![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aannenlem3 | Structured version Visualization version GIF version |
Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
aannenlem.a | β’ π» = (π β β0 β¦ {π β β β£ βπ β {π β (Polyββ€) β£ (π β 0π β§ (degβπ) β€ π β§ βπ β β0 (absβ((coeffβπ)βπ)) β€ π)} (πβπ) = 0}) |
Ref | Expression |
---|---|
aannenlem3 | β’ πΈ β β |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aannenlem.a | . . . . . 6 β’ π» = (π β β0 β¦ {π β β β£ βπ β {π β (Polyββ€) β£ (π β 0π β§ (degβπ) β€ π β§ βπ β β0 (absβ((coeffβπ)βπ)) β€ π)} (πβπ) = 0}) | |
2 | 1 | aannenlem2 25833 | . . . . 5 β’ πΈ = βͺ ran π» |
3 | omelon 9637 | . . . . . . . . 9 β’ Ο β On | |
4 | nn0ennn 13940 | . . . . . . . . . . 11 β’ β0 β β | |
5 | nnenom 13941 | . . . . . . . . . . 11 β’ β β Ο | |
6 | 4, 5 | entri 9000 | . . . . . . . . . 10 β’ β0 β Ο |
7 | 6 | ensymi 8996 | . . . . . . . . 9 β’ Ο β β0 |
8 | isnumi 9937 | . . . . . . . . 9 β’ ((Ο β On β§ Ο β β0) β β0 β dom card) | |
9 | 3, 7, 8 | mp2an 690 | . . . . . . . 8 β’ β0 β dom card |
10 | cnex 11187 | . . . . . . . . . . 11 β’ β β V | |
11 | 10 | rabex 5331 | . . . . . . . . . 10 β’ {π β β β£ βπ β {π β (Polyββ€) β£ (π β 0π β§ (degβπ) β€ π β§ βπ β β0 (absβ((coeffβπ)βπ)) β€ π)} (πβπ) = 0} β V |
12 | 11, 1 | fnmpti 6690 | . . . . . . . . 9 β’ π» Fn β0 |
13 | dffn4 6808 | . . . . . . . . 9 β’ (π» Fn β0 β π»:β0βontoβran π») | |
14 | 12, 13 | mpbi 229 | . . . . . . . 8 β’ π»:β0βontoβran π» |
15 | fodomnum 10048 | . . . . . . . 8 β’ (β0 β dom card β (π»:β0βontoβran π» β ran π» βΌ β0)) | |
16 | 9, 14, 15 | mp2 9 | . . . . . . 7 β’ ran π» βΌ β0 |
17 | domentr 9005 | . . . . . . 7 β’ ((ran π» βΌ β0 β§ β0 β Ο) β ran π» βΌ Ο) | |
18 | 16, 6, 17 | mp2an 690 | . . . . . 6 β’ ran π» βΌ Ο |
19 | fvelrnb 6949 | . . . . . . . . 9 β’ (π» Fn β0 β (π β ran π» β βπ β β0 (π»βπ) = π)) | |
20 | 12, 19 | ax-mp 5 | . . . . . . . 8 β’ (π β ran π» β βπ β β0 (π»βπ) = π) |
21 | 1 | aannenlem1 25832 | . . . . . . . . . 10 β’ (π β β0 β (π»βπ) β Fin) |
22 | eleq1 2821 | . . . . . . . . . 10 β’ ((π»βπ) = π β ((π»βπ) β Fin β π β Fin)) | |
23 | 21, 22 | syl5ibcom 244 | . . . . . . . . 9 β’ (π β β0 β ((π»βπ) = π β π β Fin)) |
24 | 23 | rexlimiv 3148 | . . . . . . . 8 β’ (βπ β β0 (π»βπ) = π β π β Fin) |
25 | 20, 24 | sylbi 216 | . . . . . . 7 β’ (π β ran π» β π β Fin) |
26 | 25 | ssriv 3985 | . . . . . 6 β’ ran π» β Fin |
27 | aasscn 25822 | . . . . . . . 8 β’ πΈ β β | |
28 | 2, 27 | eqsstrri 4016 | . . . . . . 7 β’ βͺ ran π» β β |
29 | soss 5607 | . . . . . . 7 β’ (βͺ ran π» β β β (π Or β β π Or βͺ ran π»)) | |
30 | 28, 29 | ax-mp 5 | . . . . . 6 β’ (π Or β β π Or βͺ ran π») |
31 | iunfictbso 10105 | . . . . . 6 β’ ((ran π» βΌ Ο β§ ran π» β Fin β§ π Or βͺ ran π») β βͺ ran π» βΌ Ο) | |
32 | 18, 26, 30, 31 | mp3an12i 1465 | . . . . 5 β’ (π Or β β βͺ ran π» βΌ Ο) |
33 | 2, 32 | eqbrtrid 5182 | . . . 4 β’ (π Or β β πΈ βΌ Ο) |
34 | cnso 16186 | . . . 4 β’ βπ π Or β | |
35 | 33, 34 | exlimiiv 1934 | . . 3 β’ πΈ βΌ Ο |
36 | 5 | ensymi 8996 | . . 3 β’ Ο β β |
37 | domentr 9005 | . . 3 β’ ((πΈ βΌ Ο β§ Ο β β) β πΈ βΌ β) | |
38 | 35, 36, 37 | mp2an 690 | . 2 β’ πΈ βΌ β |
39 | 10, 27 | ssexi 5321 | . . 3 β’ πΈ β V |
40 | nnssq 12938 | . . . 4 β’ β β β | |
41 | qssaa 25828 | . . . 4 β’ β β πΈ | |
42 | 40, 41 | sstri 3990 | . . 3 β’ β β πΈ |
43 | ssdomg 8992 | . . 3 β’ (πΈ β V β (β β πΈ β β βΌ πΈ)) | |
44 | 39, 42, 43 | mp2 9 | . 2 β’ β βΌ πΈ |
45 | sbth 9089 | . 2 β’ ((πΈ βΌ β β§ β βΌ πΈ) β πΈ β β) | |
46 | 38, 44, 45 | mp2an 690 | 1 β’ πΈ β β |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 βwrex 3070 {crab 3432 Vcvv 3474 β wss 3947 βͺ cuni 4907 class class class wbr 5147 β¦ cmpt 5230 Or wor 5586 dom cdm 5675 ran crn 5676 Oncon0 6361 Fn wfn 6535 βontoβwfo 6538 βcfv 6540 Οcom 7851 β cen 8932 βΌ cdom 8933 Fincfn 8935 cardccrd 9926 βcc 11104 0cc0 11106 β€ cle 11245 βcn 12208 β0cn0 12468 β€cz 12554 βcq 12928 abscabs 15177 0πc0p 25177 Polycply 25689 coeffccoe 25691 degcdgr 25692 πΈcaa 25818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-omul 8467 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-acn 9933 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-0p 25178 df-ply 25693 df-idp 25694 df-coe 25695 df-dgr 25696 df-quot 25795 df-aa 25819 |
This theorem is referenced by: aannen 25835 |
Copyright terms: Public domain | W3C validator |