Step | Hyp | Ref
| Expression |
1 | | simplr 765 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) → ¬ 𝑆 ∈ Fin) |
2 | | fzfi 13620 |
. . . 4
⊢
(1...𝑁) ∈
Fin |
3 | | difinf 9014 |
. . . 4
⊢ ((¬
𝑆 ∈ Fin ∧
(1...𝑁) ∈ Fin) →
¬ (𝑆 ∖ (1...𝑁)) ∈ Fin) |
4 | 1, 2, 3 | sylancl 585 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) → ¬ (𝑆 ∖ (1...𝑁)) ∈ Fin) |
5 | | fzfi 13620 |
. . . 4
⊢
(1...𝐴) ∈
Fin |
6 | | diffi 8979 |
. . . 4
⊢
((1...𝐴) ∈ Fin
→ ((1...𝐴) ∖
(1...𝑁)) ∈
Fin) |
7 | 5, 6 | ax-mp 5 |
. . 3
⊢
((1...𝐴) ∖
(1...𝑁)) ∈
Fin |
8 | | isinffi 9681 |
. . 3
⊢ ((¬
(𝑆 ∖ (1...𝑁)) ∈ Fin ∧ ((1...𝐴) ∖ (1...𝑁)) ∈ Fin) → ∃𝑎 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) |
9 | 4, 7, 8 | sylancl 585 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) → ∃𝑎 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) |
10 | | f1f1orn 6711 |
. . . . . . . 8
⊢ (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1-onto→ran
𝑎) |
11 | 10 | adantl 481 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1-onto→ran
𝑎) |
12 | | f1oi 6737 |
. . . . . . . 8
⊢ ( I
↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁) |
13 | 12 | a1i 11 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)) |
14 | | disjdifr 4403 |
. . . . . . . 8
⊢
(((1...𝐴) ∖
(1...𝑁)) ∩ (1...𝑁)) = ∅ |
15 | 14 | a1i 11 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (((1...𝐴) ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅) |
16 | | f1f 6654 |
. . . . . . . . . . . 12
⊢ (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → 𝑎:((1...𝐴) ∖ (1...𝑁))⟶(𝑆 ∖ (1...𝑁))) |
17 | 16 | frnd 6592 |
. . . . . . . . . . 11
⊢ (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → ran 𝑎 ⊆ (𝑆 ∖ (1...𝑁))) |
18 | 17 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ran 𝑎 ⊆ (𝑆 ∖ (1...𝑁))) |
19 | 18 | ssrind 4166 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (ran 𝑎 ∩ (1...𝑁)) ⊆ ((𝑆 ∖ (1...𝑁)) ∩ (1...𝑁))) |
20 | | disjdifr 4403 |
. . . . . . . . 9
⊢ ((𝑆 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅ |
21 | 19, 20 | sseqtrdi 3967 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (ran 𝑎 ∩ (1...𝑁)) ⊆ ∅) |
22 | | ss0 4329 |
. . . . . . . 8
⊢ ((ran
𝑎 ∩ (1...𝑁)) ⊆ ∅ → (ran
𝑎 ∩ (1...𝑁)) = ∅) |
23 | 21, 22 | syl 17 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (ran 𝑎 ∩ (1...𝑁)) = ∅) |
24 | | f1oun 6719 |
. . . . . . 7
⊢ (((𝑎:((1...𝐴) ∖ (1...𝑁))–1-1-onto→ran
𝑎 ∧ ( I ↾
(1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)) ∧ ((((1...𝐴) ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅ ∧ (ran 𝑎 ∩ (1...𝑁)) = ∅)) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1-onto→(ran
𝑎 ∪ (1...𝑁))) |
25 | 11, 13, 15, 23, 24 | syl22anc 835 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1-onto→(ran
𝑎 ∪ (1...𝑁))) |
26 | | f1of1 6699 |
. . . . . 6
⊢ ((𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1-onto→(ran
𝑎 ∪ (1...𝑁)) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1→(ran 𝑎 ∪ (1...𝑁))) |
27 | 25, 26 | syl 17 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1→(ran 𝑎 ∪ (1...𝑁))) |
28 | | uncom 4083 |
. . . . . . 7
⊢
(((1...𝐴) ∖
(1...𝑁)) ∪ (1...𝑁)) = ((1...𝑁) ∪ ((1...𝐴) ∖ (1...𝑁))) |
29 | | simplrr 774 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → 𝐴 ∈ (ℤ≥‘𝑁)) |
30 | | fzss2 13225 |
. . . . . . . . 9
⊢ (𝐴 ∈
(ℤ≥‘𝑁) → (1...𝑁) ⊆ (1...𝐴)) |
31 | 29, 30 | syl 17 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (1...𝑁) ⊆ (1...𝐴)) |
32 | | undif 4412 |
. . . . . . . 8
⊢
((1...𝑁) ⊆
(1...𝐴) ↔ ((1...𝑁) ∪ ((1...𝐴) ∖ (1...𝑁))) = (1...𝐴)) |
33 | 31, 32 | sylib 217 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((1...𝑁) ∪ ((1...𝐴) ∖ (1...𝑁))) = (1...𝐴)) |
34 | 28, 33 | syl5eq 2791 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁)) = (1...𝐴)) |
35 | | f1eq2 6650 |
. . . . . 6
⊢
((((1...𝐴) ∖
(1...𝑁)) ∪ (1...𝑁)) = (1...𝐴) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1→(ran 𝑎 ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→(ran 𝑎 ∪ (1...𝑁)))) |
36 | 34, 35 | syl 17 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1→(ran 𝑎 ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→(ran 𝑎 ∪ (1...𝑁)))) |
37 | 27, 36 | mpbid 231 |
. . . 4
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→(ran 𝑎 ∪ (1...𝑁))) |
