| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aannenlem3 | Structured version Visualization version GIF version | ||
| Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| aannenlem.a | ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) |
| Ref | Expression |
|---|---|
| aannenlem3 | ⊢ 𝔸 ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aannenlem.a | . . . . . 6 ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) | |
| 2 | 1 | aannenlem2 26287 | . . . . 5 ⊢ 𝔸 = ∪ ran 𝐻 |
| 3 | omelon 9658 | . . . . . . . . 9 ⊢ ω ∈ On | |
| 4 | nn0ennn 13995 | . . . . . . . . . . 11 ⊢ ℕ0 ≈ ℕ | |
| 5 | nnenom 13996 | . . . . . . . . . . 11 ⊢ ℕ ≈ ω | |
| 6 | 4, 5 | entri 9020 | . . . . . . . . . 10 ⊢ ℕ0 ≈ ω |
| 7 | 6 | ensymi 9016 | . . . . . . . . 9 ⊢ ω ≈ ℕ0 |
| 8 | isnumi 9958 | . . . . . . . . 9 ⊢ ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card) | |
| 9 | 3, 7, 8 | mp2an 692 | . . . . . . . 8 ⊢ ℕ0 ∈ dom card |
| 10 | cnex 11208 | . . . . . . . . . . 11 ⊢ ℂ ∈ V | |
| 11 | 10 | rabex 5309 | . . . . . . . . . 10 ⊢ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} ∈ V |
| 12 | 11, 1 | fnmpti 6680 | . . . . . . . . 9 ⊢ 𝐻 Fn ℕ0 |
| 13 | dffn4 6795 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 ↔ 𝐻:ℕ0–onto→ran 𝐻) | |
| 14 | 12, 13 | mpbi 230 | . . . . . . . 8 ⊢ 𝐻:ℕ0–onto→ran 𝐻 |
| 15 | fodomnum 10069 | . . . . . . . 8 ⊢ (ℕ0 ∈ dom card → (𝐻:ℕ0–onto→ran 𝐻 → ran 𝐻 ≼ ℕ0)) | |
| 16 | 9, 14, 15 | mp2 9 | . . . . . . 7 ⊢ ran 𝐻 ≼ ℕ0 |
| 17 | domentr 9025 | . . . . . . 7 ⊢ ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω) | |
| 18 | 16, 6, 17 | mp2an 692 | . . . . . 6 ⊢ ran 𝐻 ≼ ω |
| 19 | fvelrnb 6938 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓)) | |
| 20 | 12, 19 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓) |
| 21 | 1 | aannenlem1 26286 | . . . . . . . . . 10 ⊢ (𝑔 ∈ ℕ0 → (𝐻‘𝑔) ∈ Fin) |
| 22 | eleq1 2822 | . . . . . . . . . 10 ⊢ ((𝐻‘𝑔) = 𝑓 → ((𝐻‘𝑔) ∈ Fin ↔ 𝑓 ∈ Fin)) | |
| 23 | 21, 22 | syl5ibcom 245 | . . . . . . . . 9 ⊢ (𝑔 ∈ ℕ0 → ((𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin)) |
| 24 | 23 | rexlimiv 3134 | . . . . . . . 8 ⊢ (∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin) |
| 25 | 20, 24 | sylbi 217 | . . . . . . 7 ⊢ (𝑓 ∈ ran 𝐻 → 𝑓 ∈ Fin) |
| 26 | 25 | ssriv 3962 | . . . . . 6 ⊢ ran 𝐻 ⊆ Fin |
| 27 | aasscn 26276 | . . . . . . . 8 ⊢ 𝔸 ⊆ ℂ | |
| 28 | 2, 27 | eqsstrri 4006 | . . . . . . 7 ⊢ ∪ ran 𝐻 ⊆ ℂ |
| 29 | soss 5581 | . . . . . . 7 ⊢ (∪ ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻)) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻) |
| 31 | iunfictbso 10126 | . . . . . 6 ⊢ ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ∪ ran 𝐻) → ∪ ran 𝐻 ≼ ω) | |
| 32 | 18, 26, 30, 31 | mp3an12i 1467 | . . . . 5 ⊢ (𝑓 Or ℂ → ∪ ran 𝐻 ≼ ω) |
| 33 | 2, 32 | eqbrtrid 5154 | . . . 4 ⊢ (𝑓 Or ℂ → 𝔸 ≼ ω) |
| 34 | cnso 16263 | . . . 4 ⊢ ∃𝑓 𝑓 Or ℂ | |
| 35 | 33, 34 | exlimiiv 1931 | . . 3 ⊢ 𝔸 ≼ ω |
| 36 | 5 | ensymi 9016 | . . 3 ⊢ ω ≈ ℕ |
| 37 | domentr 9025 | . . 3 ⊢ ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ) | |
| 38 | 35, 36, 37 | mp2an 692 | . 2 ⊢ 𝔸 ≼ ℕ |
| 39 | 10, 27 | ssexi 5292 | . . 3 ⊢ 𝔸 ∈ V |
| 40 | nnssq 12972 | . . . 4 ⊢ ℕ ⊆ ℚ | |
| 41 | qssaa 26282 | . . . 4 ⊢ ℚ ⊆ 𝔸 | |
| 42 | 40, 41 | sstri 3968 | . . 3 ⊢ ℕ ⊆ 𝔸 |
| 43 | ssdomg 9012 | . . 3 ⊢ (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸)) | |
| 44 | 39, 42, 43 | mp2 9 | . 2 ⊢ ℕ ≼ 𝔸 |
| 45 | sbth 9105 | . 2 ⊢ ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ) | |
| 46 | 38, 44, 45 | mp2an 692 | 1 ⊢ 𝔸 ≈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 {crab 3415 Vcvv 3459 ⊆ wss 3926 ∪ cuni 4883 class class class wbr 5119 ↦ cmpt 5201 Or wor 5560 dom cdm 5654 ran crn 5655 Oncon0 6352 Fn wfn 6525 –onto→wfo 6528 ‘cfv 6530 ωcom 7859 ≈ cen 8954 ≼ cdom 8955 Fincfn 8957 cardccrd 9947 ℂcc 11125 0cc0 11127 ≤ cle 11268 ℕcn 12238 ℕ0cn0 12499 ℤcz 12586 ℚcq 12962 abscabs 15251 0𝑝c0p 25620 Polycply 26139 coeffccoe 26141 degcdgr 26142 𝔸caa 26272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-omul 8483 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-oi 9522 df-dju 9913 df-card 9951 df-acn 9954 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-xnn0 12573 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-mod 13885 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-limsup 15485 df-clim 15502 df-rlim 15503 df-sum 15701 df-0p 25621 df-ply 26143 df-idp 26144 df-coe 26145 df-dgr 26146 df-quot 26249 df-aa 26273 |
| This theorem is referenced by: aannen 26289 |
| Copyright terms: Public domain | W3C validator |