Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grothac | Structured version Visualization version GIF version |
Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv 9962). This can be put in a more conventional form via ween 9528 and dfac8 9628. Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html 9628). (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grothac | ⊢ dom card = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4501 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
2 | 1 | sseq1d 3906 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ⊆ 𝑢 ↔ 𝒫 𝑦 ⊆ 𝑢)) |
3 | 1 | eleq1d 2817 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝒫 𝑥 ∈ 𝑢 ↔ 𝒫 𝑦 ∈ 𝑢)) |
4 | 2, 3 | anbi12d 634 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢) ↔ (𝒫 𝑦 ⊆ 𝑢 ∧ 𝒫 𝑦 ∈ 𝑢))) |
5 | 4 | rspcva 3522 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢)) → (𝒫 𝑦 ⊆ 𝑢 ∧ 𝒫 𝑦 ∈ 𝑢)) |
6 | 5 | simpld 498 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢)) → 𝒫 𝑦 ⊆ 𝑢) |
7 | rabss 3959 | . . . . . . 7 ⊢ ({𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢 ↔ ∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢)) | |
8 | 7 | biimpri 231 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢) → {𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢) |
9 | vex 3401 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
10 | 9 | canth2 8713 | . . . . . . . . 9 ⊢ 𝑦 ≺ 𝒫 𝑦 |
11 | sdomdom 8576 | . . . . . . . . 9 ⊢ (𝑦 ≺ 𝒫 𝑦 → 𝑦 ≼ 𝒫 𝑦) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . 8 ⊢ 𝑦 ≼ 𝒫 𝑦 |
13 | ssdomg 8594 | . . . . . . . . 9 ⊢ (𝑢 ∈ V → (𝒫 𝑦 ⊆ 𝑢 → 𝒫 𝑦 ≼ 𝑢)) | |
14 | 13 | elv 3403 | . . . . . . . 8 ⊢ (𝒫 𝑦 ⊆ 𝑢 → 𝒫 𝑦 ≼ 𝑢) |
15 | domtr 8601 | . . . . . . . 8 ⊢ ((𝑦 ≼ 𝒫 𝑦 ∧ 𝒫 𝑦 ≼ 𝑢) → 𝑦 ≼ 𝑢) | |
16 | 12, 14, 15 | sylancr 590 | . . . . . . 7 ⊢ (𝒫 𝑦 ⊆ 𝑢 → 𝑦 ≼ 𝑢) |
17 | vex 3401 | . . . . . . . 8 ⊢ 𝑢 ∈ V | |
18 | tskwe 9445 | . . . . . . . 8 ⊢ ((𝑢 ∈ V ∧ {𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢) → 𝑢 ∈ dom card) | |
19 | 17, 18 | mpan 690 | . . . . . . 7 ⊢ ({𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢 → 𝑢 ∈ dom card) |
20 | numdom 9531 | . . . . . . . 8 ⊢ ((𝑢 ∈ dom card ∧ 𝑦 ≼ 𝑢) → 𝑦 ∈ dom card) | |
21 | 20 | expcom 417 | . . . . . . 7 ⊢ (𝑦 ≼ 𝑢 → (𝑢 ∈ dom card → 𝑦 ∈ dom card)) |
22 | 16, 19, 21 | syl2im 40 | . . . . . 6 ⊢ (𝒫 𝑦 ⊆ 𝑢 → ({𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢} ⊆ 𝑢 → 𝑦 ∈ dom card)) |
23 | 6, 8, 22 | syl2im 40 | . . . . 5 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢)) → (∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢) → 𝑦 ∈ dom card)) |
24 | 23 | 3impia 1118 | . . . 4 ⊢ ((𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢)) → 𝑦 ∈ dom card) |
25 | axgroth6 10321 | . . . 4 ⊢ ∃𝑢(𝑦 ∈ 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢)) | |
26 | 24, 25 | exlimiiv 1937 | . . 3 ⊢ 𝑦 ∈ dom card |
27 | 26, 9 | 2th 267 | . 2 ⊢ (𝑦 ∈ dom card ↔ 𝑦 ∈ V) |
28 | 27 | eqriv 2735 | 1 ⊢ dom card = V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 ∀wral 3053 {crab 3057 Vcvv 3397 ⊆ wss 3841 𝒫 cpw 4485 class class class wbr 5027 dom cdm 5519 ≼ cdom 8546 ≺ csdm 8547 cardccrd 9430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-groth 10316 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-se 5479 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7121 df-wrecs 7969 df-recs 8030 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-card 9434 |
This theorem is referenced by: axgroth3 10324 |
Copyright terms: Public domain | W3C validator |