| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grothac | Structured version Visualization version GIF version | ||
| Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv 10355). This can be put in a more conventional form via ween 9921 and dfac8 10022. Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html 10022). (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grothac | ⊢ dom card = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4559 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
| 2 | 1 | sseq1d 3961 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ⊆ 𝑢 ↔ 𝒫 𝑦 ⊆ 𝑢)) |
| 3 | 1 | eleq1d 2816 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ∈ 𝑢 ↔ 𝒫 𝑦 ∈ 𝑢)) |
| 4 | 2, 3 | anbi12d 632 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢) ↔ (𝒫 𝑦 ⊆ 𝑢 ∧ 𝒫 𝑦 ∈ 𝑢))) |
| 5 | 4 | rspcva 3570 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢)) → (𝒫 𝑦 ⊆ 𝑢 ∧ 𝒫 𝑦 ∈ 𝑢)) |
| 6 | 5 | simpld 494 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢)) → 𝒫 𝑦 ⊆ 𝑢) |
| 7 | rabss 4017 | . . . . . . 7 ⊢ ({𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢 ↔ ∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢)) | |
| 8 | 7 | biimpri 228 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢) → {𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢) |
| 9 | vex 3440 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 10 | 9 | canth2 9038 | . . . . . . . . 9 ⊢ 𝑦 ≺ 𝒫 𝑦 |
| 11 | sdomdom 8897 | . . . . . . . . 9 ⊢ (𝑦 ≺ 𝒫 𝑦 → 𝑦 ≼ 𝒫 𝑦) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . . . 8 ⊢ 𝑦 ≼ 𝒫 𝑦 |
| 13 | ssdomg 8917 | . . . . . . . . 9 ⊢ (𝑢 ∈ V → (𝒫 𝑦 ⊆ 𝑢 → 𝒫 𝑦 ≼ 𝑢)) | |
| 14 | 13 | elv 3441 | . . . . . . . 8 ⊢ (𝒫 𝑦 ⊆ 𝑢 → 𝒫 𝑦 ≼ 𝑢) |
| 15 | domtr 8924 | . . . . . . . 8 ⊢ ((𝑦 ≼ 𝒫 𝑦 ∧ 𝒫 𝑦 ≼ 𝑢) → 𝑦 ≼ 𝑢) | |
| 16 | 12, 14, 15 | sylancr 587 | . . . . . . 7 ⊢ (𝒫 𝑦 ⊆ 𝑢 → 𝑦 ≼ 𝑢) |
| 17 | vex 3440 | . . . . . . . 8 ⊢ 𝑢 ∈ V | |
| 18 | tskwe 9838 | . . . . . . . 8 ⊢ ((𝑢 ∈ V ∧ {𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢) → 𝑢 ∈ dom card) | |
| 19 | 17, 18 | mpan 690 | . . . . . . 7 ⊢ ({𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢 → 𝑢 ∈ dom card) |
| 20 | numdom 9924 | . . . . . . . 8 ⊢ ((𝑢 ∈ dom card ∧ 𝑦 ≼ 𝑢) → 𝑦 ∈ dom card) | |
| 21 | 20 | expcom 413 | . . . . . . 7 ⊢ (𝑦 ≼ 𝑢 → (𝑢 ∈ dom card → 𝑦 ∈ dom card)) |
| 22 | 16, 19, 21 | syl2im 40 | . . . . . 6 ⊢ (𝒫 𝑦 ⊆ 𝑢 → ({𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢 → 𝑦 ∈ dom card)) |
| 23 | 6, 8, 22 | syl2im 40 | . . . . 5 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢)) → (∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢) → 𝑦 ∈ dom card)) |
| 24 | 23 | 3impia 1117 | . . . 4 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢)) → 𝑦 ∈ dom card) |
| 25 | axgroth6 10714 | . . . 4 ⊢ ∃𝑢(𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢)) | |
| 26 | 24, 25 | exlimiiv 1932 | . . 3 ⊢ 𝑦 ∈ dom card |
| 27 | 26, 9 | 2th 264 | . 2 ⊢ (𝑦 ∈ dom card ↔ 𝑦 ∈ V) |
| 28 | 27 | eqriv 2728 | 1 ⊢ dom card = V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4545 class class class wbr 5086 dom cdm 5611 ≼ cdom 8862 ≺ csdm 8863 cardccrd 9823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-groth 10709 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-card 9827 |
| This theorem is referenced by: axgroth3 10717 |
| Copyright terms: Public domain | W3C validator |