| Step | Hyp | Ref
| Expression |
| 1 | | brdomi 8978 |
. 2
⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| 2 | | reldom 8970 |
. . 3
⊢ Rel
≼ |
| 3 | 2 | brrelex2i 5716 |
. 2
⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
| 4 | | vex 3468 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
| 5 | | f1stres 8017 |
. . . . . . . . 9
⊢
(1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴})):((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴})⟶(𝐵 ∖ ran 𝑓) |
| 6 | | difexg 5304 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ V → (𝐵 ∖ ran 𝑓) ∈ V) |
| 7 | 6 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → (𝐵 ∖ ran 𝑓) ∈ V) |
| 8 | | snex 5411 |
. . . . . . . . . 10
⊢
{𝒫 ∪ ran 𝐴} ∈ V |
| 9 | | xpexg 7749 |
. . . . . . . . . 10
⊢ (((𝐵 ∖ ran 𝑓) ∈ V ∧ {𝒫 ∪ ran 𝐴} ∈ V) → ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}) ∈ V) |
| 10 | 7, 8, 9 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}) ∈ V) |
| 11 | | fex2 7937 |
. . . . . . . . 9
⊢
(((1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴})):((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴})⟶(𝐵 ∖ ran 𝑓) ∧ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}) ∈ V ∧ (𝐵 ∖ ran 𝑓) ∈ V) → (1st ↾
((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴})) ∈ V) |
| 12 | 5, 10, 7, 11 | mp3an2i 1468 |
. . . . . . . 8
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → (1st ↾
((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴})) ∈ V) |
| 13 | | unexg 7742 |
. . . . . . . 8
⊢ ((𝑓 ∈ V ∧ (1st
↾ ((𝐵 ∖ ran
𝑓) × {𝒫 ∪ ran 𝐴})) ∈ V) → (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∈ V) |
| 14 | 4, 12, 13 | sylancr 587 |
. . . . . . 7
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∈ V) |
| 15 | | cnvexg 7925 |
. . . . . . 7
⊢ ((𝑓 ∪ (1st ↾
((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∈ V → ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∈ V) |
| 16 | 14, 15 | syl 17 |
. . . . . 6
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∈ V) |
| 17 | | rnexg 7903 |
. . . . . 6
⊢ (◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∈ V → ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∈ V) |
| 18 | 16, 17 | syl 17 |
. . . . 5
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∈ V) |
| 19 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → 𝑓:𝐴–1-1→𝐵) |
| 20 | | f1dm 6783 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–1-1→𝐵 → dom 𝑓 = 𝐴) |
| 21 | 4 | dmex 7910 |
. . . . . . . . . 10
⊢ dom 𝑓 ∈ V |
| 22 | 20, 21 | eqeltrrdi 2844 |
. . . . . . . . 9
⊢ (𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
| 23 | 22 | adantr 480 |
. . . . . . . 8
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) |
| 24 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → 𝐵 ∈ V) |
| 25 | | eqid 2736 |
. . . . . . . . 9
⊢ ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) = ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) |
| 26 | 25 | domss2 9155 |
. . . . . . . 8
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → (◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1-onto→ran
◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∧ 𝐴 ⊆ ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∧ (◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∘ 𝑓) = ( I ↾ 𝐴))) |
| 27 | 19, 23, 24, 26 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → (◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1-onto→ran
◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∧ 𝐴 ⊆ ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∧ (◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∘ 𝑓) = ( I ↾ 𝐴))) |
| 28 | 27 | simp2d 1143 |
. . . . . 6
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → 𝐴 ⊆ ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴})))) |
| 29 | 27 | simp1d 1142 |
. . . . . . 7
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1-onto→ran
◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴})))) |
| 30 | | f1oen3g 8986 |
. . . . . . 7
⊢ ((◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∈ V ∧ ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1-onto→ran
◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴})))) → 𝐵 ≈ ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴})))) |
| 31 | 16, 29, 30 | syl2anc 584 |
. . . . . 6
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → 𝐵 ≈ ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴})))) |
| 32 | 28, 31 | jca 511 |
. . . . 5
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → (𝐴 ⊆ ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∧ 𝐵 ≈ ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))))) |
| 33 | | sseq2 3990 |
. . . . . 6
⊢ (𝑥 = ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))))) |
| 34 | | breq2 5128 |
. . . . . 6
⊢ (𝑥 = ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) → (𝐵 ≈ 𝑥 ↔ 𝐵 ≈ ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))))) |
| 35 | 33, 34 | anbi12d 632 |
. . . . 5
⊢ (𝑥 = ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) → ((𝐴 ⊆ 𝑥 ∧ 𝐵 ≈ 𝑥) ↔ (𝐴 ⊆ ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴}))) ∧ 𝐵 ≈ ran ◡(𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ∪ ran 𝐴})))))) |
| 36 | 18, 32, 35 | spcedv 3582 |
. . . 4
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝐵 ∈ V) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝐵 ≈ 𝑥)) |
| 37 | 36 | ex 412 |
. . 3
⊢ (𝑓:𝐴–1-1→𝐵 → (𝐵 ∈ V → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝐵 ≈ 𝑥))) |
| 38 | 37 | exlimiv 1930 |
. 2
⊢
(∃𝑓 𝑓:𝐴–1-1→𝐵 → (𝐵 ∈ V → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝐵 ≈ 𝑥))) |
| 39 | 1, 3, 38 | sylc 65 |
1
⊢ (𝐴 ≼ 𝐵 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝐵 ≈ 𝑥)) |