MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothac Structured version   Visualization version   GIF version

Theorem grothac 10241
Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv 9880). This can be put in a more conventional form via ween 9446 and dfac8 9546. Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html 9546). (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grothac dom card = V

Proof of Theorem grothac
Dummy variables 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pweq 4513 . . . . . . . . . 10 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦)
21sseq1d 3946 . . . . . . . . 9 (𝑥 = 𝑦 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑦𝑢))
31eleq1d 2874 . . . . . . . . 9 (𝑥 = 𝑦 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑦𝑢))
42, 3anbi12d 633 . . . . . . . 8 (𝑥 = 𝑦 → ((𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ↔ (𝒫 𝑦𝑢 ∧ 𝒫 𝑦𝑢)))
54rspcva 3569 . . . . . . 7 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → (𝒫 𝑦𝑢 ∧ 𝒫 𝑦𝑢))
65simpld 498 . . . . . 6 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → 𝒫 𝑦𝑢)
7 rabss 3999 . . . . . . 7 ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢 ↔ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢))
87biimpri 231 . . . . . 6 (∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢) → {𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢)
9 vex 3444 . . . . . . . . . 10 𝑦 ∈ V
109canth2 8654 . . . . . . . . 9 𝑦 ≺ 𝒫 𝑦
11 sdomdom 8520 . . . . . . . . 9 (𝑦 ≺ 𝒫 𝑦𝑦 ≼ 𝒫 𝑦)
1210, 11ax-mp 5 . . . . . . . 8 𝑦 ≼ 𝒫 𝑦
13 ssdomg 8538 . . . . . . . . 9 (𝑢 ∈ V → (𝒫 𝑦𝑢 → 𝒫 𝑦𝑢))
1413elv 3446 . . . . . . . 8 (𝒫 𝑦𝑢 → 𝒫 𝑦𝑢)
15 domtr 8545 . . . . . . . 8 ((𝑦 ≼ 𝒫 𝑦 ∧ 𝒫 𝑦𝑢) → 𝑦𝑢)
1612, 14, 15sylancr 590 . . . . . . 7 (𝒫 𝑦𝑢𝑦𝑢)
17 vex 3444 . . . . . . . 8 𝑢 ∈ V
18 tskwe 9363 . . . . . . . 8 ((𝑢 ∈ V ∧ {𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢) → 𝑢 ∈ dom card)
1917, 18mpan 689 . . . . . . 7 ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢𝑢 ∈ dom card)
20 numdom 9449 . . . . . . . 8 ((𝑢 ∈ dom card ∧ 𝑦𝑢) → 𝑦 ∈ dom card)
2120expcom 417 . . . . . . 7 (𝑦𝑢 → (𝑢 ∈ dom card → 𝑦 ∈ dom card))
2216, 19, 21syl2im 40 . . . . . 6 (𝒫 𝑦𝑢 → ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢𝑦 ∈ dom card))
236, 8, 22syl2im 40 . . . . 5 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → (∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢) → 𝑦 ∈ dom card))
24233impia 1114 . . . 4 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢)) → 𝑦 ∈ dom card)
25 axgroth6 10239 . . . 4 𝑢(𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢))
2624, 25exlimiiv 1932 . . 3 𝑦 ∈ dom card
2726, 92th 267 . 2 (𝑦 ∈ dom card ↔ 𝑦 ∈ V)
2827eqriv 2795 1 dom card = V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  wss 3881  𝒫 cpw 4497   class class class wbr 5030  dom cdm 5519  cdom 8490  csdm 8491  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-groth 10234
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-wrecs 7930  df-recs 7991  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-card 9352
This theorem is referenced by:  axgroth3  10242
  Copyright terms: Public domain W3C validator