MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnt1 Structured version   Visualization version   GIF version

Theorem cnt1 23273
Description: The preimage of a T1 topology under an injective map is T1. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnt1 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre)

Proof of Theorem cnt1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop1 23163 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
213ad2ant3 1135 . 2 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3 eqid 2734 . . . . . . . . . 10 𝐽 = 𝐽
4 eqid 2734 . . . . . . . . . 10 𝐾 = 𝐾
53, 4cnf 23169 . . . . . . . . 9 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
653ad2ant3 1135 . . . . . . . 8 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽 𝐾)
76ffnd 6703 . . . . . . 7 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 Fn 𝐽)
8 fnsnfv 6954 . . . . . . 7 ((𝐹 Fn 𝐽𝑥 𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
97, 8sylan 580 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
109imaeq2d 6044 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) = (𝐹 “ (𝐹 “ {𝑥})))
11 simpl2 1192 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐹:𝑋1-1𝑌)
126fdmd 6712 . . . . . . . . . 10 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → dom 𝐹 = 𝐽)
13 f1dm 6774 . . . . . . . . . . 11 (𝐹:𝑋1-1𝑌 → dom 𝐹 = 𝑋)
14133ad2ant2 1134 . . . . . . . . . 10 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → dom 𝐹 = 𝑋)
1512, 14eqtr3d 2771 . . . . . . . . 9 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 = 𝑋)
1615eleq2d 2819 . . . . . . . 8 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑥 𝐽𝑥𝑋))
1716biimpa 476 . . . . . . 7 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝑥𝑋)
1817snssd 4782 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {𝑥} ⊆ 𝑋)
19 f1imacnv 6830 . . . . . 6 ((𝐹:𝑋1-1𝑌 ∧ {𝑥} ⊆ 𝑋) → (𝐹 “ (𝐹 “ {𝑥})) = {𝑥})
2011, 18, 19syl2anc 584 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ (𝐹 “ {𝑥})) = {𝑥})
2110, 20eqtrd 2769 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) = {𝑥})
22 simpl3 1193 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐹 ∈ (𝐽 Cn 𝐾))
23 simpl1 1191 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐾 ∈ Fre)
246ffvelcdmda 7070 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹𝑥) ∈ 𝐾)
254t1sncld 23249 . . . . . 6 ((𝐾 ∈ Fre ∧ (𝐹𝑥) ∈ 𝐾) → {(𝐹𝑥)} ∈ (Clsd‘𝐾))
2623, 24, 25syl2anc 584 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {(𝐹𝑥)} ∈ (Clsd‘𝐾))
27 cnclima 23191 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ {(𝐹𝑥)} ∈ (Clsd‘𝐾)) → (𝐹 “ {(𝐹𝑥)}) ∈ (Clsd‘𝐽))
2822, 26, 27syl2anc 584 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) ∈ (Clsd‘𝐽))
2921, 28eqeltrrd 2834 . . 3 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {𝑥} ∈ (Clsd‘𝐽))
3029ralrimiva 3130 . 2 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽{𝑥} ∈ (Clsd‘𝐽))
313ist1 23244 . 2 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽{𝑥} ∈ (Clsd‘𝐽)))
322, 30, 31sylanbrc 583 1 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wss 3924  {csn 4599   cuni 4880  ccnv 5650  dom cdm 5651  cima 5654   Fn wfn 6522  wf 6523  1-1wf1 6524  cfv 6527  (class class class)co 7399  Topctop 22816  Clsdccld 22939   Cn ccn 23147  Frect1 23230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-map 8836  df-top 22817  df-topon 22834  df-cld 22942  df-cn 23150  df-t1 23237
This theorem is referenced by:  restt1  23290  sst1  23297  t1hmph  23714
  Copyright terms: Public domain W3C validator