Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2lem2 Structured version   Visualization version   GIF version

Theorem eldioph2lem2 41070
Description: Lemma for eldioph2 41071. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
eldioph2lem2 (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
Distinct variable groups:   𝑁,𝑐   𝑆,𝑐   𝐴,𝑐

Proof of Theorem eldioph2lem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . 4 (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) → ¬ 𝑆 ∈ Fin)
2 fzfi 13877 . . . 4 (1...𝑁) ∈ Fin
3 difinf 9260 . . . 4 ((¬ 𝑆 ∈ Fin ∧ (1...𝑁) ∈ Fin) → ¬ (𝑆 ∖ (1...𝑁)) ∈ Fin)
41, 2, 3sylancl 586 . . 3 (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) → ¬ (𝑆 ∖ (1...𝑁)) ∈ Fin)
5 fzfi 13877 . . . 4 (1...𝐴) ∈ Fin
6 diffi 9123 . . . 4 ((1...𝐴) ∈ Fin → ((1...𝐴) ∖ (1...𝑁)) ∈ Fin)
75, 6ax-mp 5 . . 3 ((1...𝐴) ∖ (1...𝑁)) ∈ Fin
8 isinffi 9928 . . 3 ((¬ (𝑆 ∖ (1...𝑁)) ∈ Fin ∧ ((1...𝐴) ∖ (1...𝑁)) ∈ Fin) → ∃𝑎 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)))
94, 7, 8sylancl 586 . 2 (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) → ∃𝑎 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)))
10 f1f1orn 6795 . . . . . . . 8 (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1-onto→ran 𝑎)
1110adantl 482 . . . . . . 7 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1-onto→ran 𝑎)
12 f1oi 6822 . . . . . . . 8 ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)
1312a1i 11 . . . . . . 7 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁))
14 disjdifr 4432 . . . . . . . 8 (((1...𝐴) ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅
1514a1i 11 . . . . . . 7 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (((1...𝐴) ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅)
16 f1f 6738 . . . . . . . . . . . 12 (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → 𝑎:((1...𝐴) ∖ (1...𝑁))⟶(𝑆 ∖ (1...𝑁)))
1716frnd 6676 . . . . . . . . . . 11 (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → ran 𝑎 ⊆ (𝑆 ∖ (1...𝑁)))
1817adantl 482 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ran 𝑎 ⊆ (𝑆 ∖ (1...𝑁)))
1918ssrind 4195 . . . . . . . . 9 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (ran 𝑎 ∩ (1...𝑁)) ⊆ ((𝑆 ∖ (1...𝑁)) ∩ (1...𝑁)))
20 disjdifr 4432 . . . . . . . . 9 ((𝑆 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅
2119, 20sseqtrdi 3994 . . . . . . . 8 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (ran 𝑎 ∩ (1...𝑁)) ⊆ ∅)
22 ss0 4358 . . . . . . . 8 ((ran 𝑎 ∩ (1...𝑁)) ⊆ ∅ → (ran 𝑎 ∩ (1...𝑁)) = ∅)
2321, 22syl 17 . . . . . . 7 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (ran 𝑎 ∩ (1...𝑁)) = ∅)
24 f1oun 6803 . . . . . . 7 (((𝑎:((1...𝐴) ∖ (1...𝑁))–1-1-onto→ran 𝑎 ∧ ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)) ∧ ((((1...𝐴) ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅ ∧ (ran 𝑎 ∩ (1...𝑁)) = ∅)) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1-onto→(ran 𝑎 ∪ (1...𝑁)))
2511, 13, 15, 23, 24syl22anc 837 . . . . . 6 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1-onto→(ran 𝑎 ∪ (1...𝑁)))
26 f1of1 6783 . . . . . 6 ((𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1-onto→(ran 𝑎 ∪ (1...𝑁)) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1→(ran 𝑎 ∪ (1...𝑁)))
2725, 26syl 17 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1→(ran 𝑎 ∪ (1...𝑁)))
28 uncom 4113 . . . . . . 7 (((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁)) = ((1...𝑁) ∪ ((1...𝐴) ∖ (1...𝑁)))
29 simplrr 776 . . . . . . . . 9 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → 𝐴 ∈ (ℤ𝑁))
30 fzss2 13481 . . . . . . . . 9 (𝐴 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝐴))
3129, 30syl 17 . . . . . . . 8 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (1...𝑁) ⊆ (1...𝐴))
32 undif 4441 . . . . . . . 8 ((1...𝑁) ⊆ (1...𝐴) ↔ ((1...𝑁) ∪ ((1...𝐴) ∖ (1...𝑁))) = (1...𝐴))
3331, 32sylib 217 . . . . . . 7 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((1...𝑁) ∪ ((1...𝐴) ∖ (1...𝑁))) = (1...𝐴))
3428, 33eqtrid 2788 . . . . . 6 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁)) = (1...𝐴))
35 f1eq2 6734 . . . . . 6 ((((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁)) = (1...𝐴) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1→(ran 𝑎 ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→(ran 𝑎 ∪ (1...𝑁))))
