MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomr Structured version   Visualization version   GIF version

Theorem fodomr 9052
Description: There exists a mapping from a set onto any (nonempty) set that it dominates. (Contributed by NM, 23-Mar-2006.)
Assertion
Ref Expression
fodomr ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fodomr
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8885 . . . 4 Rel ≼
21brrelex2i 5680 . . 3 (𝐵𝐴𝐴 ∈ V)
32adantl 481 . 2 ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ∈ V)
41brrelex1i 5679 . . . 4 (𝐵𝐴𝐵 ∈ V)
5 0sdomg 9030 . . . . 5 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
6 n0 4306 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
75, 6bitrdi 287 . . . 4 (𝐵 ∈ V → (∅ ≺ 𝐵 ↔ ∃𝑧 𝑧𝐵))
84, 7syl 17 . . 3 (𝐵𝐴 → (∅ ≺ 𝐵 ↔ ∃𝑧 𝑧𝐵))
98biimpac 478 . 2 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑧 𝑧𝐵)
10 brdomi 8892 . . 3 (𝐵𝐴 → ∃𝑔 𝑔:𝐵1-1𝐴)
1110adantl 481 . 2 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑔 𝑔:𝐵1-1𝐴)
12 difexg 5271 . . . . . . . . . 10 (𝐴 ∈ V → (𝐴 ∖ ran 𝑔) ∈ V)
13 vsnex 5376 . . . . . . . . . 10 {𝑧} ∈ V
14 xpexg 7690 . . . . . . . . . 10 (((𝐴 ∖ ran 𝑔) ∈ V ∧ {𝑧} ∈ V) → ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V)
1512, 13, 14sylancl 586 . . . . . . . . 9 (𝐴 ∈ V → ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V)
16 vex 3442 . . . . . . . . . 10 𝑔 ∈ V
1716cnvex 7865 . . . . . . . . 9 𝑔 ∈ V
1815, 17jctil 519 . . . . . . . 8 (𝐴 ∈ V → (𝑔 ∈ V ∧ ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V))
19 unexb 7687 . . . . . . . 8 ((𝑔 ∈ V ∧ ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V) ↔ (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ V)
2018, 19sylib 218 . . . . . . 7 (𝐴 ∈ V → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ V)
21 df-f1 6491 . . . . . . . . . . . . 13 (𝑔:𝐵1-1𝐴 ↔ (𝑔:𝐵𝐴 ∧ Fun 𝑔))
2221simprbi 496 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐴 → Fun 𝑔)
23 vex 3442 . . . . . . . . . . . . . 14 𝑧 ∈ V
2423fconst 6714 . . . . . . . . . . . . 13 ((𝐴 ∖ ran 𝑔) × {𝑧}):(𝐴 ∖ ran 𝑔)⟶{𝑧}
25 ffun 6659 . . . . . . . . . . . . 13 (((𝐴 ∖ ran 𝑔) × {𝑧}):(𝐴 ∖ ran 𝑔)⟶{𝑧} → Fun ((𝐴 ∖ ran 𝑔) × {𝑧}))
2624, 25ax-mp 5 . . . . . . . . . . . 12 Fun ((𝐴 ∖ ran 𝑔) × {𝑧})
2722, 26jctir 520 . . . . . . . . . . 11 (𝑔:𝐵1-1𝐴 → (Fun 𝑔 ∧ Fun ((𝐴 ∖ ran 𝑔) × {𝑧})))
28 df-rn 5634 . . . . . . . . . . . . . 14 ran 𝑔 = dom 𝑔
2928eqcomi 2738 . . . . . . . . . . . . 13 dom 𝑔 = ran 𝑔
3023snnz 4730 . . . . . . . . . . . . . 14 {𝑧} ≠ ∅
31 dmxp 5875 . . . . . . . . . . . . . 14 ({𝑧} ≠ ∅ → dom ((𝐴 ∖ ran 𝑔) × {𝑧}) = (𝐴 ∖ ran 𝑔))
3230, 31ax-mp 5 . . . . . . . . . . . . 13 dom ((𝐴 ∖ ran 𝑔) × {𝑧}) = (𝐴 ∖ ran 𝑔)
3329, 32ineq12i 4171 . . . . . . . . . . . 12 (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∩ (𝐴 ∖ ran 𝑔))
34 disjdif 4425 . . . . . . . . . . . 12 (ran 𝑔 ∩ (𝐴 ∖ ran 𝑔)) = ∅
3533, 34eqtri 2752 . . . . . . . . . . 11 (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = ∅
36 funun 6532 . . . . . . . . . . 11 (((Fun 𝑔 ∧ Fun ((𝐴 ∖ ran 𝑔) × {𝑧})) ∧ (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = ∅) → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
3727, 35, 36sylancl 586 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
3837adantl 481 . . . . . . . . 9 ((𝑧𝐵𝑔:𝐵1-1𝐴) → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
39 dmun 5857 . . . . . . . . . . . 12 dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (dom 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧}))
4028uneq1i 4117 . . . . . . . . . . . 12 (ran 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (dom 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧}))
4132uneq2i 4118 . . . . . . . . . . . 12 (ran 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔))
4239, 40, 413eqtr2i 2758 . . . . . . . . . . 11 dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔))
43 f1f 6724 . . . . . . . . . . . . 13 (𝑔:𝐵1-1𝐴𝑔:𝐵𝐴)
4443frnd 6664 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐴 → ran 𝑔𝐴)
45 undif 4435 . . . . . . . . . . . 12 (ran 𝑔𝐴 ↔ (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔)) = 𝐴)
4644, 45sylib 218 . . . . . . . . . . 11 (𝑔:𝐵1-1𝐴 → (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔)) = 𝐴)
4742, 46eqtrid 2776 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴)
4847adantl 481 . . . . . . . . 9 ((𝑧𝐵𝑔:𝐵1-1𝐴) → dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴)
