 . . . . . . . . 9 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘∅)𝑥𝑧) → (𝐹‘∅)𝑥(𝐹‘suc ∅))
3127, 30syl3an3 1163 . . . . . . . 8 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧 𝑠𝑥𝑧) → (𝐹‘∅)𝑥(𝐹‘suc ∅))
32313com23 1124 . . . . . . 7 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝐹‘∅)𝑥(𝐹‘suc ∅))
33 fvex 6769 . . . . . . . . . . . . . 14 (𝐹𝑘) ∈ V
34 fvex 6769 . . . . . . . . . . . . . 14 (𝐹‘suc 𝑘) ∈ V
3533, 34brelrn 5840 . . . . . . . . . . . . 13 ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘) ∈ ran 𝑥)
36 ssel 3910 . . . . . . . . . . . . 13 (ran 𝑥 ⊆ dom 𝑥 → ((𝐹‘suc 𝑘) ∈ ran 𝑥 → (𝐹‘suc 𝑘) ∈ dom 𝑥))
3735, 36syl5 34 . . . . . . . . . . . 12 (ran 𝑥 ⊆ dom 𝑥 → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘) ∈ dom 𝑥))
3834eldm 5798 . . . . . . . . . . . 12 ((𝐹‘suc 𝑘) ∈ dom 𝑥 ↔ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧)
3937, 38syl6ib 250 . . . . . . . . . . 11 (ran 𝑥 ⊆ dom 𝑥 → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧))
4039ad2antll 725 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧))
41 peano2 7711 . . . . . . . . . . . . . 14 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
422axdclem 10206 . . . . . . . . . . . . . 14 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧) → (suc 𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
4341, 42syl5 34 . . . . . . . . . . . . 13 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧) → (𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
44433expia 1119 . . . . . . . . . . . 12 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))))
4544com3r 87 . . . . . . . . . . 11 (𝑘 ∈ ω → ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))))
4645imp 406 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
4740, 46syld 47 . . . . . . . . 9 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
48473adantr2 1168 . . . . . . . 8 ((𝑘 ∈ ω ∧ (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))
4948ex 412 . . . . . . 7 (𝑘 ∈ ω → ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ((𝐹𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))))
5012, 16, 20, 32, 49finds2 7721 . . . . . 6 (𝑛 ∈ ω → ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
5150com12 32 . . . . 5 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝑛 ∈ ω → (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
5251ralrimiv 3106 . . . 4 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∀𝑛 ∈ ω (𝐹𝑛)𝑥(𝐹‘suc 𝑛))
53 fveq1 6755 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑛) = (𝐹𝑛))
54 fveq1 6755 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘suc 𝑛) = (𝐹‘suc 𝑛))
5553, 54breq12d 5083 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
5655ralbidv 3120 . . . 4 (𝑓 = 𝐹 → (∀𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ ∀𝑛 ∈ ω (𝐹𝑛)𝑥(𝐹‘suc 𝑛)))
578, 52, 56spcedv 3527 . . 3 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
58573exp 1117 . 2 (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))))
59 vex 3426 . . . . 5 𝑥 ∈ V
6059dmex 7732 . . . 4 dom 𝑥 ∈ V
6160pwex 5298 . . 3 𝒫 dom 𝑥 ∈ V
6261ac4c 10163 . 2 𝑔𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦)
6358, 62exlimiiv 1935 1 (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  suc csuc 6253   Fn wfn 6413  cfv 6418  ωcom 7687  reccrdg 8211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-ac2 10150
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-ac 9803
This theorem is referenced by:  axdc  10208
  Copyright terms: Public domain W3C validator