| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aannenlem3 | Structured version Visualization version GIF version | ||
| Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| aannenlem.a | ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) |
| Ref | Expression |
|---|---|
| aannenlem3 | ⊢ 𝔸 ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aannenlem.a | . . . . . 6 ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) | |
| 2 | 1 | aannenlem2 26270 | . . . . 5 ⊢ 𝔸 = ∪ ran 𝐻 |
| 3 | omelon 9575 | . . . . . . . . 9 ⊢ ω ∈ On | |
| 4 | nn0ennn 13920 | . . . . . . . . . . 11 ⊢ ℕ0 ≈ ℕ | |
| 5 | nnenom 13921 | . . . . . . . . . . 11 ⊢ ℕ ≈ ω | |
| 6 | 4, 5 | entri 8956 | . . . . . . . . . 10 ⊢ ℕ0 ≈ ω |
| 7 | 6 | ensymi 8952 | . . . . . . . . 9 ⊢ ω ≈ ℕ0 |
| 8 | isnumi 9875 | . . . . . . . . 9 ⊢ ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card) | |
| 9 | 3, 7, 8 | mp2an 692 | . . . . . . . 8 ⊢ ℕ0 ∈ dom card |
| 10 | cnex 11125 | . . . . . . . . . . 11 ⊢ ℂ ∈ V | |
| 11 | 10 | rabex 5289 | . . . . . . . . . 10 ⊢ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} ∈ V |
| 12 | 11, 1 | fnmpti 6643 | . . . . . . . . 9 ⊢ 𝐻 Fn ℕ0 |
| 13 | dffn4 6760 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 ↔ 𝐻:ℕ0–onto→ran 𝐻) | |
| 14 | 12, 13 | mpbi 230 | . . . . . . . 8 ⊢ 𝐻:ℕ0–onto→ran 𝐻 |
| 15 | fodomnum 9986 | . . . . . . . 8 ⊢ (ℕ0 ∈ dom card → (𝐻:ℕ0–onto→ran 𝐻 → ran 𝐻 ≼ ℕ0)) | |
| 16 | 9, 14, 15 | mp2 9 | . . . . . . 7 ⊢ ran 𝐻 ≼ ℕ0 |
| 17 | domentr 8961 | . . . . . . 7 ⊢ ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω) | |
| 18 | 16, 6, 17 | mp2an 692 | . . . . . 6 ⊢ ran 𝐻 ≼ ω |
| 19 | fvelrnb 6903 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓)) | |
| 20 | 12, 19 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓) |
| 21 | 1 | aannenlem1 26269 | . . . . . . . . . 10 ⊢ (𝑔 ∈ ℕ0 → (𝐻‘𝑔) ∈ Fin) |
| 22 | eleq1 2816 | . . . . . . . . . 10 ⊢ ((𝐻‘𝑔) = 𝑓 → ((𝐻‘𝑔) ∈ Fin ↔ 𝑓 ∈ Fin)) | |
| 23 | 21, 22 | syl5ibcom 245 | . . . . . . . . 9 ⊢ (𝑔 ∈ ℕ0 → ((𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin)) |
| 24 | 23 | rexlimiv 3127 | . . . . . . . 8 ⊢ (∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin) |
| 25 | 20, 24 | sylbi 217 | . . . . . . 7 ⊢ (𝑓 ∈ ran 𝐻 → 𝑓 ∈ Fin) |
| 26 | 25 | ssriv 3947 | . . . . . 6 ⊢ ran 𝐻 ⊆ Fin |
| 27 | aasscn 26259 | . . . . . . . 8 ⊢ 𝔸 ⊆ ℂ | |
| 28 | 2, 27 | eqsstrri 3991 | . . . . . . 7 ⊢ ∪ ran 𝐻 ⊆ ℂ |
| 29 | soss 5559 | . . . . . . 7 ⊢ (∪ ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻)) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻) |
| 31 | iunfictbso 10043 | . . . . . 6 ⊢ ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ∪ ran 𝐻) → ∪ ran 𝐻 ≼ ω) | |
| 32 | 18, 26, 30, 31 | mp3an12i 1467 | . . . . 5 ⊢ (𝑓 Or ℂ → ∪ ran 𝐻 ≼ ω) |
| 33 | 2, 32 | eqbrtrid 5137 | . . . 4 ⊢ (𝑓 Or ℂ → 𝔸 ≼ ω) |
| 34 | cnso 16191 | . . . 4 ⊢ ∃𝑓 𝑓 Or ℂ | |
| 35 | 33, 34 | exlimiiv 1931 | . . 3 ⊢ 𝔸 ≼ ω |
| 36 | 5 | ensymi 8952 | . . 3 ⊢ ω ≈ ℕ |
| 37 | domentr 8961 | . . 3 ⊢ ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ) | |
| 38 | 35, 36, 37 | mp2an 692 | . 2 ⊢ 𝔸 ≼ ℕ |
| 39 | 10, 27 | ssexi 5272 | . . 3 ⊢ 𝔸 ∈ V |
| 40 | nnssq 12893 | . . . 4 ⊢ ℕ ⊆ ℚ | |
| 41 | qssaa 26265 | . . . 4 ⊢ ℚ ⊆ 𝔸 | |
| 42 | 40, 41 | sstri 3953 | . . 3 ⊢ ℕ ⊆ 𝔸 |
| 43 | ssdomg 8948 | . . 3 ⊢ (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸)) | |
| 44 | 39, 42, 43 | mp2 9 | . 2 ⊢ ℕ ≼ 𝔸 |
| 45 | sbth 9038 | . 2 ⊢ ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ) | |
| 46 | 38, 44, 45 | mp2an 692 | 1 ⊢ 𝔸 ≈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3402 Vcvv 3444 ⊆ wss 3911 ∪ cuni 4867 class class class wbr 5102 ↦ cmpt 5183 Or wor 5538 dom cdm 5631 ran crn 5632 Oncon0 6320 Fn wfn 6494 –onto→wfo 6497 ‘cfv 6499 ωcom 7822 ≈ cen 8892 ≼ cdom 8893 Fincfn 8895 cardccrd 9864 ℂcc 11042 0cc0 11044 ≤ cle 11185 ℕcn 12162 ℕ0cn0 12418 ℤcz 12505 ℚcq 12883 abscabs 15176 0𝑝c0p 25603 Polycply 26122 coeffccoe 26124 degcdgr 26125 𝔸caa 26255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-acn 9871 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-0p 25604 df-ply 26126 df-idp 26127 df-coe 26128 df-dgr 26129 df-quot 26232 df-aa 26256 |
| This theorem is referenced by: aannen 26272 |
| Copyright terms: Public domain | W3C validator |