MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothac Structured version   Visualization version   GIF version

Theorem grothac 10871
Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv 10510). This can be put in a more conventional form via ween 10076 and dfac8 10177. Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html 10177). (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grothac dom card = V

Proof of Theorem grothac
Dummy variables 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pweq 4613 . . . . . . . . . 10 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦)
21sseq1d 4014 . . . . . . . . 9 (𝑥 = 𝑦 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑦𝑢))
31eleq1d 2825 . . . . . . . . 9 (𝑥 = 𝑦 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑦𝑢))
42, 3anbi12d 632 . . . . . . . 8 (𝑥 = 𝑦 → ((𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ↔ (𝒫 𝑦𝑢 ∧ 𝒫 𝑦𝑢)))
54rspcva 3619 . . . . . . 7 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → (𝒫 𝑦𝑢 ∧ 𝒫 𝑦𝑢))
65simpld 494 . . . . . 6 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → 𝒫 𝑦𝑢)
7 rabss 4071 . . . . . . 7 ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢 ↔ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢))
87biimpri 228 . . . . . 6 (∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢) → {𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢)
9 vex 3483 . . . . . . . . . 10 𝑦 ∈ V
109canth2 9171 . . . . . . . . 9 𝑦 ≺ 𝒫 𝑦
11 sdomdom 9021 . . . . . . . . 9 (𝑦 ≺ 𝒫 𝑦𝑦 ≼ 𝒫 𝑦)
1210, 11ax-mp 5 . . . . . . . 8 𝑦 ≼ 𝒫 𝑦
13 ssdomg 9041 . . . . . . . . 9 (𝑢 ∈ V → (𝒫 𝑦𝑢 → 𝒫 𝑦𝑢))
1413elv 3484 . . . . . . . 8 (𝒫 𝑦𝑢 → 𝒫 𝑦𝑢)
15 domtr 9048 . . . . . . . 8 ((𝑦 ≼ 𝒫 𝑦 ∧ 𝒫 𝑦𝑢) → 𝑦𝑢)
1612, 14, 15sylancr 587 . . . . . . 7 (𝒫 𝑦𝑢𝑦𝑢)
17 vex 3483 . . . . . . . 8 𝑢 ∈ V
18 tskwe 9991 . . . . . . . 8 ((𝑢 ∈ V ∧ {𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢) → 𝑢 ∈ dom card)
1917, 18mpan 690 . . . . . . 7 ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢𝑢 ∈ dom card)
20 numdom 10079 . . . . . . . 8 ((𝑢 ∈ dom card ∧ 𝑦𝑢) → 𝑦 ∈ dom card)
2120expcom 413 . . . . . . 7 (𝑦𝑢 → (𝑢 ∈ dom card → 𝑦 ∈ dom card))
2216, 19, 21syl2im 40 . . . . . 6 (𝒫 𝑦𝑢 → ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢𝑦 ∈ dom card))
236, 8, 22syl2im 40 . . . . 5 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → (∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢) → 𝑦 ∈ dom card))
24233impia 1117 . . . 4 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢)) → 𝑦 ∈ dom card)
25 axgroth6 10869 . . . 4 𝑢(𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢))
2624, 25exlimiiv 1930 . . 3 𝑦 ∈ dom card
2726, 92th 264 . 2 (𝑦 ∈ dom card ↔ 𝑦 ∈ V)
2827eqriv 2733 1 dom card = V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  {crab 3435  Vcvv 3479  wss 3950  𝒫 cpw 4599   class class class wbr 5142  dom cdm 5684  cdom 8984  csdm 8985  cardccrd 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-groth 10864
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-card 9980
This theorem is referenced by:  axgroth3  10872
  Copyright terms: Public domain W3C validator