MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnt1 Structured version   Visualization version   GIF version

Theorem cnt1 23374
Description: The preimage of a T1 topology under an injective map is T1. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnt1 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre)

Proof of Theorem cnt1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop1 23264 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
213ad2ant3 1134 . 2 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3 eqid 2735 . . . . . . . . . 10 𝐽 = 𝐽
4 eqid 2735 . . . . . . . . . 10 𝐾 = 𝐾
53, 4cnf 23270 . . . . . . . . 9 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
653ad2ant3 1134 . . . . . . . 8 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽 𝐾)
76ffnd 6738 . . . . . . 7 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 Fn 𝐽)
8 fnsnfv 6988 . . . . . . 7 ((𝐹 Fn 𝐽𝑥 𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
97, 8sylan 580 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
109imaeq2d 6080 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) = (𝐹 “ (𝐹 “ {𝑥})))
11 simpl2 1191 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐹:𝑋1-1𝑌)
126fdmd 6747 . . . . . . . . . 10 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → dom 𝐹 = 𝐽)
13 f1dm 6809 . . . . . . . . . . 11 (𝐹:𝑋1-1𝑌 → dom 𝐹 = 𝑋)
14133ad2ant2 1133 . . . . . . . . . 10 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → dom 𝐹 = 𝑋)
1512, 14eqtr3d 2777 . . . . . . . . 9 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 = 𝑋)
1615eleq2d 2825 . . . . . . . 8 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑥 𝐽𝑥𝑋))
1716biimpa 476 . . . . . . 7 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝑥𝑋)
1817snssd 4814 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {𝑥} ⊆ 𝑋)
19 f1imacnv 6865 . . . . . 6 ((𝐹:𝑋1-1𝑌 ∧ {𝑥} ⊆ 𝑋) → (𝐹 “ (𝐹 “ {𝑥})) = {𝑥})
2011, 18, 19syl2anc 584 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ (𝐹 “ {𝑥})) = {𝑥})
2110, 20eqtrd 2775 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) = {𝑥})
22 simpl3 1192 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐹 ∈ (𝐽 Cn 𝐾))
23 simpl1 1190 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐾 ∈ Fre)
246ffvelcdmda 7104 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹𝑥) ∈ 𝐾)
254t1sncld 23350 . . . . . 6 ((𝐾 ∈ Fre ∧ (𝐹𝑥) ∈ 𝐾) → {(𝐹𝑥)} ∈ (Clsd‘𝐾))
2623, 24, 25syl2anc 584 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {(𝐹𝑥)} ∈ (Clsd‘𝐾))
27 cnclima 23292 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ {(𝐹𝑥)} ∈ (Clsd‘𝐾)) → (𝐹 “ {(𝐹𝑥)}) ∈ (Clsd‘𝐽))
2822, 26, 27syl2anc 584 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) ∈ (Clsd‘𝐽))
2921, 28eqeltrrd 2840 . . 3 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {𝑥} ∈ (Clsd‘𝐽))
3029ralrimiva 3144 . 2 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽{𝑥} ∈ (Clsd‘𝐽))
313ist1 23345 . 2 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽{𝑥} ∈ (Clsd‘𝐽)))
322, 30, 31sylanbrc 583 1 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963  {csn 4631   cuni 4912  ccnv 5688  dom cdm 5689  cima 5692   Fn wfn 6558  wf 6559  1-1wf1 6560  cfv 6563  (class class class)co 7431  Topctop 22915  Clsdccld 23040   Cn ccn 23248  Frect1 23331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-top 22916  df-topon 22933  df-cld 23043  df-cn 23251  df-t1 23338
This theorem is referenced by:  restt1  23391  sst1  23398  t1hmph  23815
  Copyright terms: Public domain W3C validator