3634, 35syl 17 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1→(ran 𝑎 ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→(ran 𝑎 ∪ (1...𝑁))))
3727, 36mpbid 231 . . . 4 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→(ran 𝑎 ∪ (1...𝑁)))
3817difss2d 4094 . . . . . 6 (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → ran 𝑎𝑆)
3938adantl 482 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ran 𝑎𝑆)
40 simplrl 775 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (1...𝑁) ⊆ 𝑆)
4139, 40unssd 4146 . . . 4 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (ran 𝑎 ∪ (1...𝑁)) ⊆ 𝑆)
42 f1ss 6744 . . . 4 (((𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→(ran 𝑎 ∪ (1...𝑁)) ∧ (ran 𝑎 ∪ (1...𝑁)) ⊆ 𝑆) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1𝑆)
4337, 41, 42syl2anc 584 . . 3 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1𝑆)
44 resundir 5952 . . . 4 ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁)))
45 dmres 5959 . . . . . . . 8 dom (𝑎 ↾ (1...𝑁)) = ((1...𝑁) ∩ dom 𝑎)
46 incom 4161 . . . . . . . . 9 ((1...𝑁) ∩ dom 𝑎) = (dom 𝑎 ∩ (1...𝑁))
47 f1dm 6742 . . . . . . . . . . . 12 (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → dom 𝑎 = ((1...𝐴) ∖ (1...𝑁)))
4847adantl 482 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → dom 𝑎 = ((1...𝐴) ∖ (1...𝑁)))
4948ineq1d 4171 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (dom 𝑎 ∩ (1...𝑁)) = (((1...𝐴) ∖ (1...𝑁)) ∩ (1...𝑁)))
5049, 14eqtrdi 2792 . . . . . . . . 9 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (dom 𝑎 ∩ (1...𝑁)) = ∅)
5146, 50eqtrid 2788 . . . . . . . 8 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ∅)
5245, 51eqtrid 2788 . . . . . . 7 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → dom (𝑎 ↾ (1...𝑁)) = ∅)
53 relres 5966 . . . . . . . 8 Rel (𝑎 ↾ (1...𝑁))
54 reldm0 5883 . . . . . . . 8 (Rel (𝑎 ↾ (1...𝑁)) → ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅))
5553, 54ax-mp 5 . . . . . . 7 ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅)
5652, 55sylibr 233 . . . . . 6 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ↾ (1...𝑁)) = ∅)
57 residm 5970 . . . . . . 7 (( I ↾ (1...𝑁)) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))
5857a1i 11 . . . . . 6 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (( I ↾ (1...𝑁)) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
5956, 58uneq12d 4124 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = (∅ ∪ ( I ↾ (1...𝑁))))
60 uncom 4113 . . . . . 6 (∅ ∪ ( I ↾ (1...𝑁))) = (( I ↾ (1...𝑁)) ∪ ∅)
61 un0 4350 . . . . . 6 (( I ↾ (1...𝑁)) ∪ ∅) = ( I ↾ (1...𝑁))
6260, 61eqtri 2764 . . . . 5 (∅ ∪ ( I ↾ (1...𝑁))) = ( I ↾ (1...𝑁))
6359, 62eqtrdi 2792 . . . 4 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = ( I ↾ (1...𝑁)))
6444, 63eqtrid 2788 . . 3 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
65 vex 3449 . . . . 5 𝑎 ∈ V
66 ovex 7390 . . . . . 6 (1...𝑁) ∈ V
67 resiexg 7851 . . . . . 6 ((1...𝑁) ∈ V → ( I ↾ (1...𝑁)) ∈ V)
6866, 67ax-mp 5 . . . . 5 ( I ↾ (1...𝑁)) ∈ V
6965, 68unex 7680 . . . 4 (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V
70 f1eq1 6733 . . . . 5 (𝑐 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑐:(1...𝐴)–1-1𝑆 ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1𝑆))
71 reseq1 5931 . . . . . 6 (𝑐 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑐 ↾ (1...𝑁)) = ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)))
7271eqeq1d 2738 . . . . 5 (𝑐 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
7370, 72anbi12d 631 . . . 4 (𝑐 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑐:(1...𝐴)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1𝑆 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))))
7469, 73spcev 3565 . . 3 (((𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1𝑆 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
7543, 64, 74syl2anc 584 . 2 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
769, 75exlimddv 1938 1 (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282   I cid 5530  dom cdm 5633  ran crn 5634  cres 5635  Rel wrel 5638  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  Fincfn 8883  1c1 11052  0cn0 12413  cuz 12763  ...cfz 13424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425
This theorem is referenced by:  eldioph2b  41072
  Copyright terms: Public domain W3C validator