Step | Hyp | Ref
| Expression |
1 | | frfnom 8236 |
. . . . . . 7
⊢
(rec((𝑦 ∈ V
↦ (𝑔‘{𝑧 ∣ 𝑦𝑥𝑧})), 𝑠) ↾ ω) Fn
ω |
2 | | axdclem2.1 |
. . . . . . . 8
⊢ 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑦𝑥𝑧})), 𝑠) ↾ ω) |
3 | 2 | fneq1i 6514 |
. . . . . . 7
⊢ (𝐹 Fn ω ↔ (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑦𝑥𝑧})), 𝑠) ↾ ω) Fn
ω) |
4 | 1, 3 | mpbir 230 |
. . . . . 6
⊢ 𝐹 Fn ω |
5 | 4 | a1i 11 |
. . . . 5
⊢
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → 𝐹 Fn ω) |
6 | | omex 9331 |
. . . . . 6
⊢ ω
∈ V |
7 | 6 | a1i 11 |
. . . . 5
⊢
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ω ∈ V) |
8 | 5, 7 | fnexd 7076 |
. . . 4
⊢
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → 𝐹 ∈ V) |
9 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑛 = ∅ → (𝐹‘𝑛) = (𝐹‘∅)) |
10 | | suceq 6316 |
. . . . . . . . 9
⊢ (𝑛 = ∅ → suc 𝑛 = suc ∅) |
11 | 10 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑛 = ∅ → (𝐹‘suc 𝑛) = (𝐹‘suc ∅)) |
12 | 9, 11 | breq12d 5083 |
. . . . . . 7
⊢ (𝑛 = ∅ → ((𝐹‘𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹‘∅)𝑥(𝐹‘suc ∅))) |
13 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
14 | | suceq 6316 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → suc 𝑛 = suc 𝑘) |
15 | 14 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝐹‘suc 𝑛) = (𝐹‘suc 𝑘)) |
16 | 13, 15 | breq12d 5083 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹‘𝑘)𝑥(𝐹‘suc 𝑘))) |
17 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑛 = suc 𝑘 → (𝐹‘𝑛) = (𝐹‘suc 𝑘)) |
18 | | suceq 6316 |
. . . . . . . . 9
⊢ (𝑛 = suc 𝑘 → suc 𝑛 = suc suc 𝑘) |
19 | 18 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑛 = suc 𝑘 → (𝐹‘suc 𝑛) = (𝐹‘suc suc 𝑘)) |
20 | 17, 19 | breq12d 5083 |
. . . . . . 7
⊢ (𝑛 = suc 𝑘 → ((𝐹‘𝑛)𝑥(𝐹‘suc 𝑛) ↔ (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))) |
21 | 2 | fveq1i 6757 |
. . . . . . . . . . . . 13
⊢ (𝐹‘∅) = ((rec((𝑦 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑦𝑥𝑧})), 𝑠) ↾
ω)‘∅) |
22 | | fr0g 8237 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ V → ((rec((𝑦 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑦𝑥𝑧})), 𝑠) ↾ ω)‘∅) = 𝑠) |
23 | 22 | elv 3428 |
. . . . . . . . . . . . 13
⊢
((rec((𝑦 ∈ V
↦ (𝑔‘{𝑧 ∣ 𝑦𝑥𝑧})), 𝑠) ↾ ω)‘∅) = 𝑠 |
24 | 21, 23 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ (𝐹‘∅) = 𝑠 |
25 | 24 | breq1i 5077 |
. . . . . . . . . . 11
⊢ ((𝐹‘∅)𝑥𝑧 ↔ 𝑠𝑥𝑧) |
26 | 25 | biimpri 227 |
. . . . . . . . . 10
⊢ (𝑠𝑥𝑧 → (𝐹‘∅)𝑥𝑧) |
27 | 26 | eximi 1838 |
. . . . . . . . 9
⊢
(∃𝑧 𝑠𝑥𝑧 → ∃𝑧(𝐹‘∅)𝑥𝑧) |
28 | | peano1 7710 |
. . . . . . . . . 10
⊢ ∅
∈ ω |
29 | 2 | axdclem 10206 |
. . . . . . . . . 10
⊢
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘∅)𝑥𝑧) → (∅ ∈ ω →
(𝐹‘∅)𝑥(𝐹‘suc ∅))) |
30 | 28, 29 | mpi 20 |
. . . . . . . . 9
⊢
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘∅)𝑥𝑧) → (𝐹‘∅)𝑥(𝐹‘suc ∅)) |
31 | 27, 30 | syl3an3 1163 |
. . . . . . . 8
⊢
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧 𝑠𝑥𝑧) → (𝐹‘∅)𝑥(𝐹‘suc ∅)) |
32 | 31 | 3com23 1124 |
. . . . . . 7
⊢
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝐹‘∅)𝑥(𝐹‘suc ∅)) |
33 | | fvex 6769 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝑘) ∈ V |
34 | | fvex 6769 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘suc 𝑘) ∈ V |
35 | 33, 34 | brelrn 5840 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘) ∈ ran 𝑥) |
36 | | ssel 3910 |
. . . . . . . . . . . . 13
⊢ (ran
𝑥 ⊆ dom 𝑥 → ((𝐹‘suc 𝑘) ∈ ran 𝑥 → (𝐹‘suc 𝑘) ∈ dom 𝑥)) |
37 | 35, 36 | syl5 34 |
. . . . . . . . . . . 12
⊢ (ran
