Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grothac | Structured version Visualization version GIF version |
Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv 10209). This can be put in a more conventional form via ween 9775 and dfac8 9875. Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html 9875). (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grothac | ⊢ dom card = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4554 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
2 | 1 | sseq1d 3956 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ⊆ 𝑢 ↔ 𝒫 𝑦 ⊆ 𝑢)) |
3 | 1 | eleq1d 2824 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ∈ 𝑢 ↔ 𝒫 𝑦 ∈ 𝑢)) |
4 | 2, 3 | anbi12d 630 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢) ↔ (𝒫 𝑦 ⊆ 𝑢 ∧ 𝒫 𝑦 ∈ 𝑢))) |
5 | 4 | rspcva 3558 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢)) → (𝒫 𝑦 ⊆ 𝑢 ∧ 𝒫 𝑦 ∈ 𝑢)) |
6 | 5 | simpld 494 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢)) → 𝒫 𝑦 ⊆ 𝑢) |
7 | rabss 4009 | . . . . . . 7 ⊢ ({𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢 ↔ ∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢)) | |
8 | 7 | biimpri 227 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢) → {𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢) |
9 | vex 3434 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
10 | 9 | canth2 8882 | . . . . . . . . 9 ⊢ 𝑦 ≺ 𝒫 𝑦 |
11 | sdomdom 8739 | . . . . . . . . 9 ⊢ (𝑦 ≺ 𝒫 𝑦 → 𝑦 ≼ 𝒫 𝑦) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . 8 ⊢ 𝑦 ≼ 𝒫 𝑦 |
13 | ssdomg 8757 | . . . . . . . . 9 ⊢ (𝑢 ∈ V → (𝒫 𝑦 ⊆ 𝑢 → 𝒫 𝑦 ≼ 𝑢)) | |
14 | 13 | elv 3436 | . . . . . . . 8 ⊢ (𝒫 𝑦 ⊆ 𝑢 → 𝒫 𝑦 ≼ 𝑢) |
15 | domtr 8764 | . . . . . . . 8 ⊢ ((𝑦 ≼ 𝒫 𝑦 ∧ 𝒫 𝑦 ≼ 𝑢) → 𝑦 ≼ 𝑢) | |
16 | 12, 14, 15 | sylancr 586 | . . . . . . 7 ⊢ (𝒫 𝑦 ⊆ 𝑢 → 𝑦 ≼ 𝑢) |
17 | vex 3434 | . . . . . . . 8 ⊢ 𝑢 ∈ V | |
18 | tskwe 9692 | . . . . . . . 8 ⊢ ((𝑢 ∈ V ∧ {𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢) → 𝑢 ∈ dom card) | |
19 | 17, 18 | mpan 686 | . . . . . . 7 ⊢ ({𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢 → 𝑢 ∈ dom card) |
20 | numdom 9778 | . . . . . . . 8 ⊢ ((𝑢 ∈ dom card ∧ 𝑦 ≼ 𝑢) → 𝑦 ∈ dom card) | |
21 | 20 | expcom 413 | . . . . . . 7 ⊢ (𝑦 ≼ 𝑢 → (𝑢 ∈ dom card → 𝑦 ∈ dom card)) |
22 | 16, 19, 21 | syl2im 40 | . . . . . 6 ⊢ (𝒫 𝑦 ⊆ 𝑢 → ({𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢 → 𝑦 ∈ dom card)) |
23 | 6, 8, 22 | syl2im 40 | . . . . 5 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢)) → (∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢) → 𝑦 ∈ dom card)) |
24 | 23 | 3impia 1115 | . . . 4 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢)) → 𝑦 ∈ dom card) |
25 | axgroth6 10568 | . . . 4 ⊢ ∃𝑢(𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢)) | |
26 | 24, 25 | exlimiiv 1937 | . . 3 ⊢ 𝑦 ∈ dom card |
27 | 26, 9 | 2th 263 | . 2 ⊢ (𝑦 ∈ dom card ↔ 𝑦 ∈ V) |
28 | 27 | eqriv 2736 | 1 ⊢ dom card = V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∀wral 3065 {crab 3069 Vcvv 3430 ⊆ wss 3891 𝒫 cpw 4538 class class class wbr 5078 dom cdm 5588 ≼ cdom 8705 ≺ csdm 8706 cardccrd 9677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-groth 10563 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-card 9681 |
This theorem is referenced by: axgroth3 10571 |
Copyright terms: Public domain | W3C validator |