| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aannenlem3 | Structured version Visualization version GIF version | ||
| Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| aannenlem.a | ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) |
| Ref | Expression |
|---|---|
| aannenlem3 | ⊢ 𝔸 ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aannenlem.a | . . . . . 6 ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) | |
| 2 | 1 | aannenlem2 26235 | . . . . 5 ⊢ 𝔸 = ∪ ran 𝐻 |
| 3 | omelon 9542 | . . . . . . . . 9 ⊢ ω ∈ On | |
| 4 | nn0ennn 13886 | . . . . . . . . . . 11 ⊢ ℕ0 ≈ ℕ | |
| 5 | nnenom 13887 | . . . . . . . . . . 11 ⊢ ℕ ≈ ω | |
| 6 | 4, 5 | entri 8933 | . . . . . . . . . 10 ⊢ ℕ0 ≈ ω |
| 7 | 6 | ensymi 8929 | . . . . . . . . 9 ⊢ ω ≈ ℕ0 |
| 8 | isnumi 9842 | . . . . . . . . 9 ⊢ ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card) | |
| 9 | 3, 7, 8 | mp2an 692 | . . . . . . . 8 ⊢ ℕ0 ∈ dom card |
| 10 | cnex 11090 | . . . . . . . . . . 11 ⊢ ℂ ∈ V | |
| 11 | 10 | rabex 5278 | . . . . . . . . . 10 ⊢ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} ∈ V |
| 12 | 11, 1 | fnmpti 6625 | . . . . . . . . 9 ⊢ 𝐻 Fn ℕ0 |
| 13 | dffn4 6742 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 ↔ 𝐻:ℕ0–onto→ran 𝐻) | |
| 14 | 12, 13 | mpbi 230 | . . . . . . . 8 ⊢ 𝐻:ℕ0–onto→ran 𝐻 |
| 15 | fodomnum 9951 | . . . . . . . 8 ⊢ (ℕ0 ∈ dom card → (𝐻:ℕ0–onto→ran 𝐻 → ran 𝐻 ≼ ℕ0)) | |
| 16 | 9, 14, 15 | mp2 9 | . . . . . . 7 ⊢ ran 𝐻 ≼ ℕ0 |
| 17 | domentr 8938 | . . . . . . 7 ⊢ ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω) | |
| 18 | 16, 6, 17 | mp2an 692 | . . . . . 6 ⊢ ran 𝐻 ≼ ω |
| 19 | fvelrnb 6883 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓)) | |
| 20 | 12, 19 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓) |
| 21 | 1 | aannenlem1 26234 | . . . . . . . . . 10 ⊢ (𝑔 ∈ ℕ0 → (𝐻‘𝑔) ∈ Fin) |
| 22 | eleq1 2816 | . . . . . . . . . 10 ⊢ ((𝐻‘𝑔) = 𝑓 → ((𝐻‘𝑔) ∈ Fin ↔ 𝑓 ∈ Fin)) | |
| 23 | 21, 22 | syl5ibcom 245 | . . . . . . . . 9 ⊢ (𝑔 ∈ ℕ0 → ((𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin)) |
| 24 | 23 | rexlimiv 3123 | . . . . . . . 8 ⊢ (∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin) |
| 25 | 20, 24 | sylbi 217 | . . . . . . 7 ⊢ (𝑓 ∈ ran 𝐻 → 𝑓 ∈ Fin) |
| 26 | 25 | ssriv 3939 | . . . . . 6 ⊢ ran 𝐻 ⊆ Fin |
| 27 | aasscn 26224 | . . . . . . . 8 ⊢ 𝔸 ⊆ ℂ | |
| 28 | 2, 27 | eqsstrri 3983 | . . . . . . 7 ⊢ ∪ ran 𝐻 ⊆ ℂ |
| 29 | soss 5547 | . . . . . . 7 ⊢ (∪ ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻)) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻) |
| 31 | iunfictbso 10008 | . . . . . 6 ⊢ ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ∪ ran 𝐻) → ∪ ran 𝐻 ≼ ω) | |
| 32 | 18, 26, 30, 31 | mp3an12i 1467 | . . . . 5 ⊢ (𝑓 Or ℂ → ∪ ran 𝐻 ≼ ω) |
| 33 | 2, 32 | eqbrtrid 5127 | . . . 4 ⊢ (𝑓 Or ℂ → 𝔸 ≼ ω) |
| 34 | cnso 16156 | . . . 4 ⊢ ∃𝑓 𝑓 Or ℂ | |
| 35 | 33, 34 | exlimiiv 1931 | . . 3 ⊢ 𝔸 ≼ ω |
| 36 | 5 | ensymi 8929 | . . 3 ⊢ ω ≈ ℕ |
| 37 | domentr 8938 | . . 3 ⊢ ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ) | |
| 38 | 35, 36, 37 | mp2an 692 | . 2 ⊢ 𝔸 ≼ ℕ |
| 39 | 10, 27 | ssexi 5261 | . . 3 ⊢ 𝔸 ∈ V |
| 40 | nnssq 12859 | . . . 4 ⊢ ℕ ⊆ ℚ | |
| 41 | qssaa 26230 | . . . 4 ⊢ ℚ ⊆ 𝔸 | |
| 42 | 40, 41 | sstri 3945 | . . 3 ⊢ ℕ ⊆ 𝔸 |
| 43 | ssdomg 8925 | . . 3 ⊢ (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸)) | |
| 44 | 39, 42, 43 | mp2 9 | . 2 ⊢ ℕ ≼ 𝔸 |
| 45 | sbth 9014 | . 2 ⊢ ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ) | |
| 46 | 38, 44, 45 | mp2an 692 | 1 ⊢ 𝔸 ≈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3394 Vcvv 3436 ⊆ wss 3903 ∪ cuni 4858 class class class wbr 5092 ↦ cmpt 5173 Or wor 5526 dom cdm 5619 ran crn 5620 Oncon0 6307 Fn wfn 6477 –onto→wfo 6480 ‘cfv 6482 ωcom 7799 ≈ cen 8869 ≼ cdom 8870 Fincfn 8872 cardccrd 9831 ℂcc 11007 0cc0 11009 ≤ cle 11150 ℕcn 12128 ℕ0cn0 12384 ℤcz 12471 ℚcq 12849 abscabs 15141 0𝑝c0p 25568 Polycply 26087 coeffccoe 26089 degcdgr 26090 𝔸caa 26220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-0p 25569 df-ply 26091 df-idp 26092 df-coe 26093 df-dgr 26094 df-quot 26197 df-aa 26221 |
| This theorem is referenced by: aannen 26237 |
| Copyright terms: Public domain | W3C validator |