Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aannenlem3 | Structured version Visualization version GIF version |
Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
aannenlem.a | ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) |
Ref | Expression |
---|---|
aannenlem3 | ⊢ 𝔸 ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aannenlem.a | . . . . . 6 ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) | |
2 | 1 | aannenlem2 25394 | . . . . 5 ⊢ 𝔸 = ∪ ran 𝐻 |
3 | omelon 9334 | . . . . . . . . 9 ⊢ ω ∈ On | |
4 | nn0ennn 13627 | . . . . . . . . . . 11 ⊢ ℕ0 ≈ ℕ | |
5 | nnenom 13628 | . . . . . . . . . . 11 ⊢ ℕ ≈ ω | |
6 | 4, 5 | entri 8749 | . . . . . . . . . 10 ⊢ ℕ0 ≈ ω |
7 | 6 | ensymi 8745 | . . . . . . . . 9 ⊢ ω ≈ ℕ0 |
8 | isnumi 9635 | . . . . . . . . 9 ⊢ ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card) | |
9 | 3, 7, 8 | mp2an 688 | . . . . . . . 8 ⊢ ℕ0 ∈ dom card |
10 | cnex 10883 | . . . . . . . . . . 11 ⊢ ℂ ∈ V | |
11 | 10 | rabex 5251 | . . . . . . . . . 10 ⊢ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} ∈ V |
12 | 11, 1 | fnmpti 6560 | . . . . . . . . 9 ⊢ 𝐻 Fn ℕ0 |
13 | dffn4 6678 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 ↔ 𝐻:ℕ0–onto→ran 𝐻) | |
14 | 12, 13 | mpbi 229 | . . . . . . . 8 ⊢ 𝐻:ℕ0–onto→ran 𝐻 |
15 | fodomnum 9744 | . . . . . . . 8 ⊢ (ℕ0 ∈ dom card → (𝐻:ℕ0–onto→ran 𝐻 → ran 𝐻 ≼ ℕ0)) | |
16 | 9, 14, 15 | mp2 9 | . . . . . . 7 ⊢ ran 𝐻 ≼ ℕ0 |
17 | domentr 8754 | . . . . . . 7 ⊢ ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω) | |
18 | 16, 6, 17 | mp2an 688 | . . . . . 6 ⊢ ran 𝐻 ≼ ω |
19 | fvelrnb 6812 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓)) | |
20 | 12, 19 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓) |
21 | 1 | aannenlem1 25393 | . . . . . . . . . 10 ⊢ (𝑔 ∈ ℕ0 → (𝐻‘𝑔) ∈ Fin) |
22 | eleq1 2826 | . . . . . . . . . 10 ⊢ ((𝐻‘𝑔) = 𝑓 → ((𝐻‘𝑔) ∈ Fin ↔ 𝑓 ∈ Fin)) | |
23 | 21, 22 | syl5ibcom 244 | . . . . . . . . 9 ⊢ (𝑔 ∈ ℕ0 → ((𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin)) |
24 | 23 | rexlimiv 3208 | . . . . . . . 8 ⊢ (∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin) |
25 | 20, 24 | sylbi 216 | . . . . . . 7 ⊢ (𝑓 ∈ ran 𝐻 → 𝑓 ∈ Fin) |
26 | 25 | ssriv 3921 | . . . . . 6 ⊢ ran 𝐻 ⊆ Fin |
27 | aasscn 25383 | . . . . . . . 8 ⊢ 𝔸 ⊆ ℂ | |
28 | 2, 27 | eqsstrri 3952 | . . . . . . 7 ⊢ ∪ ran 𝐻 ⊆ ℂ |
29 | soss 5514 | . . . . . . 7 ⊢ (∪ ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻)) | |
30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻) |
31 | iunfictbso 9801 | . . . . . 6 ⊢ ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ∪ ran 𝐻) → ∪ ran 𝐻 ≼ ω) | |
32 | 18, 26, 30, 31 | mp3an12i 1463 | . . . . 5 ⊢ (𝑓 Or ℂ → ∪ ran 𝐻 ≼ ω) |
33 | 2, 32 | eqbrtrid 5105 | . . . 4 ⊢ (𝑓 Or ℂ → 𝔸 ≼ ω) |
34 | cnso 15884 | . . . 4 ⊢ ∃𝑓 𝑓 Or ℂ | |
35 | 33, 34 | exlimiiv 1935 | . . 3 ⊢ 𝔸 ≼ ω |
36 | 5 | ensymi 8745 | . . 3 ⊢ ω ≈ ℕ |
37 | domentr 8754 | . . 3 ⊢ ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ) | |
38 | 35, 36, 37 | mp2an 688 | . 2 ⊢ 𝔸 ≼ ℕ |
39 | 10, 27 | ssexi 5241 | . . 3 ⊢ 𝔸 ∈ V |
40 | nnssq 12627 | . . . 4 ⊢ ℕ ⊆ ℚ | |
41 | qssaa 25389 | . . . 4 ⊢ ℚ ⊆ 𝔸 | |
42 | 40, 41 | sstri 3926 | . . 3 ⊢ ℕ ⊆ 𝔸 |
43 | ssdomg 8741 | . . 3 ⊢ (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸)) | |
44 | 39, 42, 43 | mp2 9 | . 2 ⊢ ℕ ≼ 𝔸 |
45 | sbth 8833 | . 2 ⊢ ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ) | |
46 | 38, 44, 45 | mp2an 688 | 1 ⊢ 𝔸 ≈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∪ cuni 4836 class class class wbr 5070 ↦ cmpt 5153 Or wor 5493 dom cdm 5580 ran crn 5581 Oncon0 6251 Fn wfn 6413 –onto→wfo 6416 ‘cfv 6418 ωcom 7687 ≈ cen 8688 ≼ cdom 8689 Fincfn 8691 cardccrd 9624 ℂcc 10800 0cc0 10802 ≤ cle 10941 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ℚcq 12617 abscabs 14873 0𝑝c0p 24738 Polycply 25250 coeffccoe 25252 degcdgr 25253 𝔸caa 25379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-0p 24739 df-ply 25254 df-idp 25255 df-coe 25256 df-dgr 25257 df-quot 25356 df-aa 25380 |
This theorem is referenced by: aannen 25396 |
Copyright terms: Public domain | W3C validator |