| Step | Hyp | Ref
| Expression |
| 1 | | cntop1 23134 |
. . 3
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
| 2 | 1 | 3ad2ant3 1135 |
. 2
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top) |
| 3 | | eqid 2730 |
. . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 4 | | eqid 2730 |
. . . . . . . . . 10
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 5 | 3, 4 | cnf 23140 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 6 | 5 | 3ad2ant3 1135 |
. . . . . . . 8
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 7 | 6 | ffnd 6692 |
. . . . . . 7
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 Fn ∪ 𝐽) |
| 8 | | fnsnfv 6943 |
. . . . . . 7
⊢ ((𝐹 Fn ∪
𝐽 ∧ 𝑥 ∈ ∪ 𝐽) → {(𝐹‘𝑥)} = (𝐹 “ {𝑥})) |
| 9 | 7, 8 | sylan 580 |
. . . . . 6
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → {(𝐹‘𝑥)} = (𝐹 “ {𝑥})) |
| 10 | 9 | imaeq2d 6034 |
. . . . 5
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → (◡𝐹 “ {(𝐹‘𝑥)}) = (◡𝐹 “ (𝐹 “ {𝑥}))) |
| 11 | | simpl2 1193 |
. . . . . 6
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → 𝐹:𝑋–1-1→𝑌) |
| 12 | 6 | fdmd 6701 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → dom 𝐹 = ∪ 𝐽) |
| 13 | | f1dm 6763 |
. . . . . . . . . . 11
⊢ (𝐹:𝑋–1-1→𝑌 → dom 𝐹 = 𝑋) |
| 14 | 13 | 3ad2ant2 1134 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → dom 𝐹 = 𝑋) |
| 15 | 12, 14 | eqtr3d 2767 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∪ 𝐽 = 𝑋) |
| 16 | 15 | eleq2d 2815 |
. . . . . . . 8
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ ∪ 𝐽 ↔ 𝑥 ∈ 𝑋)) |
| 17 | 16 | biimpa 476 |
. . . . . . 7
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → 𝑥 ∈ 𝑋) |
| 18 | 17 | snssd 4776 |
. . . . . 6
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → {𝑥} ⊆ 𝑋) |
| 19 | | f1imacnv 6819 |
. . . . . 6
⊢ ((𝐹:𝑋–1-1→𝑌 ∧ {𝑥} ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ {𝑥})) = {𝑥}) |
| 20 | 11, 18, 19 | syl2anc 584 |
. . . . 5
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → (◡𝐹 “ (𝐹 “ {𝑥})) = {𝑥}) |
| 21 | 10, 20 | eqtrd 2765 |
. . . 4
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → (◡𝐹 “ {(𝐹‘𝑥)}) = {𝑥}) |
| 22 | | simpl3 1194 |
. . . . 5
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 23 | | simpl1 1192 |
. . . . . 6
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → 𝐾 ∈ Fre) |
| 24 | 6 | ffvelcdmda 7059 |
. . . . . 6
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → (𝐹‘𝑥) ∈ ∪ 𝐾) |
| 25 | 4 | t1sncld 23220 |
. . . . . 6
⊢ ((𝐾 ∈ Fre ∧ (𝐹‘𝑥) ∈ ∪ 𝐾) → {(𝐹‘𝑥)} ∈ (Clsd‘𝐾)) |
| 26 | 23, 24, 25 | syl2anc 584 |
. . . . 5
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → {(𝐹‘𝑥)} ∈ (Clsd‘𝐾)) |
| 27 | | cnclima 23162 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ {(𝐹‘𝑥)} ∈ (Clsd‘𝐾)) → (◡𝐹 “ {(𝐹‘𝑥)}) ∈ (Clsd‘𝐽)) |
| 28 | 22, 26, 27 | syl2anc 584 |
. . . 4
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → (◡𝐹 “ {(𝐹‘𝑥)}) ∈ (Clsd‘𝐽)) |
| 29 | 21, 28 | eqeltrrd 2830 |
. . 3
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → {𝑥} ∈ (Clsd‘𝐽)) |
| 30 | 29 | ralrimiva 3126 |
. 2
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ ∪ 𝐽{𝑥} ∈ (Clsd‘𝐽)) |
| 31 | 3 | ist1 23215 |
. 2
⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽{𝑥} ∈ (Clsd‘𝐽))) |
| 32 | 2, 30, 31 | sylanbrc 583 |
1
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre) |