Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aannenlem3 | Structured version Visualization version GIF version |
Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
aannenlem.a | ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) |
Ref | Expression |
---|---|
aannenlem3 | ⊢ 𝔸 ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aannenlem.a | . . . . . 6 ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) | |
2 | 1 | aannenlem2 25489 | . . . . 5 ⊢ 𝔸 = ∪ ran 𝐻 |
3 | omelon 9404 | . . . . . . . . 9 ⊢ ω ∈ On | |
4 | nn0ennn 13699 | . . . . . . . . . . 11 ⊢ ℕ0 ≈ ℕ | |
5 | nnenom 13700 | . . . . . . . . . . 11 ⊢ ℕ ≈ ω | |
6 | 4, 5 | entri 8794 | . . . . . . . . . 10 ⊢ ℕ0 ≈ ω |
7 | 6 | ensymi 8790 | . . . . . . . . 9 ⊢ ω ≈ ℕ0 |
8 | isnumi 9704 | . . . . . . . . 9 ⊢ ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card) | |
9 | 3, 7, 8 | mp2an 689 | . . . . . . . 8 ⊢ ℕ0 ∈ dom card |
10 | cnex 10952 | . . . . . . . . . . 11 ⊢ ℂ ∈ V | |
11 | 10 | rabex 5256 | . . . . . . . . . 10 ⊢ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} ∈ V |
12 | 11, 1 | fnmpti 6576 | . . . . . . . . 9 ⊢ 𝐻 Fn ℕ0 |
13 | dffn4 6694 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 ↔ 𝐻:ℕ0–onto→ran 𝐻) | |
14 | 12, 13 | mpbi 229 | . . . . . . . 8 ⊢ 𝐻:ℕ0–onto→ran 𝐻 |
15 | fodomnum 9813 | . . . . . . . 8 ⊢ (ℕ0 ∈ dom card → (𝐻:ℕ0–onto→ran 𝐻 → ran 𝐻 ≼ ℕ0)) | |
16 | 9, 14, 15 | mp2 9 | . . . . . . 7 ⊢ ran 𝐻 ≼ ℕ0 |
17 | domentr 8799 | . . . . . . 7 ⊢ ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω) | |
18 | 16, 6, 17 | mp2an 689 | . . . . . 6 ⊢ ran 𝐻 ≼ ω |
19 | fvelrnb 6830 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓)) | |
20 | 12, 19 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓) |
21 | 1 | aannenlem1 25488 | . . . . . . . . . 10 ⊢ (𝑔 ∈ ℕ0 → (𝐻‘𝑔) ∈ Fin) |
22 | eleq1 2826 | . . . . . . . . . 10 ⊢ ((𝐻‘𝑔) = 𝑓 → ((𝐻‘𝑔) ∈ Fin ↔ 𝑓 ∈ Fin)) | |
23 | 21, 22 | syl5ibcom 244 | . . . . . . . . 9 ⊢ (𝑔 ∈ ℕ0 → ((𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin)) |
24 | 23 | rexlimiv 3209 | . . . . . . . 8 ⊢ (∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin) |
25 | 20, 24 | sylbi 216 | . . . . . . 7 ⊢ (𝑓 ∈ ran 𝐻 → 𝑓 ∈ Fin) |
26 | 25 | ssriv 3925 | . . . . . 6 ⊢ ran 𝐻 ⊆ Fin |
27 | aasscn 25478 | . . . . . . . 8 ⊢ 𝔸 ⊆ ℂ | |
28 | 2, 27 | eqsstrri 3956 | . . . . . . 7 ⊢ ∪ ran 𝐻 ⊆ ℂ |
29 | soss 5523 | . . . . . . 7 ⊢ (∪ ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻)) | |
30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻) |
31 | iunfictbso 9870 | . . . . . 6 ⊢ ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ∪ ran 𝐻) → ∪ ran 𝐻 ≼ ω) | |
32 | 18, 26, 30, 31 | mp3an12i 1464 | . . . . 5 ⊢ (𝑓 Or ℂ → ∪ ran 𝐻 ≼ ω) |
33 | 2, 32 | eqbrtrid 5109 | . . . 4 ⊢ (𝑓 Or ℂ → 𝔸 ≼ ω) |
34 | cnso 15956 | . . . 4 ⊢ ∃𝑓 𝑓 Or ℂ | |
35 | 33, 34 | exlimiiv 1934 | . . 3 ⊢ 𝔸 ≼ ω |
36 | 5 | ensymi 8790 | . . 3 ⊢ ω ≈ ℕ |
37 | domentr 8799 | . . 3 ⊢ ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ) | |
38 | 35, 36, 37 | mp2an 689 | . 2 ⊢ 𝔸 ≼ ℕ |
39 | 10, 27 | ssexi 5246 | . . 3 ⊢ 𝔸 ∈ V |
40 | nnssq 12698 | . . . 4 ⊢ ℕ ⊆ ℚ | |
41 | qssaa 25484 | . . . 4 ⊢ ℚ ⊆ 𝔸 | |
42 | 40, 41 | sstri 3930 | . . 3 ⊢ ℕ ⊆ 𝔸 |
43 | ssdomg 8786 | . . 3 ⊢ (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸)) | |
44 | 39, 42, 43 | mp2 9 | . 2 ⊢ ℕ ≼ 𝔸 |
45 | sbth 8880 | . 2 ⊢ ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ) | |
46 | 38, 44, 45 | mp2an 689 | 1 ⊢ 𝔸 ≈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 {crab 3068 Vcvv 3432 ⊆ wss 3887 ∪ cuni 4839 class class class wbr 5074 ↦ cmpt 5157 Or wor 5502 dom cdm 5589 ran crn 5590 Oncon0 6266 Fn wfn 6428 –onto→wfo 6431 ‘cfv 6433 ωcom 7712 ≈ cen 8730 ≼ cdom 8731 Fincfn 8733 cardccrd 9693 ℂcc 10869 0cc0 10871 ≤ cle 11010 ℕcn 11973 ℕ0cn0 12233 ℤcz 12319 ℚcq 12688 abscabs 14945 0𝑝c0p 24833 Polycply 25345 coeffccoe 25347 degcdgr 25348 𝔸caa 25474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-0p 24834 df-ply 25349 df-idp 25350 df-coe 25351 df-dgr 25352 df-quot 25451 df-aa 25475 |
This theorem is referenced by: aannen 25491 |
Copyright terms: Public domain | W3C validator |