MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothac Structured version   Visualization version   GIF version

Theorem grothac 10716
Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv 10355). This can be put in a more conventional form via ween 9921 and dfac8 10022. Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html 10022). (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grothac dom card = V

Proof of Theorem grothac
Dummy variables 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pweq 4559 . . . . . . . . . 10 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦)
21sseq1d 3961 . . . . . . . . 9 (𝑥 = 𝑦 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑦𝑢))
31eleq1d 2816 . . . . . . . . 9 (𝑥 = 𝑦 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑦𝑢))
42, 3anbi12d 632 . . . . . . . 8 (𝑥 = 𝑦 → ((𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ↔ (𝒫 𝑦𝑢 ∧ 𝒫 𝑦𝑢)))
54rspcva 3570 . . . . . . 7 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → (𝒫 𝑦𝑢 ∧ 𝒫 𝑦𝑢))
65simpld 494 . . . . . 6 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → 𝒫 𝑦𝑢)
7 rabss 4017 . . . . . . 7 ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢 ↔ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢))
87biimpri 228 . . . . . 6 (∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢) → {𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢)
9 vex 3440 . . . . . . . . . 10 𝑦 ∈ V
109canth2 9038 . . . . . . . . 9 𝑦 ≺ 𝒫 𝑦
11 sdomdom 8897 . . . . . . . . 9 (𝑦 ≺ 𝒫 𝑦𝑦 ≼ 𝒫 𝑦)
1210, 11ax-mp 5 . . . . . . . 8 𝑦 ≼ 𝒫 𝑦
13 ssdomg 8917 . . . . . . . . 9 (𝑢 ∈ V → (𝒫 𝑦𝑢 → 𝒫 𝑦𝑢))
1413elv 3441 . . . . . . . 8 (𝒫 𝑦𝑢 → 𝒫 𝑦𝑢)
15 domtr 8924 . . . . . . . 8 ((𝑦 ≼ 𝒫 𝑦 ∧ 𝒫 𝑦𝑢) → 𝑦𝑢)
1612, 14, 15sylancr 587 . . . . . . 7 (𝒫 𝑦𝑢𝑦𝑢)
17 vex 3440 . . . . . . . 8 𝑢 ∈ V
18 tskwe 9838 . . . . . . . 8 ((𝑢 ∈ V ∧ {𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢) → 𝑢 ∈ dom card)
1917, 18mpan 690 . . . . . . 7 ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢𝑢 ∈ dom card)
20 numdom 9924 . . . . . . . 8 ((𝑢 ∈ dom card ∧ 𝑦𝑢) → 𝑦 ∈ dom card)
2120expcom 413 . . . . . . 7 (𝑦𝑢 → (𝑢 ∈ dom card → 𝑦 ∈ dom card))
2216, 19, 21syl2im 40 . . . . . 6 (𝒫 𝑦𝑢 → ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢𝑦 ∈ dom card))
236, 8, 22syl2im 40 . . . . 5 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → (∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢) → 𝑦 ∈ dom card))
24233impia 1117 . . . 4 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢)) → 𝑦 ∈ dom card)
25 axgroth6 10714 . . . 4 𝑢(𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢))
2624, 25exlimiiv 1932 . . 3 𝑦 ∈ dom card
2726, 92th 264 . 2 (𝑦 ∈ dom card ↔ 𝑦 ∈ V)
2827eqriv 2728 1 dom card = V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  wss 3897  𝒫 cpw 4545   class class class wbr 5086  dom cdm 5611  cdom 8862  csdm 8863  cardccrd 9823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-groth 10709
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-card 9827
This theorem is referenced by:  axgroth3  10717
  Copyright terms: Public domain W3C validator