MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeoimaf1o Structured version   Visualization version   GIF version

Theorem hmeoimaf1o 23799
Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmeoimaf1o.1 𝐺 = (𝑥𝐽 ↦ (𝐹𝑥))
Assertion
Ref Expression
hmeoimaf1o (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽1-1-onto𝐾)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hmeoimaf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hmeoimaf1o.1 . 2 𝐺 = (𝑥𝐽 ↦ (𝐹𝑥))
2 hmeoima 23794 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
3 hmeocn 23789 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
4 cnima 23294 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
53, 4sylan 579 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
6 eqid 2740 . . . . . . 7 𝐽 = 𝐽
7 eqid 2740 . . . . . . 7 𝐾 = 𝐾
86, 7hmeof1o 23793 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹: 𝐽1-1-onto 𝐾)
98adantr 480 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽1-1-onto 𝐾)
10 f1of1 6861 . . . . 5 (𝐹: 𝐽1-1-onto 𝐾𝐹: 𝐽1-1 𝐾)
119, 10syl 17 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽1-1 𝐾)
12 elssuni 4961 . . . . 5 (𝑥𝐽𝑥 𝐽)
1312ad2antrl 727 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝑥 𝐽)
14 cnvimass 6111 . . . . 5 (𝐹𝑦) ⊆ dom 𝐹
15 f1dm 6821 . . . . . 6 (𝐹: 𝐽1-1 𝐾 → dom 𝐹 = 𝐽)
1611, 15syl 17 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → dom 𝐹 = 𝐽)
1714, 16sseqtrid 4061 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝐹𝑦) ⊆ 𝐽)
18 f1imaeq 7302 . . . 4 ((𝐹: 𝐽1-1 𝐾 ∧ (𝑥 𝐽 ∧ (𝐹𝑦) ⊆ 𝐽)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑥 = (𝐹𝑦)))
1911, 13, 17, 18syl12anc 836 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑥 = (𝐹𝑦)))
20 f1ofo 6869 . . . . . . 7 (𝐹: 𝐽1-1-onto 𝐾𝐹: 𝐽onto 𝐾)
219, 20syl 17 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽onto 𝐾)
22 elssuni 4961 . . . . . . 7 (𝑦𝐾𝑦 𝐾)
2322ad2antll 728 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝑦 𝐾)
24 foimacnv 6879 . . . . . 6 ((𝐹: 𝐽onto 𝐾𝑦 𝐾) → (𝐹 “ (𝐹𝑦)) = 𝑦)
2521, 23, 24syl2anc 583 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝐹 “ (𝐹𝑦)) = 𝑦)
2625eqeq2d 2751 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ (𝐹𝑥) = 𝑦))
27 eqcom 2747 . . . 4 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
2826, 27bitrdi 287 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑦 = (𝐹𝑥)))
2919, 28bitr3d 281 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝑥 = (𝐹𝑦) ↔ 𝑦 = (𝐹𝑥)))
301, 2, 5, 29f1o2d 7704 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽1-1-onto𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wss 3976   cuni 4931  cmpt 5249  ccnv 5699  dom cdm 5700  cima 5703  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572  (class class class)co 7448   Cn ccn 23253  Homeochmeo 23782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-top 22921  df-topon 22938  df-cn 23256  df-hmeo 23784
This theorem is referenced by:  hmphen  23814
  Copyright terms: Public domain W3C validator