Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem3 Structured version   Visualization version   GIF version

Theorem aannenlem3 24930
 Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
Assertion
Ref Expression
aannenlem3 𝔸 ≈ ℕ
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑒
Allowed substitution hints:   𝐻(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aannenlem3
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aannenlem.a . . . . . 6 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
21aannenlem2 24929 . . . . 5 𝔸 = ran 𝐻
3 omelon 9097 . . . . . . . . 9 ω ∈ On
4 nn0ennn 13346 . . . . . . . . . . 11 0 ≈ ℕ
5 nnenom 13347 . . . . . . . . . . 11 ℕ ≈ ω
64, 5entri 8550 . . . . . . . . . 10 0 ≈ ω
76ensymi 8546 . . . . . . . . 9 ω ≈ ℕ0
8 isnumi 9363 . . . . . . . . 9 ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card)
93, 7, 8mp2an 691 . . . . . . . 8 0 ∈ dom card
10 cnex 10611 . . . . . . . . . . 11 ℂ ∈ V
1110rabex 5202 . . . . . . . . . 10 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ∈ V
1211, 1fnmpti 6467 . . . . . . . . 9 𝐻 Fn ℕ0
13 dffn4 6575 . . . . . . . . 9 (𝐻 Fn ℕ0𝐻:ℕ0onto→ran 𝐻)
1412, 13mpbi 233 . . . . . . . 8 𝐻:ℕ0onto→ran 𝐻
15 fodomnum 9472 . . . . . . . 8 (ℕ0 ∈ dom card → (𝐻:ℕ0onto→ran 𝐻 → ran 𝐻 ≼ ℕ0))
169, 14, 15mp2 9 . . . . . . 7 ran 𝐻 ≼ ℕ0
17 domentr 8555 . . . . . . 7 ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω)
1816, 6, 17mp2an 691 . . . . . 6 ran 𝐻 ≼ ω
19 fvelrnb 6705 . . . . . . . . 9 (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓))
2012, 19ax-mp 5 . . . . . . . 8 (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓)
211aannenlem1 24928 . . . . . . . . . 10 (𝑔 ∈ ℕ0 → (𝐻𝑔) ∈ Fin)
22 eleq1 2880 . . . . . . . . . 10 ((𝐻𝑔) = 𝑓 → ((𝐻𝑔) ∈ Fin ↔ 𝑓 ∈ Fin))
2321, 22syl5ibcom 248 . . . . . . . . 9 (𝑔 ∈ ℕ0 → ((𝐻𝑔) = 𝑓𝑓 ∈ Fin))
2423rexlimiv 3242 . . . . . . . 8 (∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓𝑓 ∈ Fin)
2520, 24sylbi 220 . . . . . . 7 (𝑓 ∈ ran 𝐻𝑓 ∈ Fin)
2625ssriv 3922 . . . . . 6 ran 𝐻 ⊆ Fin
27 aasscn 24918 . . . . . . . 8 𝔸 ⊆ ℂ
282, 27eqsstrri 3953 . . . . . . 7 ran 𝐻 ⊆ ℂ
29 soss 5461 . . . . . . 7 ( ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ran 𝐻))
3028, 29ax-mp 5 . . . . . 6 (𝑓 Or ℂ → 𝑓 Or ran 𝐻)
31 iunfictbso 9529 . . . . . 6 ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ran 𝐻) → ran 𝐻 ≼ ω)
3218, 26, 30, 31mp3an12i 1462 . . . . 5 (𝑓 Or ℂ → ran 𝐻 ≼ ω)
332, 32eqbrtrid 5068 . . . 4 (𝑓 Or ℂ → 𝔸 ≼ ω)
34 cnso 15596 . . . 4 𝑓 𝑓 Or ℂ
3533, 34exlimiiv 1932 . . 3 𝔸 ≼ ω
365ensymi 8546 . . 3 ω ≈ ℕ
37 domentr 8555 . . 3 ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ)
3835, 36, 37mp2an 691 . 2 𝔸 ≼ ℕ
3910, 27ssexi 5193 . . 3 𝔸 ∈ V
40 nnssq 12349 . . . 4 ℕ ⊆ ℚ
41 qssaa 24924 . . . 4 ℚ ⊆ 𝔸
4240, 41sstri 3927 . . 3 ℕ ⊆ 𝔸
43 ssdomg 8542 . . 3 (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸))
4439, 42, 43mp2 9 . 2 ℕ ≼ 𝔸
45 sbth 8625 . 2 ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ)
4638, 44, 45mp2an 691 1 𝔸 ≈ ℕ
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109  ∃wrex 3110  {crab 3113  Vcvv 3444   ⊆ wss 3884  ∪ cuni 4803   class class class wbr 5033   ↦ cmpt 5113   Or wor 5441  dom cdm 5523  ran crn 5524  Oncon0 6163   Fn wfn 6323  –onto→wfo 6326  ‘cfv 6328  ωcom 7564   ≈ cen 8493   ≼ cdom 8494  Fincfn 8496  cardccrd 9352  ℂcc 10528  0cc0 10530   ≤ cle 10669  ℕcn 11629  ℕ0cn0 11889  ℤcz 11973  ℚcq 12340  abscabs 14589  0𝑝c0p 24277  Polycply 24785  coeffccoe 24787  degcdgr 24788  𝔸caa 24914 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-0p 24278  df-ply 24789  df-idp 24790  df-coe 24791  df-dgr 24792  df-quot 24891  df-aa 24915 This theorem is referenced by:  aannen  24931
 Copyright terms: Public domain W3C validator