Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aannenlem3 | Structured version Visualization version GIF version |
Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
aannenlem.a | ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) |
Ref | Expression |
---|---|
aannenlem3 | ⊢ 𝔸 ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aannenlem.a | . . . . . 6 ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) | |
2 | 1 | aannenlem2 25552 | . . . . 5 ⊢ 𝔸 = ∪ ran 𝐻 |
3 | omelon 9462 | . . . . . . . . 9 ⊢ ω ∈ On | |
4 | nn0ennn 13759 | . . . . . . . . . . 11 ⊢ ℕ0 ≈ ℕ | |
5 | nnenom 13760 | . . . . . . . . . . 11 ⊢ ℕ ≈ ω | |
6 | 4, 5 | entri 8834 | . . . . . . . . . 10 ⊢ ℕ0 ≈ ω |
7 | 6 | ensymi 8830 | . . . . . . . . 9 ⊢ ω ≈ ℕ0 |
8 | isnumi 9762 | . . . . . . . . 9 ⊢ ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card) | |
9 | 3, 7, 8 | mp2an 689 | . . . . . . . 8 ⊢ ℕ0 ∈ dom card |
10 | cnex 11012 | . . . . . . . . . . 11 ⊢ ℂ ∈ V | |
11 | 10 | rabex 5264 | . . . . . . . . . 10 ⊢ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} ∈ V |
12 | 11, 1 | fnmpti 6606 | . . . . . . . . 9 ⊢ 𝐻 Fn ℕ0 |
13 | dffn4 6724 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 ↔ 𝐻:ℕ0–onto→ran 𝐻) | |
14 | 12, 13 | mpbi 229 | . . . . . . . 8 ⊢ 𝐻:ℕ0–onto→ran 𝐻 |
15 | fodomnum 9873 | . . . . . . . 8 ⊢ (ℕ0 ∈ dom card → (𝐻:ℕ0–onto→ran 𝐻 → ran 𝐻 ≼ ℕ0)) | |
16 | 9, 14, 15 | mp2 9 | . . . . . . 7 ⊢ ran 𝐻 ≼ ℕ0 |
17 | domentr 8839 | . . . . . . 7 ⊢ ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω) | |
18 | 16, 6, 17 | mp2an 689 | . . . . . 6 ⊢ ran 𝐻 ≼ ω |
19 | fvelrnb 6862 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓)) | |
20 | 12, 19 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓) |
21 | 1 | aannenlem1 25551 | . . . . . . . . . 10 ⊢ (𝑔 ∈ ℕ0 → (𝐻‘𝑔) ∈ Fin) |
22 | eleq1 2823 | . . . . . . . . . 10 ⊢ ((𝐻‘𝑔) = 𝑓 → ((𝐻‘𝑔) ∈ Fin ↔ 𝑓 ∈ Fin)) | |
23 | 21, 22 | syl5ibcom 244 | . . . . . . . . 9 ⊢ (𝑔 ∈ ℕ0 → ((𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin)) |
24 | 23 | rexlimiv 3140 | . . . . . . . 8 ⊢ (∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin) |
25 | 20, 24 | sylbi 216 | . . . . . . 7 ⊢ (𝑓 ∈ ran 𝐻 → 𝑓 ∈ Fin) |
26 | 25 | ssriv 3929 | . . . . . 6 ⊢ ran 𝐻 ⊆ Fin |
27 | aasscn 25541 | . . . . . . . 8 ⊢ 𝔸 ⊆ ℂ | |
28 | 2, 27 | eqsstrri 3960 | . . . . . . 7 ⊢ ∪ ran 𝐻 ⊆ ℂ |
29 | soss 5534 | . . . . . . 7 ⊢ (∪ ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻)) | |
30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻) |
31 | iunfictbso 9930 | . . . . . 6 ⊢ ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ∪ ran 𝐻) → ∪ ran 𝐻 ≼ ω) | |
32 | 18, 26, 30, 31 | mp3an12i 1464 | . . . . 5 ⊢ (𝑓 Or ℂ → ∪ ran 𝐻 ≼ ω) |
33 | 2, 32 | eqbrtrid 5115 | . . . 4 ⊢ (𝑓 Or ℂ → 𝔸 ≼ ω) |
34 | cnso 16015 | . . . 4 ⊢ ∃𝑓 𝑓 Or ℂ | |
35 | 33, 34 | exlimiiv 1931 | . . 3 ⊢ 𝔸 ≼ ω |
36 | 5 | ensymi 8830 | . . 3 ⊢ ω ≈ ℕ |
