| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aannenlem3 | Structured version Visualization version GIF version | ||
| Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| aannenlem.a | ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) |
| Ref | Expression |
|---|---|
| aannenlem3 | ⊢ 𝔸 ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aannenlem.a | . . . . . 6 ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) | |
| 2 | 1 | aannenlem2 26244 | . . . . 5 ⊢ 𝔸 = ∪ ran 𝐻 |
| 3 | omelon 9606 | . . . . . . . . 9 ⊢ ω ∈ On | |
| 4 | nn0ennn 13951 | . . . . . . . . . . 11 ⊢ ℕ0 ≈ ℕ | |
| 5 | nnenom 13952 | . . . . . . . . . . 11 ⊢ ℕ ≈ ω | |
| 6 | 4, 5 | entri 8982 | . . . . . . . . . 10 ⊢ ℕ0 ≈ ω |
| 7 | 6 | ensymi 8978 | . . . . . . . . 9 ⊢ ω ≈ ℕ0 |
| 8 | isnumi 9906 | . . . . . . . . 9 ⊢ ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card) | |
| 9 | 3, 7, 8 | mp2an 692 | . . . . . . . 8 ⊢ ℕ0 ∈ dom card |
| 10 | cnex 11156 | . . . . . . . . . . 11 ⊢ ℂ ∈ V | |
| 11 | 10 | rabex 5297 | . . . . . . . . . 10 ⊢ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} ∈ V |
| 12 | 11, 1 | fnmpti 6664 | . . . . . . . . 9 ⊢ 𝐻 Fn ℕ0 |
| 13 | dffn4 6781 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 ↔ 𝐻:ℕ0–onto→ran 𝐻) | |
| 14 | 12, 13 | mpbi 230 | . . . . . . . 8 ⊢ 𝐻:ℕ0–onto→ran 𝐻 |
| 15 | fodomnum 10017 | . . . . . . . 8 ⊢ (ℕ0 ∈ dom card → (𝐻:ℕ0–onto→ran 𝐻 → ran 𝐻 ≼ ℕ0)) | |
| 16 | 9, 14, 15 | mp2 9 | . . . . . . 7 ⊢ ran 𝐻 ≼ ℕ0 |
| 17 | domentr 8987 | . . . . . . 7 ⊢ ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω) | |
| 18 | 16, 6, 17 | mp2an 692 | . . . . . 6 ⊢ ran 𝐻 ≼ ω |
| 19 | fvelrnb 6924 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓)) | |
| 20 | 12, 19 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓) |
| 21 | 1 | aannenlem1 26243 | . . . . . . . . . 10 ⊢ (𝑔 ∈ ℕ0 → (𝐻‘𝑔) ∈ Fin) |
| 22 | eleq1 2817 | . . . . . . . . . 10 ⊢ ((𝐻‘𝑔) = 𝑓 → ((𝐻‘𝑔) ∈ Fin ↔ 𝑓 ∈ Fin)) | |
| 23 | 21, 22 | syl5ibcom 245 | . . . . . . . . 9 ⊢ (𝑔 ∈ ℕ0 → ((𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin)) |
| 24 | 23 | rexlimiv 3128 | . . . . . . . 8 ⊢ (∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin) |
| 25 | 20, 24 | sylbi 217 | . . . . . . 7 ⊢ (𝑓 ∈ ran 𝐻 → 𝑓 ∈ Fin) |
| 26 | 25 | ssriv 3953 | . . . . . 6 ⊢ ran 𝐻 ⊆ Fin |
| 27 | aasscn 26233 | . . . . . . . 8 ⊢ 𝔸 ⊆ ℂ | |
| 28 | 2, 27 | eqsstrri 3997 | . . . . . . 7 ⊢ ∪ ran 𝐻 ⊆ ℂ |
| 29 | soss 5569 | . . . . . . 7 ⊢ (∪ ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻)) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻) |
| 31 | iunfictbso 10074 | . . . . . 6 ⊢ ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ∪ ran 𝐻) → ∪ ran 𝐻 ≼ ω) | |
| 32 | 18, 26, 30, 31 | mp3an12i 1467 | . . . . 5 ⊢ (𝑓 Or ℂ → ∪ ran 𝐻 ≼ ω) |
| 33 | 2, 32 | eqbrtrid 5145 | . . . 4 ⊢ (𝑓 Or ℂ → 𝔸 ≼ ω) |
| 34 | cnso 16222 | . . . 4 ⊢ ∃𝑓 𝑓 Or ℂ | |
| 35 | 33, 34 | exlimiiv 1931 | . . 3 ⊢ 𝔸 ≼ ω |
| 36 | 5 | ensymi 8978 | . . 3 ⊢ ω ≈ ℕ |
| 37 | domentr 8987 | . . 3 ⊢ ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ) | |
| 38 | 35, 36, 37 | mp2an 692 | . 2 ⊢ 𝔸 ≼ ℕ |
| 39 | 10, 27 | ssexi 5280 | . . 3 ⊢ 𝔸 ∈ V |
| 40 | nnssq 12924 | . . . 4 ⊢ ℕ ⊆ ℚ | |
| 41 | qssaa 26239 | . . . 4 ⊢ ℚ ⊆ 𝔸 | |
| 42 | 40, 41 | sstri 3959 | . . 3 ⊢ ℕ ⊆ 𝔸 |
| 43 | ssdomg 8974 | . . 3 ⊢ (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸)) | |
| 44 | 39, 42, 43 | mp2 9 | . 2 ⊢ ℕ ≼ 𝔸 |
| 45 | sbth 9067 | . 2 ⊢ ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ) | |
| 46 | 38, 44, 45 | mp2an 692 | 1 ⊢ 𝔸 ≈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 Vcvv 3450 ⊆ wss 3917 ∪ cuni 4874 class class class wbr 5110 ↦ cmpt 5191 Or wor 5548 dom cdm 5641 ran crn 5642 Oncon0 6335 Fn wfn 6509 –onto→wfo 6512 ‘cfv 6514 ωcom 7845 ≈ cen 8918 ≼ cdom 8919 Fincfn 8921 cardccrd 9895 ℂcc 11073 0cc0 11075 ≤ cle 11216 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 ℚcq 12914 abscabs 15207 0𝑝c0p 25577 Polycply 26096 coeffccoe 26098 degcdgr 26099 𝔸caa 26229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-0p 25578 df-ply 26100 df-idp 26101 df-coe 26102 df-dgr 26103 df-quot 26206 df-aa 26230 |
| This theorem is referenced by: aannen 26246 |
| Copyright terms: Public domain | W3C validator |