𝑥 ⊆ dom 𝑥 → ((𝐹‘𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘) ∈ dom 𝑥)) |
38 | 34 | eldm 5798 |
. . . . . . . . . . . 12
⊢ ((𝐹‘suc 𝑘) ∈ dom 𝑥 ↔ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧) |
39 | 37, 38 | syl6ib 250 |
. . . . . . . . . . 11
⊢ (ran
𝑥 ⊆ dom 𝑥 → ((𝐹‘𝑘)𝑥(𝐹‘suc 𝑘) → ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧)) |
40 | 39 | ad2antll 725 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ω ∧
(∀𝑦 ∈ 𝒫
dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹‘𝑘)𝑥(𝐹‘suc 𝑘) → ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧)) |
41 | | peano2 7711 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ω → suc 𝑘 ∈
ω) |
42 | 2 | axdclem 10206 |
. . . . . . . . . . . . . 14
⊢
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧) → (suc 𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))) |
43 | 41, 42 | syl5 34 |
. . . . . . . . . . . . 13
⊢
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘suc 𝑘)𝑥𝑧) → (𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))) |
44 | 43 | 3expia 1119 |
. . . . . . . . . . . 12
⊢
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝑘 ∈ ω → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))) |
45 | 44 | com3r 87 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ω →
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))) |
46 | 45 | imp 406 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ω ∧
(∀𝑦 ∈ 𝒫
dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → (∃𝑧(𝐹‘suc 𝑘)𝑥𝑧 → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))) |
47 | 40, 46 | syld 47 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ω ∧
(∀𝑦 ∈ 𝒫
dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹‘𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))) |
48 | 47 | 3adantr2 1168 |
. . . . . . . 8
⊢ ((𝑘 ∈ ω ∧
(∀𝑦 ∈ 𝒫
dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥)) → ((𝐹‘𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘))) |
49 | 48 | ex 412 |
. . . . . . 7
⊢ (𝑘 ∈ ω →
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ((𝐹‘𝑘)𝑥(𝐹‘suc 𝑘) → (𝐹‘suc 𝑘)𝑥(𝐹‘suc suc 𝑘)))) |
50 | 12, 16, 20, 32, 49 | finds2 7721 |
. . . . . 6
⊢ (𝑛 ∈ ω →
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝐹‘𝑛)𝑥(𝐹‘suc 𝑛))) |
51 | 50 | com12 32 |
. . . . 5
⊢
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → (𝑛 ∈ ω → (𝐹‘𝑛)𝑥(𝐹‘suc 𝑛))) |
52 | 51 | ralrimiv 3106 |
. . . 4
⊢
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∀𝑛 ∈ ω (𝐹‘𝑛)𝑥(𝐹‘suc 𝑛)) |
53 | | fveq1 6755 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓‘𝑛) = (𝐹‘𝑛)) |
54 | | fveq1 6755 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓‘suc 𝑛) = (𝐹‘suc 𝑛)) |
55 | 53, 54 | breq12d 5083 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑛)𝑥(𝑓‘suc 𝑛) ↔ (𝐹‘𝑛)𝑥(𝐹‘suc 𝑛))) |
56 | 55 | ralbidv 3120 |
. . . 4
⊢ (𝑓 = 𝐹 → (∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛) ↔ ∀𝑛 ∈ ω (𝐹‘𝑛)𝑥(𝐹‘suc 𝑛))) |
57 | 8, 52, 56 | spcedv 3527 |
. . 3
⊢
((∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ∃𝑧 𝑠𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
58 | 57 | 3exp 1117 |
. 2
⊢
(∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) → (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)))) |
59 | | vex 3426 |
. . . . 5
⊢ 𝑥 ∈ V |
60 | 59 | dmex 7732 |
. . . 4
⊢ dom 𝑥 ∈ V |
61 | 60 | pwex 5298 |
. . 3
⊢ 𝒫
dom 𝑥 ∈
V |
62 | 61 | ac4c 10163 |
. 2
⊢
∃𝑔∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) |
63 | 58, 62 | exlimiiv 1935 |
1
⊢
(∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛))) |