MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domssex Structured version   Visualization version   GIF version

Theorem domssex 9179
Description: Weakening of domssex2 9178 to forget the functions in favor of dominance and equinumerosity. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
domssex (𝐴𝐵 → ∃𝑥(𝐴𝑥𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem domssex
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 9000 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
2 reldom 8992 . . 3 Rel ≼
32brrelex2i 5741 . 2 (𝐴𝐵𝐵 ∈ V)
4 vex 3483 . . . . . . . 8 𝑓 ∈ V
5 f1stres 8039 . . . . . . . . 9 (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})):((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})⟶(𝐵 ∖ ran 𝑓)
6 difexg 5328 . . . . . . . . . . 11 (𝐵 ∈ V → (𝐵 ∖ ran 𝑓) ∈ V)
76adantl 481 . . . . . . . . . 10 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → (𝐵 ∖ ran 𝑓) ∈ V)
8 snex 5435 . . . . . . . . . 10 {𝒫 ran 𝐴} ∈ V
9 xpexg 7771 . . . . . . . . . 10 (((𝐵 ∖ ran 𝑓) ∈ V ∧ {𝒫 ran 𝐴} ∈ V) → ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}) ∈ V)
107, 8, 9sylancl 586 . . . . . . . . 9 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}) ∈ V)
11 fex2 7959 . . . . . . . . 9 (((1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})):((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})⟶(𝐵 ∖ ran 𝑓) ∧ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}) ∈ V ∧ (𝐵 ∖ ran 𝑓) ∈ V) → (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})) ∈ V)
125, 10, 7, 11mp3an2i 1467 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})) ∈ V)
13 unexg 7764 . . . . . . . 8 ((𝑓 ∈ V ∧ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})) ∈ V) → (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V)
144, 12, 13sylancr 587 . . . . . . 7 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V)
15 cnvexg 7947 . . . . . . 7 ((𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V → (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V)
1614, 15syl 17 . . . . . 6 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V)
17 rnexg 7925 . . . . . 6 ((𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V → ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V)
1816, 17syl 17 . . . . 5 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V)
19 simpl 482 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → 𝑓:𝐴1-1𝐵)
20 f1dm 6807 . . . . . . . . . 10 (𝑓:𝐴1-1𝐵 → dom 𝑓 = 𝐴)
214dmex 7932 . . . . . . . . . 10 dom 𝑓 ∈ V
2220, 21eqeltrrdi 2849 . . . . . . . . 9 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
2322adantr 480 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → 𝐴 ∈ V)
24 simpr 484 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → 𝐵 ∈ V)
25 eqid 2736 . . . . . . . . 9 (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) = (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})))
2625domss2 9177 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))):𝐵1-1-onto→ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∧ 𝐴 ⊆ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∧ ((𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∘ 𝑓) = ( I ↾ 𝐴)))
2719, 23, 24, 26syl3anc 1372 . . . . . . 7 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → ((𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))):𝐵1-1-onto→ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∧ 𝐴 ⊆ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∧ ((𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∘ 𝑓) = ( I ↾ 𝐴)))
2827simp2d 1143 . . . . . 6 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → 𝐴 ⊆ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))))
2927simp1d 1142 . . . . . . 7 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))):𝐵1-1-onto→ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))))
30 f1oen3g 9008 . . . . . . 7 (((𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∈ V ∧ (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))):𝐵1-1-onto→ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})))) → 𝐵 ≈ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))))
3116, 29, 30syl2anc 584 . . . . . 6 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → 𝐵 ≈ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))))
3228, 31jca 511 . . . . 5 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → (𝐴 ⊆ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∧ 𝐵 ≈ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})))))
33 sseq2 4009 . . . . . 6 (𝑥 = ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) → (𝐴𝑥𝐴 ⊆ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})))))
34 breq2 5146 . . . . . 6 (𝑥 = ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) → (𝐵𝑥𝐵 ≈ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴})))))
3533, 34anbi12d 632 . . . . 5 (𝑥 = ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) → ((𝐴𝑥𝐵𝑥) ↔ (𝐴 ⊆ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))) ∧ 𝐵 ≈ ran (𝑓 ∪ (1st ↾ ((𝐵 ∖ ran 𝑓) × {𝒫 ran 𝐴}))))))
3618, 32, 35spcedv 3597 . . . 4 ((𝑓:𝐴1-1𝐵𝐵 ∈ V) → ∃𝑥(𝐴𝑥𝐵𝑥))
3736ex 412 . . 3 (𝑓:𝐴1-1𝐵 → (𝐵 ∈ V → ∃𝑥(𝐴𝑥𝐵𝑥)))
3837exlimiv 1929 . 2 (∃𝑓 𝑓:𝐴1-1𝐵 → (𝐵 ∈ V → ∃𝑥(𝐴𝑥𝐵𝑥)))
391, 3, 38sylc 65 1 (𝐴𝐵 → ∃𝑥(𝐴𝑥𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  Vcvv 3479  cdif 3947  cun 3948  wss 3950  𝒫 cpw 4599  {csn 4625   cuni 4906   class class class wbr 5142   I cid 5576   × cxp 5682  ccnv 5683  dom cdm 5684  ran crn 5685  cres 5686  ccom 5688  wf 6556  1-1wf1 6557  1-1-ontowf1o 6559  1st c1st 8013  cen 8983  cdom 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-1st 8015  df-2nd 8016  df-en 8987  df-dom 8988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator