MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem3 Structured version   Visualization version   GIF version

Theorem aannenlem3 26236
Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
Assertion
Ref Expression
aannenlem3 𝔸 ≈ ℕ
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑒
Allowed substitution hints:   𝐻(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aannenlem3
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aannenlem.a . . . . . 6 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
21aannenlem2 26235 . . . . 5 𝔸 = ran 𝐻
3 omelon 9542 . . . . . . . . 9 ω ∈ On
4 nn0ennn 13886 . . . . . . . . . . 11 0 ≈ ℕ
5 nnenom 13887 . . . . . . . . . . 11 ℕ ≈ ω
64, 5entri 8933 . . . . . . . . . 10 0 ≈ ω
76ensymi 8929 . . . . . . . . 9 ω ≈ ℕ0
8 isnumi 9842 . . . . . . . . 9 ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card)
93, 7, 8mp2an 692 . . . . . . . 8 0 ∈ dom card
10 cnex 11090 . . . . . . . . . . 11 ℂ ∈ V
1110rabex 5278 . . . . . . . . . 10 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ∈ V
1211, 1fnmpti 6625 . . . . . . . . 9 𝐻 Fn ℕ0
13 dffn4 6742 . . . . . . . . 9 (𝐻 Fn ℕ0𝐻:ℕ0onto→ran 𝐻)
1412, 13mpbi 230 . . . . . . . 8 𝐻:ℕ0onto→ran 𝐻
15 fodomnum 9951 . . . . . . . 8 (ℕ0 ∈ dom card → (𝐻:ℕ0onto→ran 𝐻 → ran 𝐻 ≼ ℕ0))
169, 14, 15mp2 9 . . . . . . 7 ran 𝐻 ≼ ℕ0
17 domentr 8938 . . . . . . 7 ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω)
1816, 6, 17mp2an 692 . . . . . 6 ran 𝐻 ≼ ω
19 fvelrnb 6883 . . . . . . . . 9 (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓))
2012, 19ax-mp 5 . . . . . . . 8 (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓)
211aannenlem1 26234 . . . . . . . . . 10 (𝑔 ∈ ℕ0 → (𝐻𝑔) ∈ Fin)
22 eleq1 2816 . . . . . . . . . 10 ((𝐻𝑔) = 𝑓 → ((𝐻𝑔) ∈ Fin ↔ 𝑓 ∈ Fin))
2321, 22syl5ibcom 245 . . . . . . . . 9 (𝑔 ∈ ℕ0 → ((𝐻𝑔) = 𝑓𝑓 ∈ Fin))
2423rexlimiv 3123 . . . . . . . 8 (∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓𝑓 ∈ Fin)
2520, 24sylbi 217 . . . . . . 7 (𝑓 ∈ ran 𝐻𝑓 ∈ Fin)
2625ssriv 3939 . . . . . 6 ran 𝐻 ⊆ Fin
27 aasscn 26224 . . . . . . . 8 𝔸 ⊆ ℂ
282, 27eqsstrri 3983 . . . . . . 7 ran 𝐻 ⊆ ℂ
29 soss 5547 . . . . . . 7 ( ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ran 𝐻))
3028, 29ax-mp 5 . . . . . 6 (𝑓 Or ℂ → 𝑓 Or ran 𝐻)
31 iunfictbso 10008 . . . . . 6 ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ran 𝐻) → ran 𝐻 ≼ ω)
3218, 26, 30, 31mp3an12i 1467 . . . . 5 (𝑓 Or ℂ → ran 𝐻 ≼ ω)
332, 32eqbrtrid 5127 . . . 4 (𝑓 Or ℂ → 𝔸 ≼ ω)
34 cnso 16156 . . . 4 𝑓 𝑓 Or ℂ
3533, 34exlimiiv 1931 . . 3 𝔸 ≼ ω
365ensymi 8929 . . 3 ω ≈ ℕ
37 domentr 8938 . . 3 ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ)
3835, 36, 37mp2an 692 . 2 𝔸 ≼ ℕ
3910, 27ssexi 5261 . . 3 𝔸 ∈ V
40 nnssq 12859 . . . 4 ℕ ⊆ ℚ
41 qssaa 26230 . . . 4 ℚ ⊆ 𝔸
4240, 41sstri 3945 . . 3 ℕ ⊆ 𝔸
43 ssdomg 8925 . . 3 (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸))
4439, 42, 43mp2 9 . 2 ℕ ≼ 𝔸
45 sbth 9014 . 2 ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ)
4638, 44, 45mp2an 692 1 𝔸 ≈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  wss 3903   cuni 4858   class class class wbr 5092  cmpt 5173   Or wor 5526  dom cdm 5619  ran crn 5620  Oncon0 6307   Fn wfn 6477  ontowfo 6480  cfv 6482  ωcom 7799  cen 8869  cdom 8870  Fincfn 8872  cardccrd 9831  cc 11007  0cc0 11009  cle 11150  cn 12128  0cn0 12384  cz 12471  cq 12849  abscabs 15141  0𝑝c0p 25568  Polycply 26087  coeffccoe 26089  degcdgr 26090  𝔸caa 26220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-0p 25569  df-ply 26091  df-idp 26092  df-coe 26093  df-dgr 26094  df-quot 26197  df-aa 26221
This theorem is referenced by:  aannen  26237
  Copyright terms: Public domain W3C validator