|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > grothac | Structured version Visualization version GIF version | ||
| Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv 10510). This can be put in a more conventional form via ween 10076 and dfac8 10177. Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html 10177). (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| grothac | ⊢ dom card = V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pweq 4613 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
| 2 | 1 | sseq1d 4014 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ⊆ 𝑢 ↔ 𝒫 𝑦 ⊆ 𝑢)) | 
| 3 | 1 | eleq1d 2825 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ∈ 𝑢 ↔ 𝒫 𝑦 ∈ 𝑢)) | 
| 4 | 2, 3 | anbi12d 632 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢) ↔ (𝒫 𝑦 ⊆ 𝑢 ∧ 𝒫 𝑦 ∈ 𝑢))) | 
| 5 | 4 | rspcva 3619 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢)) → (𝒫 𝑦 ⊆ 𝑢 ∧ 𝒫 𝑦 ∈ 𝑢)) | 
| 6 | 5 | simpld 494 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢)) → 𝒫 𝑦 ⊆ 𝑢) | 
| 7 | rabss 4071 | . . . . . . 7 ⊢ ({𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢 ↔ ∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢)) | |
| 8 | 7 | biimpri 228 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢) → {𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢) | 
| 9 | vex 3483 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 10 | 9 | canth2 9171 | . . . . . . . . 9 ⊢ 𝑦 ≺ 𝒫 𝑦 | 
| 11 | sdomdom 9021 | . . . . . . . . 9 ⊢ (𝑦 ≺ 𝒫 𝑦 → 𝑦 ≼ 𝒫 𝑦) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . . . 8 ⊢ 𝑦 ≼ 𝒫 𝑦 | 
| 13 | ssdomg 9041 | . . . . . . . . 9 ⊢ (𝑢 ∈ V → (𝒫 𝑦 ⊆ 𝑢 → 𝒫 𝑦 ≼ 𝑢)) | |
| 14 | 13 | elv 3484 | . . . . . . . 8 ⊢ (𝒫 𝑦 ⊆ 𝑢 → 𝒫 𝑦 ≼ 𝑢) | 
| 15 | domtr 9048 | . . . . . . . 8 ⊢ ((𝑦 ≼ 𝒫 𝑦 ∧ 𝒫 𝑦 ≼ 𝑢) → 𝑦 ≼ 𝑢) | |
| 16 | 12, 14, 15 | sylancr 587 | . . . . . . 7 ⊢ (𝒫 𝑦 ⊆ 𝑢 → 𝑦 ≼ 𝑢) | 
| 17 | vex 3483 | . . . . . . . 8 ⊢ 𝑢 ∈ V | |
| 18 | tskwe 9991 | . . . . . . . 8 ⊢ ((𝑢 ∈ V ∧ {𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢) → 𝑢 ∈ dom card) | |
| 19 | 17, 18 | mpan 690 | . . . . . . 7 ⊢ ({𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢 → 𝑢 ∈ dom card) | 
| 20 | numdom 10079 | . . . . . . . 8 ⊢ ((𝑢 ∈ dom card ∧ 𝑦 ≼ 𝑢) → 𝑦 ∈ dom card) | |
| 21 | 20 | expcom 413 | . . . . . . 7 ⊢ (𝑦 ≼ 𝑢 → (𝑢 ∈ dom card → 𝑦 ∈ dom card)) | 
| 22 | 16, 19, 21 | syl2im 40 | . . . . . 6 ⊢ (𝒫 𝑦 ⊆ 𝑢 → ({𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢 → 𝑦 ∈ dom card)) | 
| 23 | 6, 8, 22 | syl2im 40 | . . . . 5 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢)) → (∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢) → 𝑦 ∈ dom card)) | 
| 24 | 23 | 3impia 1117 | . . . 4 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢)) → 𝑦 ∈ dom card) | 
| 25 | axgroth6 10869 | . . . 4 ⊢ ∃𝑢(𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢)) | |
| 26 | 24, 25 | exlimiiv 1930 | . . 3 ⊢ 𝑦 ∈ dom card | 
| 27 | 26, 9 | 2th 264 | . 2 ⊢ (𝑦 ∈ dom card ↔ 𝑦 ∈ V) | 
| 28 | 27 | eqriv 2733 | 1 ⊢ dom card = V | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {crab 3435 Vcvv 3479 ⊆ wss 3950 𝒫 cpw 4599 class class class wbr 5142 dom cdm 5684 ≼ cdom 8984 ≺ csdm 8985 cardccrd 9976 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-groth 10864 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-card 9980 | 
| This theorem is referenced by: axgroth3 10872 | 
| Copyright terms: Public domain | W3C validator |