MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeoimaf1o Structured version   Visualization version   GIF version

Theorem hmeoimaf1o 23794
Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmeoimaf1o.1 𝐺 = (𝑥𝐽 ↦ (𝐹𝑥))
Assertion
Ref Expression
hmeoimaf1o (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽1-1-onto𝐾)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hmeoimaf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hmeoimaf1o.1 . 2 𝐺 = (𝑥𝐽 ↦ (𝐹𝑥))
2 hmeoima 23789 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
3 hmeocn 23784 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
4 cnima 23289 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
53, 4sylan 580 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
6 eqid 2735 . . . . . . 7 𝐽 = 𝐽
7 eqid 2735 . . . . . . 7 𝐾 = 𝐾
86, 7hmeof1o 23788 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹: 𝐽1-1-onto 𝐾)
98adantr 480 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽1-1-onto 𝐾)
10 f1of1 6848 . . . . 5 (𝐹: 𝐽1-1-onto 𝐾𝐹: 𝐽1-1 𝐾)
119, 10syl 17 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽1-1 𝐾)
12 elssuni 4942 . . . . 5 (𝑥𝐽𝑥 𝐽)
1312ad2antrl 728 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝑥 𝐽)
14 cnvimass 6102 . . . . 5 (𝐹𝑦) ⊆ dom 𝐹
15 f1dm 6809 . . . . . 6 (𝐹: 𝐽1-1 𝐾 → dom 𝐹 = 𝐽)
1611, 15syl 17 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → dom 𝐹 = 𝐽)
1714, 16sseqtrid 4048 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝐹𝑦) ⊆ 𝐽)
18 f1imaeq 7285 . . . 4 ((𝐹: 𝐽1-1 𝐾 ∧ (𝑥 𝐽 ∧ (𝐹𝑦) ⊆ 𝐽)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑥 = (𝐹𝑦)))
1911, 13, 17, 18syl12anc 837 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑥 = (𝐹𝑦)))
20 f1ofo 6856 . . . . . . 7 (𝐹: 𝐽1-1-onto 𝐾𝐹: 𝐽onto 𝐾)
219, 20syl 17 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽onto 𝐾)
22 elssuni 4942 . . . . . . 7 (𝑦𝐾𝑦 𝐾)
2322ad2antll 729 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝑦 𝐾)
24 foimacnv 6866 . . . . . 6 ((𝐹: 𝐽onto 𝐾𝑦 𝐾) → (𝐹 “ (𝐹𝑦)) = 𝑦)
2521, 23, 24syl2anc 584 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝐹 “ (𝐹𝑦)) = 𝑦)
2625eqeq2d 2746 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ (𝐹𝑥) = 𝑦))
27 eqcom 2742 . . . 4 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
2826, 27bitrdi 287 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑦 = (𝐹𝑥)))
2919, 28bitr3d 281 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝑥 = (𝐹𝑦) ↔ 𝑦 = (𝐹𝑥)))
301, 2, 5, 29f1o2d 7687 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽1-1-onto𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wss 3963   cuni 4912  cmpt 5231  ccnv 5688  dom cdm 5689  cima 5692  1-1wf1 6560  ontowfo 6561  1-1-ontowf1o 6562  (class class class)co 7431   Cn ccn 23248  Homeochmeo 23777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-top 22916  df-topon 22933  df-cn 23251  df-hmeo 23779
This theorem is referenced by:  hmphen  23809
  Copyright terms: Public domain W3C validator