37 | domentr 8839 | . . 3 ⊢ ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ) | |
38 | 35, 36, 37 | mp2an 689 | . 2 ⊢ 𝔸 ≼ ℕ |
39 | 10, 27 | ssexi 5254 | . . 3 ⊢ 𝔸 ∈ V |
40 | nnssq 12758 | . . . 4 ⊢ ℕ ⊆ ℚ | |
41 | qssaa 25547 | . . . 4 ⊢ ℚ ⊆ 𝔸 | |
42 | 40, 41 | sstri 3934 | . . 3 ⊢ ℕ ⊆ 𝔸 |
43 | ssdomg 8826 | . . 3 ⊢ (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸)) | |
44 | 39, 42, 43 | mp2 9 | . 2 ⊢ ℕ ≼ 𝔸 |
45 | sbth 8923 | . 2 ⊢ ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ) | |
46 | 38, 44, 45 | mp2an 689 | 1 ⊢ 𝔸 ≈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1538 ∈ wcel 2103 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 {crab 3356 Vcvv 3436 ⊆ wss 3891 ∪ cuni 4843 class class class wbr 5080 ↦ cmpt 5163 Or wor 5513 dom cdm 5600 ran crn 5601 Oncon0 6281 Fn wfn 6453 –onto→wfo 6456 ‘cfv 6458 ωcom 7748 ≈ cen 8766 ≼ cdom 8767 Fincfn 8769 cardccrd 9751 ℂcc 10929 0cc0 10931 ≤ cle 11070 ℕcn 12033 ℕ0cn0 12293 ℤcz 12379 ℚcq 12748 abscabs 15004 0𝑝c0p 24896 Polycply 25408 coeffccoe 25410 degcdgr 25411 𝔸caa 25537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-10 2134 ax-11 2151 ax-12 2168 ax-ext 2706 ax-rep 5217 ax-sep 5231 ax-nul 5238 ax-pow 5296 ax-pr 5360 ax-un 7621 ax-inf2 9457 ax-cnex 10987 ax-resscn 10988 ax-1cn 10989 ax-icn 10990 ax-addcl 10991 ax-addrcl 10992 ax-mulcl 10993 ax-mulrcl 10994 ax-mulcom 10995 ax-addass 10996 ax-mulass 10997 ax-distr 10998 ax-i2m1 10999 ax-1ne0 11000 ax-1rid 11001 ax-rnegex 11002 ax-rrecex 11003 ax-cnre 11004 ax-pre-lttri 11005 ax-pre-lttrn 11006 ax-pre-ltadd 11007 ax-pre-mulgt0 11008 ax-pre-sup 11009 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2713 df-cleq 2727 df-clel 2813 df-nfc 2885 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3339 df-reu 3340 df-rab 3357 df-v 3438 df-sbc 3721 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4844 df-int 4886 df-iun 4932 df-br 5081 df-opab 5143 df-mpt 5164 df-tr 5198 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7265 df-ov 7311 df-oprab 7312 df-mpo 7313 df-of 7566 df-om 7749 df-1st 7867 df-2nd 7868 df-frecs 8132 df-wrecs 8163 df-recs 8237 df-rdg 8276 df-1o 8332 df-2o 8333 df-oadd 8336 df-omul 8337 df-er 8534 df-map 8653 df-pm 8654 df-en 8770 df-dom 8771 df-sdom 8772 df-fin 8773 df-sup 9259 df-inf 9260 df-oi 9327 df-dju 9717 df-card 9755 df-acn 9758 df-pnf 11071 df-mnf 11072 df-xr 11073 df-ltxr 11074 df-le 11075 df-sub 11267 df-neg 11268 df-div 11693 df-nn 12034 df-2 12096 df-3 12097 df-n0 12294 df-xnn0 12366 df-z 12380 df-uz 12643 df-q 12749 df-rp 12791 df-ico 13145 df-icc 13146 df-fz 13300 df-fzo 13443 df-fl 13572 df-mod 13650 df-seq 13782 df-exp 13843 df-hash 14105 df-cj 14869 df-re 14870 df-im 14871 df-sqrt 15005 df-abs 15006 df-limsup 15239 df-clim 15256 df-rlim 15257 df-sum 15457 df-0p 24897 df-ply 25412 df-idp 25413 df-coe 25414 df-dgr 25415 df-quot 25514 df-aa 25538 |
This theorem is referenced by: aannen 25554 |
Copyright terms: Public domain | W3C validator |