MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem3 Structured version   Visualization version   GIF version

Theorem aannenlem3 26245
Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
Assertion
Ref Expression
aannenlem3 𝔸 ≈ ℕ
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑒
Allowed substitution hints:   𝐻(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aannenlem3
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aannenlem.a . . . . . 6 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
21aannenlem2 26244 . . . . 5 𝔸 = ran 𝐻
3 omelon 9606 . . . . . . . . 9 ω ∈ On
4 nn0ennn 13951 . . . . . . . . . . 11 0 ≈ ℕ
5 nnenom 13952 . . . . . . . . . . 11 ℕ ≈ ω
64, 5entri 8982 . . . . . . . . . 10 0 ≈ ω
76ensymi 8978 . . . . . . . . 9 ω ≈ ℕ0
8 isnumi 9906 . . . . . . . . 9 ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card)
93, 7, 8mp2an 692 . . . . . . . 8 0 ∈ dom card
10 cnex 11156 . . . . . . . . . . 11 ℂ ∈ V
1110rabex 5297 . . . . . . . . . 10 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ∈ V
1211, 1fnmpti 6664 . . . . . . . . 9 𝐻 Fn ℕ0
13 dffn4 6781 . . . . . . . . 9 (𝐻 Fn ℕ0𝐻:ℕ0onto→ran 𝐻)
1412, 13mpbi 230 . . . . . . . 8 𝐻:ℕ0onto→ran 𝐻
15 fodomnum 10017 . . . . . . . 8 (ℕ0 ∈ dom card → (𝐻:ℕ0onto→ran 𝐻 → ran 𝐻 ≼ ℕ0))
169, 14, 15mp2 9 . . . . . . 7 ran 𝐻 ≼ ℕ0
17 domentr 8987 . . . . . . 7 ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω)
1816, 6, 17mp2an 692 . . . . . 6 ran 𝐻 ≼ ω
19 fvelrnb 6924 . . . . . . . . 9 (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓))
2012, 19ax-mp 5 . . . . . . . 8 (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓)
211aannenlem1 26243 . . . . . . . . . 10 (𝑔 ∈ ℕ0 → (𝐻𝑔) ∈ Fin)
22 eleq1 2817 . . . . . . . . . 10 ((𝐻𝑔) = 𝑓 → ((𝐻𝑔) ∈ Fin ↔ 𝑓 ∈ Fin))
2321, 22syl5ibcom 245 . . . . . . . . 9 (𝑔 ∈ ℕ0 → ((𝐻𝑔) = 𝑓𝑓 ∈ Fin))
2423rexlimiv 3128 . . . . . . . 8 (∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓𝑓 ∈ Fin)
2520, 24sylbi 217 . . . . . . 7 (𝑓 ∈ ran 𝐻𝑓 ∈ Fin)
2625ssriv 3953 . . . . . 6 ran 𝐻 ⊆ Fin
27 aasscn 26233 . . . . . . . 8 𝔸 ⊆ ℂ
282, 27eqsstrri 3997 . . . . . . 7 ran 𝐻 ⊆ ℂ
29 soss 5569 . . . . . . 7 ( ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ran 𝐻))
3028, 29ax-mp 5 . . . . . 6 (𝑓 Or ℂ → 𝑓 Or ran 𝐻)
31 iunfictbso 10074 . . . . . 6 ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ran 𝐻) → ran 𝐻 ≼ ω)
3218, 26, 30, 31mp3an12i 1467 . . . . 5 (𝑓 Or ℂ → ran 𝐻 ≼ ω)
332, 32eqbrtrid 5145 . . . 4 (𝑓 Or ℂ → 𝔸 ≼ ω)
34 cnso 16222 . . . 4 𝑓 𝑓 Or ℂ
3533, 34exlimiiv 1931 . . 3 𝔸 ≼ ω
365ensymi 8978 . . 3 ω ≈ ℕ
37 domentr 8987 . . 3 ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ)
3835, 36, 37mp2an 692 . 2 𝔸 ≼ ℕ
3910, 27ssexi 5280 . . 3 𝔸 ∈ V
40 nnssq 12924 . . . 4 ℕ ⊆ ℚ
41 qssaa 26239 . . . 4 ℚ ⊆ 𝔸
4240, 41sstri 3959 . . 3 ℕ ⊆ 𝔸
43 ssdomg 8974 . . 3 (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸))
4439, 42, 43mp2 9 . 2 ℕ ≼ 𝔸
45 sbth 9067 . 2 ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ)
4638, 44, 45mp2an 692 1 𝔸 ≈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917   cuni 4874   class class class wbr 5110  cmpt 5191   Or wor 5548  dom cdm 5641  ran crn 5642  Oncon0 6335   Fn wfn 6509  ontowfo 6512  cfv 6514  ωcom 7845  cen 8918  cdom 8919  Fincfn 8921  cardccrd 9895  cc 11073  0cc0 11075  cle 11216  cn 12193  0cn0 12449  cz 12536  cq 12914  abscabs 15207  0𝑝c0p 25577  Polycply 26096  coeffccoe 26098  degcdgr 26099  𝔸caa 26229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100  df-idp 26101  df-coe 26102  df-dgr 26103  df-quot 26206  df-aa 26230
This theorem is referenced by:  aannen  26246
  Copyright terms: Public domain W3C validator