MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomr Structured version   Visualization version   GIF version

Theorem fodomr 9130
Description: There exists a mapping from a set onto any (nonempty) set that it dominates. (Contributed by NM, 23-Mar-2006.)
Assertion
Ref Expression
fodomr ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fodomr
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8947 . . . 4 Rel ≼
21brrelex2i 5733 . . 3 (𝐵𝐴𝐴 ∈ V)
32adantl 482 . 2 ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ∈ V)
41brrelex1i 5732 . . . 4 (𝐵𝐴𝐵 ∈ V)
5 0sdomg 9106 . . . . 5 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
6 n0 4346 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
75, 6bitrdi 286 . . . 4 (𝐵 ∈ V → (∅ ≺ 𝐵 ↔ ∃𝑧 𝑧𝐵))
84, 7syl 17 . . 3 (𝐵𝐴 → (∅ ≺ 𝐵 ↔ ∃𝑧 𝑧𝐵))
98biimpac 479 . 2 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑧 𝑧𝐵)
10 brdomi 8956 . . 3 (𝐵𝐴 → ∃𝑔 𝑔:𝐵1-1𝐴)
1110adantl 482 . 2 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑔 𝑔:𝐵1-1𝐴)
12 difexg 5327 . . . . . . . . . 10 (𝐴 ∈ V → (𝐴 ∖ ran 𝑔) ∈ V)
13 vsnex 5429 . . . . . . . . . 10 {𝑧} ∈ V
14 xpexg 7739 . . . . . . . . . 10 (((𝐴 ∖ ran 𝑔) ∈ V ∧ {𝑧} ∈ V) → ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V)
1512, 13, 14sylancl 586 . . . . . . . . 9 (𝐴 ∈ V → ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V)
16 vex 3478 . . . . . . . . . 10 𝑔 ∈ V
1716cnvex 7918 . . . . . . . . 9 𝑔 ∈ V
1815, 17jctil 520 . . . . . . . 8 (𝐴 ∈ V → (𝑔 ∈ V ∧ ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V))
19 unexb 7737 . . . . . . . 8 ((𝑔 ∈ V ∧ ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V) ↔ (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ V)
2018, 19sylib 217 . . . . . . 7 (𝐴 ∈ V → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ V)
21 df-f1 6548 . . . . . . . . . . . . 13 (𝑔:𝐵1-1𝐴 ↔ (𝑔:𝐵𝐴 ∧ Fun 𝑔))
2221simprbi 497 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐴 → Fun 𝑔)
23 vex 3478 . . . . . . . . . . . . . 14 𝑧 ∈ V
2423fconst 6777 . . . . . . . . . . . . 13 ((𝐴 ∖ ran 𝑔) × {𝑧}):(𝐴 ∖ ran 𝑔)⟶{𝑧}
25 ffun 6720 . . . . . . . . . . . . 13 (((𝐴 ∖ ran 𝑔) × {𝑧}):(𝐴 ∖ ran 𝑔)⟶{𝑧} → Fun ((𝐴 ∖ ran 𝑔) × {𝑧}))
2624, 25ax-mp 5 . . . . . . . . . . . 12 Fun ((𝐴 ∖ ran 𝑔) × {𝑧})
2722, 26jctir 521 . . . . . . . . . . 11 (𝑔:𝐵1-1𝐴 → (Fun 𝑔 ∧ Fun ((𝐴 ∖ ran 𝑔) × {𝑧})))
28 df-rn 5687 . . . . . . . . . . . . . 14 ran 𝑔 = dom 𝑔
2928eqcomi 2741 . . . . . . . . . . . . 13 dom 𝑔 = ran 𝑔
3023snnz 4780 . . . . . . . . . . . . . 14 {𝑧} ≠ ∅
31 dmxp 5928 . . . . . . . . . . . . . 14 ({𝑧} ≠ ∅ → dom ((𝐴 ∖ ran 𝑔) × {𝑧}) = (𝐴 ∖ ran 𝑔))
3230, 31ax-mp 5 . . . . . . . . . . . . 13 dom ((𝐴 ∖ ran 𝑔) × {𝑧}) = (𝐴 ∖ ran 𝑔)
3329, 32ineq12i 4210 . . . . . . . . . . . 12 (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∩ (𝐴 ∖ ran 𝑔))
34 disjdif 4471 . . . . . . . . . . . 12 (ran 𝑔 ∩ (𝐴 ∖ ran 𝑔)) = ∅
3533, 34eqtri 2760 . . . . . . . . . . 11 (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = ∅
36 funun 6594 . . . . . . . . . . 11 (((Fun 𝑔 ∧ Fun ((𝐴 ∖ ran 𝑔) × {𝑧})) ∧ (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = ∅) → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
3727, 35, 36sylancl 586 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
3837adantl 482 . . . . . . . . 9 ((𝑧𝐵𝑔:𝐵1-1𝐴) → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
39 dmun 5910 . . . . . . . . . . . 12 dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (dom 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧}))
4028uneq1i 4159 . . . . . . . . . . . 12 (ran 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (dom 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧}))
4132uneq2i 4160 . . . . . . . . . . . 12 (ran 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔))
4239, 40, 413eqtr2i 2766 . . . . . . . . . . 11 dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔))
43 f1f 6787 . . . . . . . . . . . . 13 (𝑔:𝐵1-1𝐴𝑔:𝐵𝐴)
4443frnd 6725 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐴 → ran 𝑔𝐴)
45 undif 4481 . . . . . . . . . . . 12 (ran 𝑔𝐴 ↔ (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔)) = 𝐴)
4644, 45sylib 217 . . . . . . . . . . 11 (𝑔:𝐵1-1𝐴 → (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔)) = 𝐴)
4742, 46eqtrid 2784 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴)
4847adantl 482 . . . . . . . . 9 ((𝑧𝐵𝑔:𝐵1-1𝐴) → dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴)
