| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aannenlem3 | Structured version Visualization version GIF version | ||
| Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| aannenlem.a | ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) |
| Ref | Expression |
|---|---|
| aannenlem3 | ⊢ 𝔸 ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aannenlem.a | . . . . . 6 ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) | |
| 2 | 1 | aannenlem2 26237 | . . . . 5 ⊢ 𝔸 = ∪ ran 𝐻 |
| 3 | omelon 9599 | . . . . . . . . 9 ⊢ ω ∈ On | |
| 4 | nn0ennn 13944 | . . . . . . . . . . 11 ⊢ ℕ0 ≈ ℕ | |
| 5 | nnenom 13945 | . . . . . . . . . . 11 ⊢ ℕ ≈ ω | |
| 6 | 4, 5 | entri 8979 | . . . . . . . . . 10 ⊢ ℕ0 ≈ ω |
| 7 | 6 | ensymi 8975 | . . . . . . . . 9 ⊢ ω ≈ ℕ0 |
| 8 | isnumi 9899 | . . . . . . . . 9 ⊢ ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card) | |
| 9 | 3, 7, 8 | mp2an 692 | . . . . . . . 8 ⊢ ℕ0 ∈ dom card |
| 10 | cnex 11149 | . . . . . . . . . . 11 ⊢ ℂ ∈ V | |
| 11 | 10 | rabex 5294 | . . . . . . . . . 10 ⊢ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} ∈ V |
| 12 | 11, 1 | fnmpti 6661 | . . . . . . . . 9 ⊢ 𝐻 Fn ℕ0 |
| 13 | dffn4 6778 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 ↔ 𝐻:ℕ0–onto→ran 𝐻) | |
| 14 | 12, 13 | mpbi 230 | . . . . . . . 8 ⊢ 𝐻:ℕ0–onto→ran 𝐻 |
| 15 | fodomnum 10010 | . . . . . . . 8 ⊢ (ℕ0 ∈ dom card → (𝐻:ℕ0–onto→ran 𝐻 → ran 𝐻 ≼ ℕ0)) | |
| 16 | 9, 14, 15 | mp2 9 | . . . . . . 7 ⊢ ran 𝐻 ≼ ℕ0 |
| 17 | domentr 8984 | . . . . . . 7 ⊢ ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω) | |
| 18 | 16, 6, 17 | mp2an 692 | . . . . . 6 ⊢ ran 𝐻 ≼ ω |
| 19 | fvelrnb 6921 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓)) | |
| 20 | 12, 19 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓) |
| 21 | 1 | aannenlem1 26236 | . . . . . . . . . 10 ⊢ (𝑔 ∈ ℕ0 → (𝐻‘𝑔) ∈ Fin) |
| 22 | eleq1 2816 | . . . . . . . . . 10 ⊢ ((𝐻‘𝑔) = 𝑓 → ((𝐻‘𝑔) ∈ Fin ↔ 𝑓 ∈ Fin)) | |
| 23 | 21, 22 | syl5ibcom 245 | . . . . . . . . 9 ⊢ (𝑔 ∈ ℕ0 → ((𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin)) |
| 24 | 23 | rexlimiv 3127 | . . . . . . . 8 ⊢ (∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin) |
| 25 | 20, 24 | sylbi 217 | . . . . . . 7 ⊢ (𝑓 ∈ ran 𝐻 → 𝑓 ∈ Fin) |
| 26 | 25 | ssriv 3950 | . . . . . 6 ⊢ ran 𝐻 ⊆ Fin |
| 27 | aasscn 26226 | . . . . . . . 8 ⊢ 𝔸 ⊆ ℂ | |
| 28 | 2, 27 | eqsstrri 3994 | . . . . . . 7 ⊢ ∪ ran 𝐻 ⊆ ℂ |
| 29 | soss 5566 | . . . . . . 7 ⊢ (∪ ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻)) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻) |
| 31 | iunfictbso 10067 | . . . . . 6 ⊢ ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ∪ ran 𝐻) → ∪ ran 𝐻 ≼ ω) | |
| 32 | 18, 26, 30, 31 | mp3an12i 1467 | . . . . 5 ⊢ (𝑓 Or ℂ → ∪ ran 𝐻 ≼ ω) |
| 33 | 2, 32 | eqbrtrid 5142 | . . . 4 ⊢ (𝑓 Or ℂ → 𝔸 ≼ ω) |
| 34 | cnso 16215 | . . . 4 ⊢ ∃𝑓 𝑓 Or ℂ | |
| 35 | 33, 34 | exlimiiv 1931 | . . 3 ⊢ 𝔸 ≼ ω |
| 36 | 5 | ensymi 8975 | . . 3 ⊢ ω ≈ ℕ |
| 37 | domentr 8984 | . . 3 ⊢ ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ) | |
| 38 | 35, 36, 37 | mp2an 692 | . 2 ⊢ 𝔸 ≼ ℕ |
| 39 | 10, 27 | ssexi 5277 | . . 3 ⊢ 𝔸 ∈ V |
| 40 | nnssq 12917 | . . . 4 ⊢ ℕ ⊆ ℚ | |
| 41 | qssaa 26232 | . . . 4 ⊢ ℚ ⊆ 𝔸 | |
| 42 | 40, 41 | sstri 3956 | . . 3 ⊢ ℕ ⊆ 𝔸 |
| 43 | ssdomg 8971 | . . 3 ⊢ (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸)) | |
| 44 | 39, 42, 43 | mp2 9 | . 2 ⊢ ℕ ≼ 𝔸 |
| 45 | sbth 9061 | . 2 ⊢ ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ) | |
| 46 | 38, 44, 45 | mp2an 692 | 1 ⊢ 𝔸 ≈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3405 Vcvv 3447 ⊆ wss 3914 ∪ cuni 4871 class class class wbr 5107 ↦ cmpt 5188 Or wor 5545 dom cdm 5638 ran crn 5639 Oncon0 6332 Fn wfn 6506 –onto→wfo 6509 ‘cfv 6511 ωcom 7842 ≈ cen 8915 ≼ cdom 8916 Fincfn 8918 cardccrd 9888 ℂcc 11066 0cc0 11068 ≤ cle 11209 ℕcn 12186 ℕ0cn0 12442 ℤcz 12529 ℚcq 12907 abscabs 15200 0𝑝c0p 25570 Polycply 26089 coeffccoe 26091 degcdgr 26092 𝔸caa 26222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-0p 25571 df-ply 26093 df-idp 26094 df-coe 26095 df-dgr 26096 df-quot 26199 df-aa 26223 |
| This theorem is referenced by: aannen 26239 |
| Copyright terms: Public domain | W3C validator |