MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnt1 Structured version   Visualization version   GIF version

Theorem cnt1 23359
Description: The preimage of a T1 topology under an injective map is T1. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnt1 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre)

Proof of Theorem cnt1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop1 23249 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
213ad2ant3 1135 . 2 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3 eqid 2736 . . . . . . . . . 10 𝐽 = 𝐽
4 eqid 2736 . . . . . . . . . 10 𝐾 = 𝐾
53, 4cnf 23255 . . . . . . . . 9 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
653ad2ant3 1135 . . . . . . . 8 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽 𝐾)
76ffnd 6736 . . . . . . 7 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 Fn 𝐽)
8 fnsnfv 6987 . . . . . . 7 ((𝐹 Fn 𝐽𝑥 𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
97, 8sylan 580 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
109imaeq2d 6077 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) = (𝐹 “ (𝐹 “ {𝑥})))
11 simpl2 1192 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐹:𝑋1-1𝑌)
126fdmd 6745 . . . . . . . . . 10 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → dom 𝐹 = 𝐽)
13 f1dm 6807 . . . . . . . . . . 11 (𝐹:𝑋1-1𝑌 → dom 𝐹 = 𝑋)
14133ad2ant2 1134 . . . . . . . . . 10 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → dom 𝐹 = 𝑋)
1512, 14eqtr3d 2778 . . . . . . . . 9 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 = 𝑋)
1615eleq2d 2826 . . . . . . . 8 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑥 𝐽𝑥𝑋))
1716biimpa 476 . . . . . . 7 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝑥𝑋)
1817snssd 4808 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {𝑥} ⊆ 𝑋)
19 f1imacnv 6863 . . . . . 6 ((𝐹:𝑋1-1𝑌 ∧ {𝑥} ⊆ 𝑋) → (𝐹 “ (𝐹 “ {𝑥})) = {𝑥})
2011, 18, 19syl2anc 584 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ (𝐹 “ {𝑥})) = {𝑥})
2110, 20eqtrd 2776 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) = {𝑥})
22 simpl3 1193 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐹 ∈ (𝐽 Cn 𝐾))
23 simpl1 1191 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐾 ∈ Fre)
246ffvelcdmda 7103 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹𝑥) ∈ 𝐾)
254t1sncld 23335 . . . . . 6 ((𝐾 ∈ Fre ∧ (𝐹𝑥) ∈ 𝐾) → {(𝐹𝑥)} ∈ (Clsd‘𝐾))
2623, 24, 25syl2anc 584 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {(𝐹𝑥)} ∈ (Clsd‘𝐾))
27 cnclima 23277 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ {(𝐹𝑥)} ∈ (Clsd‘𝐾)) → (𝐹 “ {(𝐹𝑥)}) ∈ (Clsd‘𝐽))
2822, 26, 27syl2anc 584 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) ∈ (Clsd‘𝐽))
2921, 28eqeltrrd 2841 . . 3 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {𝑥} ∈ (Clsd‘𝐽))
3029ralrimiva 3145 . 2 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽{𝑥} ∈ (Clsd‘𝐽))
313ist1 23330 . 2 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽{𝑥} ∈ (Clsd‘𝐽)))
322, 30, 31sylanbrc 583 1 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  wss 3950  {csn 4625   cuni 4906  ccnv 5683  dom cdm 5684  cima 5687   Fn wfn 6555  wf 6556  1-1wf1 6557  cfv 6560  (class class class)co 7432  Topctop 22900  Clsdccld 23025   Cn ccn 23233  Frect1 23316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-map 8869  df-top 22901  df-topon 22918  df-cld 23028  df-cn 23236  df-t1 23323
This theorem is referenced by:  restt1  23376  sst1  23383  t1hmph  23800
  Copyright terms: Public domain W3C validator