MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomr Structured version   Visualization version   GIF version

Theorem fodomr 9147
Description: There exists a mapping from a set onto any (nonempty) set that it dominates. (Contributed by NM, 23-Mar-2006.)
Assertion
Ref Expression
fodomr ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fodomr
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8970 . . . 4 Rel ≼
21brrelex2i 5716 . . 3 (𝐵𝐴𝐴 ∈ V)
32adantl 481 . 2 ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ∈ V)
41brrelex1i 5715 . . . 4 (𝐵𝐴𝐵 ∈ V)
5 0sdomg 9123 . . . . 5 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
6 n0 4333 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
75, 6bitrdi 287 . . . 4 (𝐵 ∈ V → (∅ ≺ 𝐵 ↔ ∃𝑧 𝑧𝐵))
84, 7syl 17 . . 3 (𝐵𝐴 → (∅ ≺ 𝐵 ↔ ∃𝑧 𝑧𝐵))
98biimpac 478 . 2 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑧 𝑧𝐵)
10 brdomi 8978 . . 3 (𝐵𝐴 → ∃𝑔 𝑔:𝐵1-1𝐴)
1110adantl 481 . 2 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑔 𝑔:𝐵1-1𝐴)
12 difexg 5304 . . . . . . . . . 10 (𝐴 ∈ V → (𝐴 ∖ ran 𝑔) ∈ V)
13 vsnex 5409 . . . . . . . . . 10 {𝑧} ∈ V
14 xpexg 7749 . . . . . . . . . 10 (((𝐴 ∖ ran 𝑔) ∈ V ∧ {𝑧} ∈ V) → ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V)
1512, 13, 14sylancl 586 . . . . . . . . 9 (𝐴 ∈ V → ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V)
16 vex 3468 . . . . . . . . . 10 𝑔 ∈ V
1716cnvex 7926 . . . . . . . . 9 𝑔 ∈ V
1815, 17jctil 519 . . . . . . . 8 (𝐴 ∈ V → (𝑔 ∈ V ∧ ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V))
19 unexb 7746 . . . . . . . 8 ((𝑔 ∈ V ∧ ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V) ↔ (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ V)
2018, 19sylib 218 . . . . . . 7 (𝐴 ∈ V → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ V)
21 df-f1 6541 . . . . . . . . . . . . 13 (𝑔:𝐵1-1𝐴 ↔ (𝑔:𝐵𝐴 ∧ Fun 𝑔))
2221simprbi 496 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐴 → Fun 𝑔)
23 vex 3468 . . . . . . . . . . . . . 14 𝑧 ∈ V
2423fconst 6769 . . . . . . . . . . . . 13 ((𝐴 ∖ ran 𝑔) × {𝑧}):(𝐴 ∖ ran 𝑔)⟶{𝑧}
25 ffun 6714 . . . . . . . . . . . . 13 (((𝐴 ∖ ran 𝑔) × {𝑧}):(𝐴 ∖ ran 𝑔)⟶{𝑧} → Fun ((𝐴 ∖ ran 𝑔) × {𝑧}))
2624, 25ax-mp 5 . . . . . . . . . . . 12 Fun ((𝐴 ∖ ran 𝑔) × {𝑧})
2722, 26jctir 520 . . . . . . . . . . 11 (𝑔:𝐵1-1𝐴 → (Fun 𝑔 ∧ Fun ((𝐴 ∖ ran 𝑔) × {𝑧})))
28 df-rn 5670 . . . . . . . . . . . . . 14 ran 𝑔 = dom 𝑔
2928eqcomi 2745 . . . . . . . . . . . . 13 dom 𝑔 = ran 𝑔
3023snnz 4757 . . . . . . . . . . . . . 14 {𝑧} ≠ ∅
31 dmxp 5913 . . . . . . . . . . . . . 14 ({𝑧} ≠ ∅ → dom ((𝐴 ∖ ran 𝑔) × {𝑧}) = (𝐴 ∖ ran 𝑔))
3230, 31ax-mp 5 . . . . . . . . . . . . 13 dom ((𝐴 ∖ ran 𝑔) × {𝑧}) = (𝐴 ∖ ran 𝑔)
3329, 32ineq12i 4198 . . . . . . . . . . . 12 (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∩ (𝐴 ∖ ran 𝑔))
34 disjdif 4452 . . . . . . . . . . . 12 (ran 𝑔 ∩ (𝐴 ∖ ran 𝑔)) = ∅
3533, 34eqtri 2759 . . . . . . . . . . 11 (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = ∅
36 funun 6587 . . . . . . . . . . 11 (((Fun 𝑔 ∧ Fun ((𝐴 ∖ ran 𝑔) × {𝑧})) ∧ (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = ∅) → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
3727, 35, 36sylancl 586 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
3837adantl 481 . . . . . . . . 9 ((𝑧𝐵𝑔:𝐵1-1𝐴) → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
39 dmun 5895 . . . . . . . . . . . 12 dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (dom 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧}))
4028uneq1i 4144 . . . . . . . . . . . 12 (ran 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (dom 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧}))
4132uneq2i 4145 . . . . . . . . . . . 12 (ran 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔))
4239, 40, 413eqtr2i 2765 . . . . . . . . . . 11 dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔))
43 f1f 6779 . . . . . . . . . . . . 13 (𝑔:𝐵1-1𝐴𝑔:𝐵𝐴)
4443frnd 6719 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐴 → ran 𝑔𝐴)
45 undif 4462 . . . . . . . . . . . 12 (ran 𝑔𝐴 ↔ (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔)) = 𝐴)
4644, 45sylib 218 . . . . . . . . . . 11 (𝑔:𝐵1-1𝐴 → (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔)) = 𝐴)
4742, 46eqtrid 2783 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴)
4847adantl 481 . . . . . . . . 9 ((𝑧𝐵𝑔:𝐵1-1𝐴) → dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴)
