MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem3 Structured version   Visualization version   GIF version

Theorem aannenlem3 26386
Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
Assertion
Ref Expression
aannenlem3 𝔸 ≈ ℕ
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑒
Allowed substitution hints:   𝐻(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aannenlem3
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aannenlem.a . . . . . 6 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
21aannenlem2 26385 . . . . 5 𝔸 = ran 𝐻
3 omelon 9683 . . . . . . . . 9 ω ∈ On
4 nn0ennn 14016 . . . . . . . . . . 11 0 ≈ ℕ
5 nnenom 14017 . . . . . . . . . . 11 ℕ ≈ ω
64, 5entri 9046 . . . . . . . . . 10 0 ≈ ω
76ensymi 9042 . . . . . . . . 9 ω ≈ ℕ0
8 isnumi 9983 . . . . . . . . 9 ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card)
93, 7, 8mp2an 692 . . . . . . . 8 0 ∈ dom card
10 cnex 11233 . . . . . . . . . . 11 ℂ ∈ V
1110rabex 5344 . . . . . . . . . 10 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ∈ V
1211, 1fnmpti 6711 . . . . . . . . 9 𝐻 Fn ℕ0
13 dffn4 6826 . . . . . . . . 9 (𝐻 Fn ℕ0𝐻:ℕ0onto→ran 𝐻)
1412, 13mpbi 230 . . . . . . . 8 𝐻:ℕ0onto→ran 𝐻
15 fodomnum 10094 . . . . . . . 8 (ℕ0 ∈ dom card → (𝐻:ℕ0onto→ran 𝐻 → ran 𝐻 ≼ ℕ0))
169, 14, 15mp2 9 . . . . . . 7 ran 𝐻 ≼ ℕ0
17 domentr 9051 . . . . . . 7 ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω)
1816, 6, 17mp2an 692 . . . . . 6 ran 𝐻 ≼ ω
19 fvelrnb 6968 . . . . . . . . 9 (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓))
2012, 19ax-mp 5 . . . . . . . 8 (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓)
211aannenlem1 26384 . . . . . . . . . 10 (𝑔 ∈ ℕ0 → (𝐻𝑔) ∈ Fin)
22 eleq1 2826 . . . . . . . . . 10 ((𝐻𝑔) = 𝑓 → ((𝐻𝑔) ∈ Fin ↔ 𝑓 ∈ Fin))
2321, 22syl5ibcom 245 . . . . . . . . 9 (𝑔 ∈ ℕ0 → ((𝐻𝑔) = 𝑓𝑓 ∈ Fin))
2423rexlimiv 3145 . . . . . . . 8 (∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓𝑓 ∈ Fin)
2520, 24sylbi 217 . . . . . . 7 (𝑓 ∈ ran 𝐻𝑓 ∈ Fin)
2625ssriv 3998 . . . . . 6 ran 𝐻 ⊆ Fin
27 aasscn 26374 . . . . . . . 8 𝔸 ⊆ ℂ
282, 27eqsstrri 4030 . . . . . . 7 ran 𝐻 ⊆ ℂ
29 soss 5616 . . . . . . 7 ( ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ran 𝐻))
3028, 29ax-mp 5 . . . . . 6 (𝑓 Or ℂ → 𝑓 Or ran 𝐻)
31 iunfictbso 10151 . . . . . 6 ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ran 𝐻) → ran 𝐻 ≼ ω)
3218, 26, 30, 31mp3an12i 1464 . . . . 5 (𝑓 Or ℂ → ran 𝐻 ≼ ω)
332, 32eqbrtrid 5182 . . . 4 (𝑓 Or ℂ → 𝔸 ≼ ω)
34 cnso 16279 . . . 4 𝑓 𝑓 Or ℂ
3533, 34exlimiiv 1928 . . 3 𝔸 ≼ ω
365ensymi 9042 . . 3 ω ≈ ℕ
37 domentr 9051 . . 3 ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ)
3835, 36, 37mp2an 692 . 2 𝔸 ≼ ℕ
3910, 27ssexi 5327 . . 3 𝔸 ∈ V
40 nnssq 12997 . . . 4 ℕ ⊆ ℚ
41 qssaa 26380 . . . 4 ℚ ⊆ 𝔸
4240, 41sstri 4004 . . 3 ℕ ⊆ 𝔸
43 ssdomg 9038 . . 3 (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸))
4439, 42, 43mp2 9 . 2 ℕ ≼ 𝔸
45 sbth 9131 . 2 ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ)
4638, 44, 45mp2an 692 1 𝔸 ≈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  wss 3962   cuni 4911   class class class wbr 5147  cmpt 5230   Or wor 5595  dom cdm 5688  ran crn 5689  Oncon0 6385   Fn wfn 6557  ontowfo 6560  cfv 6562  ωcom 7886  cen 8980  cdom 8981  Fincfn 8983  cardccrd 9972  cc 11150  0cc0 11152  cle 11293  cn 12263  0cn0 12523  cz 12610  cq 12987  abscabs 15269  0𝑝c0p 25717  Polycply 26237  coeffccoe 26239  degcdgr 26240  𝔸caa 26370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-0p 25718  df-ply 26241  df-idp 26242  df-coe 26243  df-dgr 26244  df-quot 26347  df-aa 26371
This theorem is referenced by:  aannen  26387
  Copyright terms: Public domain W3C validator