MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnt1 Structured version   Visualization version   GIF version

Theorem cnt1 22501
Description: The preimage of a T1 topology under an injective map is T1. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnt1 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre)

Proof of Theorem cnt1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop1 22391 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
213ad2ant3 1134 . 2 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3 eqid 2738 . . . . . . . . . 10 𝐽 = 𝐽
4 eqid 2738 . . . . . . . . . 10 𝐾 = 𝐾
53, 4cnf 22397 . . . . . . . . 9 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
653ad2ant3 1134 . . . . . . . 8 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽 𝐾)
76ffnd 6601 . . . . . . 7 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 Fn 𝐽)
8 fnsnfv 6847 . . . . . . 7 ((𝐹 Fn 𝐽𝑥 𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
97, 8sylan 580 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
109imaeq2d 5969 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) = (𝐹 “ (𝐹 “ {𝑥})))
11 simpl2 1191 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐹:𝑋1-1𝑌)
126fdmd 6611 . . . . . . . . . 10 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → dom 𝐹 = 𝐽)
13 f1dm 6674 . . . . . . . . . . 11 (𝐹:𝑋1-1𝑌 → dom 𝐹 = 𝑋)
14133ad2ant2 1133 . . . . . . . . . 10 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → dom 𝐹 = 𝑋)
1512, 14eqtr3d 2780 . . . . . . . . 9 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 = 𝑋)
1615eleq2d 2824 . . . . . . . 8 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑥 𝐽𝑥𝑋))
1716biimpa 477 . . . . . . 7 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝑥𝑋)
1817snssd 4742 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {𝑥} ⊆ 𝑋)
19 f1imacnv 6732 . . . . . 6 ((𝐹:𝑋1-1𝑌 ∧ {𝑥} ⊆ 𝑋) → (𝐹 “ (𝐹 “ {𝑥})) = {𝑥})
2011, 18, 19syl2anc 584 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ (𝐹 “ {𝑥})) = {𝑥})
2110, 20eqtrd 2778 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) = {𝑥})
22 simpl3 1192 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐹 ∈ (𝐽 Cn 𝐾))
23 simpl1 1190 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐾 ∈ Fre)
246ffvelrnda 6961 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹𝑥) ∈ 𝐾)
254t1sncld 22477 . . . . . 6 ((𝐾 ∈ Fre ∧ (𝐹𝑥) ∈ 𝐾) → {(𝐹𝑥)} ∈ (Clsd‘𝐾))
2623, 24, 25syl2anc 584 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {(𝐹𝑥)} ∈ (Clsd‘𝐾))
27 cnclima 22419 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ {(𝐹𝑥)} ∈ (Clsd‘𝐾)) → (𝐹 “ {(𝐹𝑥)}) ∈ (Clsd‘𝐽))
2822, 26, 27syl2anc 584 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) ∈ (Clsd‘𝐽))
2921, 28eqeltrrd 2840 . . 3 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {𝑥} ∈ (Clsd‘𝐽))
3029ralrimiva 3103 . 2 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽{𝑥} ∈ (Clsd‘𝐽))
313ist1 22472 . 2 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽{𝑥} ∈ (Clsd‘𝐽)))
322, 30, 31sylanbrc 583 1 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wss 3887  {csn 4561   cuni 4839  ccnv 5588  dom cdm 5589  cima 5592   Fn wfn 6428  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  Topctop 22042  Clsdccld 22167   Cn ccn 22375  Frect1 22458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-top 22043  df-topon 22060  df-cld 22170  df-cn 22378  df-t1 22465
This theorem is referenced by:  restt1  22518  sst1  22525  t1hmph  22942
  Copyright terms: Public domain W3C validator