49 df-fn 6539 . . . . . . . . 9 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴 ↔ (Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∧ dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴))
5038, 48, 49sylanbrc 583 . . . . . . . 8 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴)
51 rnun 6139 . . . . . . . . 9 ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧}))
52 dfdm4 5880 . . . . . . . . . . . 12 dom 𝑔 = ran 𝑔
53 f1dm 6783 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐴 → dom 𝑔 = 𝐵)
5452, 53eqtr3id 2785 . . . . . . . . . . 11 (𝑔:𝐵1-1𝐴 → ran 𝑔 = 𝐵)
5554uneq1d 4147 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})))
56 xpeq1 5673 . . . . . . . . . . . . . . . . 17 ((𝐴 ∖ ran 𝑔) = ∅ → ((𝐴 ∖ ran 𝑔) × {𝑧}) = (∅ × {𝑧}))
57 0xp 5758 . . . . . . . . . . . . . . . . 17 (∅ × {𝑧}) = ∅
5856, 57eqtrdi 2787 . . . . . . . . . . . . . . . 16 ((𝐴 ∖ ran 𝑔) = ∅ → ((𝐴 ∖ ran 𝑔) × {𝑧}) = ∅)
5958rneqd 5923 . . . . . . . . . . . . . . 15 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = ran ∅)
60 rn0 5910 . . . . . . . . . . . . . . 15 ran ∅ = ∅
6159, 60eqtrdi 2787 . . . . . . . . . . . . . 14 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = ∅)
62 0ss 4380 . . . . . . . . . . . . . 14 ∅ ⊆ 𝐵
6361, 62eqsstrdi 4008 . . . . . . . . . . . . 13 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
6463a1d 25 . . . . . . . . . . . 12 ((𝐴 ∖ ran 𝑔) = ∅ → (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵))
65 rnxp 6164 . . . . . . . . . . . . . . 15 ((𝐴 ∖ ran 𝑔) ≠ ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = {𝑧})
6665adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = {𝑧})
67 snssi 4789 . . . . . . . . . . . . . . 15 (𝑧𝐵 → {𝑧} ⊆ 𝐵)
6867adantl 481 . . . . . . . . . . . . . 14 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → {𝑧} ⊆ 𝐵)
6966, 68eqsstrd 3998 . . . . . . . . . . . . 13 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
7069ex 412 . . . . . . . . . . . 12 ((𝐴 ∖ ran 𝑔) ≠ ∅ → (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵))
7164, 70pm2.61ine 3016 . . . . . . . . . . 11 (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
72 ssequn2 4169 . . . . . . . . . . 11 (ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵 ↔ (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7371, 72sylib 218 . . . . . . . . . 10 (𝑧𝐵 → (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7455, 73sylan9eqr 2793 . . . . . . . . 9 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7551, 74eqtrid 2783 . . . . . . . 8 ((𝑧𝐵𝑔:𝐵1-1𝐴) → ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
76 df-fo 6542 . . . . . . . 8 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵 ↔ ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴 ∧ ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵))
7750, 75, 76sylanbrc 583 . . . . . . 7 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵)
78 foeq1 6791 . . . . . . . 8 (𝑓 = (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) → (𝑓:𝐴onto𝐵 ↔ (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵))
7978spcegv 3581 . . . . . . 7 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ V → ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵 → ∃𝑓 𝑓:𝐴onto𝐵))
8020, 77, 79syl2im 40 . . . . . 6 (𝐴 ∈ V → ((𝑧𝐵𝑔:𝐵1-1𝐴) → ∃𝑓 𝑓:𝐴onto𝐵))
8180expdimp 452 . . . . 5 ((𝐴 ∈ V ∧ 𝑧𝐵) → (𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵))
8281exlimdv 1933 . . . 4 ((𝐴 ∈ V ∧ 𝑧𝐵) → (∃𝑔 𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵))
8382ex 412 . . 3 (𝐴 ∈ V → (𝑧𝐵 → (∃𝑔 𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵)))
8483exlimdv 1933 . 2 (𝐴 ∈ V → (∃𝑧 𝑧𝐵 → (∃𝑔 𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵)))
853, 9, 11, 84syl3c 66 1 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2933  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606   class class class wbr 5124   × cxp 5657  ccnv 5658  dom cdm 5659  ran crn 5660  Fun wfun 6530   Fn wfn 6531  wf 6532  1-1wf1 6533  ontowfo 6534  cdom 8962  csdm 8963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-en 8965  df-dom 8966  df-sdom 8967
This theorem is referenced by:  pwdom  9148  fodomfibOLD  9348  domwdom  9593  iunfictbso  10133  fodomb  10545  brdom3  10547  konigthlem  10587  1stcfb  23388  ovoliunnul  25465  sigapildsys  34198  carsgclctunlem3  34357  ovoliunnfl  37691  voliunnfl  37693  volsupnfl  37694  modelaxreplem1  44970  nnfoctb  45039  caragenunicl  46520
  Copyright terms: Public domain W3C validator