49 df-fn 6546 . . . . . . . . 9 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴 ↔ (Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∧ dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴))
5038, 48, 49sylanbrc 583 . . . . . . . 8 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴)
51 rnun 6145 . . . . . . . . 9 ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧}))
52 dfdm4 5895 . . . . . . . . . . . 12 dom 𝑔 = ran 𝑔
53 f1dm 6791 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐴 → dom 𝑔 = 𝐵)
5452, 53eqtr3id 2786 . . . . . . . . . . 11 (𝑔:𝐵1-1𝐴 → ran 𝑔 = 𝐵)
5554uneq1d 4162 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})))
56 xpeq1 5690 . . . . . . . . . . . . . . . . 17 ((𝐴 ∖ ran 𝑔) = ∅ → ((𝐴 ∖ ran 𝑔) × {𝑧}) = (∅ × {𝑧}))
57 0xp 5774 . . . . . . . . . . . . . . . . 17 (∅ × {𝑧}) = ∅
5856, 57eqtrdi 2788 . . . . . . . . . . . . . . . 16 ((𝐴 ∖ ran 𝑔) = ∅ → ((𝐴 ∖ ran 𝑔) × {𝑧}) = ∅)
5958rneqd 5937 . . . . . . . . . . . . . . 15 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = ran ∅)
60 rn0 5925 . . . . . . . . . . . . . . 15 ran ∅ = ∅
6159, 60eqtrdi 2788 . . . . . . . . . . . . . 14 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = ∅)
62 0ss 4396 . . . . . . . . . . . . . 14 ∅ ⊆ 𝐵
6361, 62eqsstrdi 4036 . . . . . . . . . . . . 13 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
6463a1d 25 . . . . . . . . . . . 12 ((𝐴 ∖ ran 𝑔) = ∅ → (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵))
65 rnxp 6169 . . . . . . . . . . . . . . 15 ((𝐴 ∖ ran 𝑔) ≠ ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = {𝑧})
6665adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = {𝑧})
67 snssi 4811 . . . . . . . . . . . . . . 15 (𝑧𝐵 → {𝑧} ⊆ 𝐵)
6867adantl 482 . . . . . . . . . . . . . 14 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → {𝑧} ⊆ 𝐵)
6966, 68eqsstrd 4020 . . . . . . . . . . . . 13 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
7069ex 413 . . . . . . . . . . . 12 ((𝐴 ∖ ran 𝑔) ≠ ∅ → (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵))
7164, 70pm2.61ine 3025 . . . . . . . . . . 11 (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
72 ssequn2 4183 . . . . . . . . . . 11 (ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵 ↔ (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7371, 72sylib 217 . . . . . . . . . 10 (𝑧𝐵 → (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7455, 73sylan9eqr 2794 . . . . . . . . 9 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7551, 74eqtrid 2784 . . . . . . . 8 ((𝑧𝐵𝑔:𝐵1-1𝐴) → ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
76 df-fo 6549 . . . . . . . 8 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵 ↔ ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴 ∧ ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵))
7750, 75, 76sylanbrc 583 . . . . . . 7 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵)
78 foeq1 6801 . . . . . . . 8 (𝑓 = (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) → (𝑓:𝐴onto𝐵 ↔ (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵))
7978spcegv 3587 . . . . . . 7 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ V → ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵 → ∃𝑓 𝑓:𝐴onto𝐵))
8020, 77, 79syl2im 40 . . . . . 6 (𝐴 ∈ V → ((𝑧𝐵𝑔:𝐵1-1𝐴) → ∃𝑓 𝑓:𝐴onto𝐵))
8180expdimp 453 . . . . 5 ((𝐴 ∈ V ∧ 𝑧𝐵) → (𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵))
8281exlimdv 1936 . . . 4 ((𝐴 ∈ V ∧ 𝑧𝐵) → (∃𝑔 𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵))
8382ex 413 . . 3 (𝐴 ∈ V → (𝑧𝐵 → (∃𝑔 𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵)))
8483exlimdv 1936 . 2 (𝐴 ∈ V → (∃𝑧 𝑧𝐵 → (∃𝑔 𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵)))
853, 9, 11, 84syl3c 66 1 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2940  Vcvv 3474  cdif 3945  cun 3946  cin 3947  wss 3948  c0 4322  {csn 4628   class class class wbr 5148   × cxp 5674  ccnv 5675  dom cdm 5676  ran crn 5677  Fun wfun 6537   Fn wfn 6538  wf 6539  1-1wf1 6540  ontowfo 6541  cdom 8939  csdm 8940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-en 8942  df-dom 8943  df-sdom 8944
This theorem is referenced by:  pwdom  9131  fodomfib  9328  domwdom  9571  iunfictbso  10111  fodomb  10523  brdom3  10525  konigthlem  10565  1stcfb  23169  ovoliunnul  25248  sigapildsys  33446  carsgclctunlem3  33605  ovoliunnfl  36833  voliunnfl  36835  volsupnfl  36836  nnfoctb  44036  caragenunicl  45539
  Copyright terms: Public domain W3C validator