49 df-fn 6489 . . . . . . . . 9 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴 ↔ (Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∧ dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴))
5038, 48, 49sylanbrc 583 . . . . . . . 8 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴)
51 rnun 6098 . . . . . . . . 9 ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧}))
52 dfdm4 5842 . . . . . . . . . . . 12 dom 𝑔 = ran 𝑔
53 f1dm 6728 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐴 → dom 𝑔 = 𝐵)
5452, 53eqtr3id 2778 . . . . . . . . . . 11 (𝑔:𝐵1-1𝐴 → ran 𝑔 = 𝐵)
5554uneq1d 4120 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})))
56 xpeq1 5637 . . . . . . . . . . . . . . . . 17 ((𝐴 ∖ ran 𝑔) = ∅ → ((𝐴 ∖ ran 𝑔) × {𝑧}) = (∅ × {𝑧}))
57 0xp 5722 . . . . . . . . . . . . . . . . 17 (∅ × {𝑧}) = ∅
5856, 57eqtrdi 2780 . . . . . . . . . . . . . . . 16 ((𝐴 ∖ ran 𝑔) = ∅ → ((𝐴 ∖ ran 𝑔) × {𝑧}) = ∅)
5958rneqd 5884 . . . . . . . . . . . . . . 15 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = ran ∅)
60 rn0 5872 . . . . . . . . . . . . . . 15 ran ∅ = ∅
6159, 60eqtrdi 2780 . . . . . . . . . . . . . 14 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = ∅)
62 0ss 4353 . . . . . . . . . . . . . 14 ∅ ⊆ 𝐵
6361, 62eqsstrdi 3982 . . . . . . . . . . . . 13 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
6463a1d 25 . . . . . . . . . . . 12 ((𝐴 ∖ ran 𝑔) = ∅ → (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵))
65 rnxp 6123 . . . . . . . . . . . . . . 15 ((𝐴 ∖ ran 𝑔) ≠ ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = {𝑧})
6665adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = {𝑧})
67 snssi 4762 . . . . . . . . . . . . . . 15 (𝑧𝐵 → {𝑧} ⊆ 𝐵)
6867adantl 481 . . . . . . . . . . . . . 14 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → {𝑧} ⊆ 𝐵)
6966, 68eqsstrd 3972 . . . . . . . . . . . . 13 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
7069ex 412 . . . . . . . . . . . 12 ((𝐴 ∖ ran 𝑔) ≠ ∅ → (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵))
7164, 70pm2.61ine 3008 . . . . . . . . . . 11 (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
72 ssequn2 4142 . . . . . . . . . . 11 (ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵 ↔ (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7371, 72sylib 218 . . . . . . . . . 10 (𝑧𝐵 → (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7455, 73sylan9eqr 2786 . . . . . . . . 9 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7551, 74eqtrid 2776 . . . . . . . 8 ((𝑧𝐵𝑔:𝐵1-1𝐴) → ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
76 df-fo 6492 . . . . . . . 8 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵 ↔ ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴 ∧ ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵))
7750, 75, 76sylanbrc 583 . . . . . . 7 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵)
78 foeq1 6736 . . . . . . . 8 (𝑓 = (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) → (𝑓:𝐴onto𝐵 ↔ (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵))
7978spcegv 3554 . . . . . . 7 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ V → ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵 → ∃𝑓 𝑓:𝐴onto𝐵))
8020, 77, 79syl2im 40 . . . . . 6 (𝐴 ∈ V → ((𝑧𝐵𝑔:𝐵1-1𝐴) → ∃𝑓 𝑓:𝐴onto𝐵))
8180expdimp 452 . . . . 5 ((𝐴 ∈ V ∧ 𝑧𝐵) → (𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵))
8281exlimdv 1933 . . . 4 ((𝐴 ∈ V ∧ 𝑧𝐵) → (∃𝑔 𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵))
8382ex 412 . . 3 (𝐴 ∈ V → (𝑧𝐵 → (∃𝑔 𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵)))
8483exlimdv 1933 . 2 (𝐴 ∈ V → (∃𝑧 𝑧𝐵 → (∃𝑔 𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵)))
853, 9, 11, 84syl3c 66 1 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579   class class class wbr 5095   × cxp 5621  ccnv 5622  dom cdm 5623  ran crn 5624  Fun wfun 6480   Fn wfn 6481  wf 6482  1-1wf1 6483  ontowfo 6484  cdom 8877  csdm 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-en 8880  df-dom 8881  df-sdom 8882
This theorem is referenced by:  pwdom  9053  fodomfibOLD  9240  domwdom  9485  iunfictbso  10027  fodomb  10439  brdom3  10441  konigthlem  10481  1stcfb  23349  ovoliunnul  25425  sigapildsys  34148  carsgclctunlem3  34307  ovoliunnfl  37661  voliunnfl  37663  volsupnfl  37664  modelaxreplem1  44972  nnfoctb  45046  caragenunicl  46525
  Copyright terms: Public domain W3C validator