| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cntop1 23249 | . . 3
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | 
| 2 | 1 | 3ad2ant3 1135 | . 2
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top) | 
| 3 |  | eqid 2736 | . . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 4 |  | eqid 2736 | . . . . . . . . . 10
⊢ ∪ 𝐾 =
∪ 𝐾 | 
| 5 | 3, 4 | cnf 23255 | . . . . . . . . 9
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) | 
| 6 | 5 | 3ad2ant3 1135 | . . . . . . . 8
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽⟶∪ 𝐾) | 
| 7 | 6 | ffnd 6736 | . . . . . . 7
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 Fn ∪ 𝐽) | 
| 8 |  | fnsnfv 6987 | . . . . . . 7
⊢ ((𝐹 Fn ∪
𝐽 ∧ 𝑥 ∈ ∪ 𝐽) → {(𝐹‘𝑥)} = (𝐹 “ {𝑥})) | 
| 9 | 7, 8 | sylan 580 | . . . . . 6
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → {(𝐹‘𝑥)} = (𝐹 “ {𝑥})) | 
| 10 | 9 | imaeq2d 6077 | . . . . 5
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → (◡𝐹 “ {(𝐹‘𝑥)}) = (◡𝐹 “ (𝐹 “ {𝑥}))) | 
| 11 |  | simpl2 1192 | . . . . . 6
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → 𝐹:𝑋–1-1→𝑌) | 
| 12 | 6 | fdmd 6745 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → dom 𝐹 = ∪ 𝐽) | 
| 13 |  | f1dm 6807 | . . . . . . . . . . 11
⊢ (𝐹:𝑋–1-1→𝑌 → dom 𝐹 = 𝑋) | 
| 14 | 13 | 3ad2ant2 1134 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → dom 𝐹 = 𝑋) | 
| 15 | 12, 14 | eqtr3d 2778 | . . . . . . . . 9
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∪ 𝐽 = 𝑋) | 
| 16 | 15 | eleq2d 2826 | . . . . . . . 8
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ ∪ 𝐽 ↔ 𝑥 ∈ 𝑋)) | 
| 17 | 16 | biimpa 476 | . . . . . . 7
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → 𝑥 ∈ 𝑋) | 
| 18 | 17 | snssd 4808 | . . . . . 6
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → {𝑥} ⊆ 𝑋) | 
| 19 |  | f1imacnv 6863 | . . . . . 6
⊢ ((𝐹:𝑋–1-1→𝑌 ∧ {𝑥} ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ {𝑥})) = {𝑥}) | 
| 20 | 11, 18, 19 | syl2anc 584 | . . . . 5
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → (◡𝐹 “ (𝐹 “ {𝑥})) = {𝑥}) | 
| 21 | 10, 20 | eqtrd 2776 | . . . 4
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → (◡𝐹 “ {(𝐹‘𝑥)}) = {𝑥}) | 
| 22 |  | simpl3 1193 | . . . . 5
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → 𝐹 ∈ (𝐽 Cn 𝐾)) | 
| 23 |  | simpl1 1191 | . . . . . 6
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → 𝐾 ∈ Fre) | 
| 24 | 6 | ffvelcdmda 7103 | . . . . . 6
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → (𝐹‘𝑥) ∈ ∪ 𝐾) | 
| 25 | 4 | t1sncld 23335 | . . . . . 6
⊢ ((𝐾 ∈ Fre ∧ (𝐹‘𝑥) ∈ ∪ 𝐾) → {(𝐹‘𝑥)} ∈ (Clsd‘𝐾)) | 
| 26 | 23, 24, 25 | syl2anc 584 | . . . . 5
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → {(𝐹‘𝑥)} ∈ (Clsd‘𝐾)) | 
| 27 |  | cnclima 23277 | . . . . 5
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ {(𝐹‘𝑥)} ∈ (Clsd‘𝐾)) → (◡𝐹 “ {(𝐹‘𝑥)}) ∈ (Clsd‘𝐽)) | 
| 28 | 22, 26, 27 | syl2anc 584 | . . . 4
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → (◡𝐹 “ {(𝐹‘𝑥)}) ∈ (Clsd‘𝐽)) | 
| 29 | 21, 28 | eqeltrrd 2841 | . . 3
⊢ (((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ ∪ 𝐽) → {𝑥} ∈ (Clsd‘𝐽)) | 
| 30 | 29 | ralrimiva 3145 | . 2
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ ∪ 𝐽{𝑥} ∈ (Clsd‘𝐽)) | 
| 31 | 3 | ist1 23330 | . 2
⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽{𝑥} ∈ (Clsd‘𝐽))) | 
| 32 | 2, 30, 31 | sylanbrc 583 | 1
⊢ ((𝐾 ∈ Fre ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre) |