38 | 17 | difss2d 4065 |
. . . . . 6
⊢ (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → ran 𝑎 ⊆ 𝑆) |
39 | 38 | adantl 481 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ran 𝑎 ⊆ 𝑆) |
40 | | simplrl 773 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (1...𝑁) ⊆ 𝑆) |
41 | 39, 40 | unssd 4116 |
. . . 4
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (ran 𝑎 ∪ (1...𝑁)) ⊆ 𝑆) |
42 | | f1ss 6660 |
. . . 4
⊢ (((𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→(ran 𝑎 ∪ (1...𝑁)) ∧ (ran 𝑎 ∪ (1...𝑁)) ⊆ 𝑆) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→𝑆) |
43 | 37, 41, 42 | syl2anc 583 |
. . 3
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→𝑆) |
44 | | resundir 5895 |
. . . 4
⊢ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) |
45 | | dmres 5902 |
. . . . . . . 8
⊢ dom
(𝑎 ↾ (1...𝑁)) = ((1...𝑁) ∩ dom 𝑎) |
46 | | incom 4131 |
. . . . . . . . 9
⊢
((1...𝑁) ∩ dom
𝑎) = (dom 𝑎 ∩ (1...𝑁)) |
47 | | f1dm 6658 |
. . . . . . . . . . . 12
⊢ (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → dom 𝑎 = ((1...𝐴) ∖ (1...𝑁))) |
48 | 47 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → dom 𝑎 = ((1...𝐴) ∖ (1...𝑁))) |
49 | 48 | ineq1d 4142 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (dom 𝑎 ∩ (1...𝑁)) = (((1...𝐴) ∖ (1...𝑁)) ∩ (1...𝑁))) |
50 | 49, 14 | eqtrdi 2795 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (dom 𝑎 ∩ (1...𝑁)) = ∅) |
51 | 46, 50 | syl5eq 2791 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ∅) |
52 | 45, 51 | syl5eq 2791 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → dom (𝑎 ↾ (1...𝑁)) = ∅) |
53 | | relres 5909 |
. . . . . . . 8
⊢ Rel
(𝑎 ↾ (1...𝑁)) |
54 | | reldm0 5826 |
. . . . . . . 8
⊢ (Rel
(𝑎 ↾ (1...𝑁)) → ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅)) |
55 | 53, 54 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅) |
56 | 52, 55 | sylibr 233 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ↾ (1...𝑁)) = ∅) |
57 | | residm 5913 |
. . . . . . 7
⊢ (( I
↾ (1...𝑁)) ↾
(1...𝑁)) = ( I ↾
(1...𝑁)) |
58 | 57 | a1i 11 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (( I ↾ (1...𝑁)) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) |
59 | 56, 58 | uneq12d 4094 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = (∅ ∪ ( I ↾ (1...𝑁)))) |
60 | | uncom 4083 |
. . . . . 6
⊢ (∅
∪ ( I ↾ (1...𝑁)))
= (( I ↾ (1...𝑁))
∪ ∅) |
61 | | un0 4321 |
. . . . . 6
⊢ (( I
↾ (1...𝑁)) ∪
∅) = ( I ↾ (1...𝑁)) |
62 | 60, 61 | eqtri 2766 |
. . . . 5
⊢ (∅
∪ ( I ↾ (1...𝑁)))
= ( I ↾ (1...𝑁)) |
63 | 59, 62 | eqtrdi 2795 |
. . . 4
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = ( I ↾ (1...𝑁))) |
64 | 44, 63 | syl5eq 2791 |
. . 3
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) |
65 | | vex 3426 |
. . . . 5
⊢ 𝑎 ∈ V |
66 | | ovex 7288 |
. . . . . 6
⊢
(1...𝑁) ∈
V |
67 | | resiexg 7735 |
. . . . . 6
⊢
((1...𝑁) ∈ V
→ ( I ↾ (1...𝑁))
∈ V) |
68 | 66, 67 | ax-mp 5 |
. . . . 5
⊢ ( I
↾ (1...𝑁)) ∈
V |
69 | 65, 68 | unex 7574 |
. . . 4
⊢ (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V |
70 | | f1eq1 6649 |
. . . . 5
⊢ (𝑐 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑐:(1...𝐴)–1-1→𝑆 ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→𝑆)) |
71 | | reseq1 5874 |
. . . . . 6
⊢ (𝑐 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑐 ↾ (1...𝑁)) = ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁))) |
72 | 71 | eqeq1d 2740 |
. . . . 5
⊢ (𝑐 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
73 | 70, 72 | anbi12d 630 |
. . . 4
⊢ (𝑐 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑐:(1...𝐴)–1-1→𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→𝑆 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))) |
74 | 69, 73 | spcev 3535 |
. . 3
⊢ (((𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→𝑆 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1→𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
75 | 43, 64, 74 | syl2anc 583 |
. 2
⊢ ((((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1→𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
76 | 9, 75 | exlimddv 1939 |
1
⊢ (((𝑁 ∈ ℕ0
∧ ¬ 𝑆 ∈ Fin)
∧ ((1...𝑁) ⊆
𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1→𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |