MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomr Structured version   Visualization version   GIF version

Theorem fodomr 9128
Description: There exists a mapping from a set onto any (nonempty) set that it dominates. (Contributed by NM, 23-Mar-2006.)
Assertion
Ref Expression
fodomr ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fodomr
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8945 . . . 4 Rel ≼
21brrelex2i 5734 . . 3 (𝐵𝐴𝐴 ∈ V)
32adantl 483 . 2 ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ∈ V)
41brrelex1i 5733 . . . 4 (𝐵𝐴𝐵 ∈ V)
5 0sdomg 9104 . . . . 5 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
6 n0 4347 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
75, 6bitrdi 287 . . . 4 (𝐵 ∈ V → (∅ ≺ 𝐵 ↔ ∃𝑧 𝑧𝐵))
84, 7syl 17 . . 3 (𝐵𝐴 → (∅ ≺ 𝐵 ↔ ∃𝑧 𝑧𝐵))
98biimpac 480 . 2 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑧 𝑧𝐵)
10 brdomi 8954 . . 3 (𝐵𝐴 → ∃𝑔 𝑔:𝐵1-1𝐴)
1110adantl 483 . 2 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑔 𝑔:𝐵1-1𝐴)
12 difexg 5328 . . . . . . . . . 10 (𝐴 ∈ V → (𝐴 ∖ ran 𝑔) ∈ V)
13 vsnex 5430 . . . . . . . . . 10 {𝑧} ∈ V
14 xpexg 7737 . . . . . . . . . 10 (((𝐴 ∖ ran 𝑔) ∈ V ∧ {𝑧} ∈ V) → ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V)
1512, 13, 14sylancl 587 . . . . . . . . 9 (𝐴 ∈ V → ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V)
16 vex 3479 . . . . . . . . . 10 𝑔 ∈ V
1716cnvex 7916 . . . . . . . . 9 𝑔 ∈ V
1815, 17jctil 521 . . . . . . . 8 (𝐴 ∈ V → (𝑔 ∈ V ∧ ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V))
19 unexb 7735 . . . . . . . 8 ((𝑔 ∈ V ∧ ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ V) ↔ (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ V)
2018, 19sylib 217 . . . . . . 7 (𝐴 ∈ V → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ V)
21 df-f1 6549 . . . . . . . . . . . . 13 (𝑔:𝐵1-1𝐴 ↔ (𝑔:𝐵𝐴 ∧ Fun 𝑔))
2221simprbi 498 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐴 → Fun 𝑔)
23 vex 3479 . . . . . . . . . . . . . 14 𝑧 ∈ V
2423fconst 6778 . . . . . . . . . . . . 13 ((𝐴 ∖ ran 𝑔) × {𝑧}):(𝐴 ∖ ran 𝑔)⟶{𝑧}
25 ffun 6721 . . . . . . . . . . . . 13 (((𝐴 ∖ ran 𝑔) × {𝑧}):(𝐴 ∖ ran 𝑔)⟶{𝑧} → Fun ((𝐴 ∖ ran 𝑔) × {𝑧}))
2624, 25ax-mp 5 . . . . . . . . . . . 12 Fun ((𝐴 ∖ ran 𝑔) × {𝑧})
2722, 26jctir 522 . . . . . . . . . . 11 (𝑔:𝐵1-1𝐴 → (Fun 𝑔 ∧ Fun ((𝐴 ∖ ran 𝑔) × {𝑧})))
28 df-rn 5688 . . . . . . . . . . . . . 14 ran 𝑔 = dom 𝑔
2928eqcomi 2742 . . . . . . . . . . . . 13 dom 𝑔 = ran 𝑔
3023snnz 4781 . . . . . . . . . . . . . 14 {𝑧} ≠ ∅
31 dmxp 5929 . . . . . . . . . . . . . 14 ({𝑧} ≠ ∅ → dom ((𝐴 ∖ ran 𝑔) × {𝑧}) = (𝐴 ∖ ran 𝑔))
3230, 31ax-mp 5 . . . . . . . . . . . . 13 dom ((𝐴 ∖ ran 𝑔) × {𝑧}) = (𝐴 ∖ ran 𝑔)
3329, 32ineq12i 4211 . . . . . . . . . . . 12 (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∩ (𝐴 ∖ ran 𝑔))
34 disjdif 4472 . . . . . . . . . . . 12 (ran 𝑔 ∩ (𝐴 ∖ ran 𝑔)) = ∅
3533, 34eqtri 2761 . . . . . . . . . . 11 (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = ∅
36 funun 6595 . . . . . . . . . . 11 (((Fun 𝑔 ∧ Fun ((𝐴 ∖ ran 𝑔) × {𝑧})) ∧ (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = ∅) → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
3727, 35, 36sylancl 587 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
3837adantl 483 . . . . . . . . 9 ((𝑧𝐵𝑔:𝐵1-1𝐴) → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
39 dmun 5911 . . . . . . . . . . . 12 dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (dom 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧}))
4028uneq1i 4160 . . . . . . . . . . . 12 (ran 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (dom 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧}))
4132uneq2i 4161 . . . . . . . . . . . 12 (ran 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔))
4239, 40, 413eqtr2i 2767 . . . . . . . . . . 11 dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔))
43 f1f 6788 . . . . . . . . . . . . 13 (𝑔:𝐵1-1𝐴𝑔:𝐵𝐴)
4443frnd 6726 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐴 → ran 𝑔𝐴)
45 undif 4482 . . . . . . . . . . . 12 (ran 𝑔𝐴 ↔ (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔)) = 𝐴)
4644, 45sylib 217 . . . . . . . . . . 11 (𝑔:𝐵1-1𝐴 → (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔)) = 𝐴)
4742, 46eqtrid 2785 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴)
4847adantl 483 . . . . . . . . 9 ((𝑧𝐵𝑔:𝐵1-1𝐴) → dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴)
49 df-fn 6547 . . . . . . . . 9 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴 ↔ (Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∧ dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴))
5038, 48, 49sylanbrc 584 . . . . . . . 8 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴)
51 rnun 6146 . . . . . . . . 9 ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧}))
52 dfdm4 5896 . . . . . . . . . . . 12 dom 𝑔 = ran 𝑔
53 f1dm 6792 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐴 → dom 𝑔 = 𝐵)
5452, 53eqtr3id 2787 . . . . . . . . . . 11 (𝑔:𝐵1-1𝐴 → ran 𝑔 = 𝐵)
5554uneq1d 4163 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})))
56 xpeq1 5691 . . . . . . . . . . . . . . . . 17 ((𝐴 ∖ ran 𝑔) = ∅ → ((𝐴 ∖ ran 𝑔) × {𝑧}) = (∅ × {𝑧}))
57 0xp 5775 . . . . . . . . . . . . . . . . 17 (∅ × {𝑧}) = ∅
5856, 57eqtrdi 2789 . . . . . . . . . . . . . . . 16 ((𝐴 ∖ ran 𝑔) = ∅ → ((𝐴 ∖ ran 𝑔) × {𝑧}) = ∅)
5958rneqd 5938 . . . . . . . . . . . . . . 15 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = ran ∅)
60 rn0 5926 . . . . . . . . . . . . . . 15 ran ∅ = ∅
6159, 60eqtrdi 2789 . . . . . . . . . . . . . 14 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = ∅)
62 0ss 4397 . . . . . . . . . . . . . 14 ∅ ⊆ 𝐵
6361, 62eqsstrdi 4037 . . . . . . . . . . . . 13 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
6463a1d 25 . . . . . . . . . . . 12 ((𝐴 ∖ ran 𝑔) = ∅ → (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵))
65 rnxp 6170 . . . . . . . . . . . . . . 15 ((𝐴 ∖ ran 𝑔) ≠ ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = {𝑧})
6665adantr 482 . . . . . . . . . . . . . 14 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = {𝑧})
67 snssi 4812 . . . . . . . . . . . . . . 15 (𝑧𝐵 → {𝑧} ⊆ 𝐵)
6867adantl 483 . . . . . . . . . . . . . 14 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → {𝑧} ⊆ 𝐵)
6966, 68eqsstrd 4021 . . . . . . . . . . . . 13 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
7069ex 414 . . . . . . . . . . . 12 ((𝐴 ∖ ran 𝑔) ≠ ∅ → (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵))
7164, 70pm2.61ine 3026 . . . . . . . . . . 11 (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
72 ssequn2 4184 . . . . . . . . . . 11 (ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵 ↔ (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7371, 72sylib 217 . . . . . . . . . 10 (𝑧𝐵 → (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7455, 73sylan9eqr 2795 . . . . . . . . 9 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7551, 74eqtrid 2785 . . . . . . . 8 ((𝑧𝐵𝑔:𝐵1-1𝐴) → ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
76 df-fo 6550 . . . . . . . 8 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵 ↔ ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴 ∧ ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵))
7750, 75, 76sylanbrc 584 . . . . . . 7 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵)
78 foeq1 6802 . . . . . . . 8 (𝑓 = (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) → (𝑓:𝐴onto𝐵 ↔ (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵))
7978spcegv 3588 . . . . . . 7 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ V → ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵 → ∃𝑓 𝑓:𝐴onto𝐵))
8020, 77, 79syl2im 40 . . . . . 6 (𝐴 ∈ V → ((𝑧𝐵𝑔:𝐵1-1𝐴) → ∃𝑓 𝑓:𝐴onto𝐵))
8180expdimp 454 . . . . 5 ((𝐴 ∈ V ∧ 𝑧𝐵) → (𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵))
8281exlimdv 1937 . . . 4 ((𝐴 ∈ V ∧ 𝑧𝐵) → (∃𝑔 𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵))
8382ex 414 . . 3 (𝐴 ∈ V → (𝑧𝐵 → (∃𝑔 𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵)))
8483exlimdv 1937 . 2 (𝐴 ∈ V → (∃𝑧 𝑧𝐵 → (∃𝑔 𝑔:𝐵1-1𝐴 → ∃𝑓 𝑓:𝐴onto𝐵)))
853, 9, 11, 84syl3c 66 1 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wne 2941  Vcvv 3475  cdif 3946  cun 3947  cin 3948  wss 3949  c0 4323  {csn 4629   class class class wbr 5149   × cxp 5675  ccnv 5676  dom cdm 5677  ran crn 5678  Fun wfun 6538   Fn wfn 6539  wf 6540  1-1wf1 6541  ontowfo 6542  cdom 8937  csdm 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-en 8940  df-dom 8941  df-sdom 8942
This theorem is referenced by:  pwdom  9129  fodomfib  9326  domwdom  9569  iunfictbso  10109  fodomb  10521  brdom3  10523  konigthlem  10563  1stcfb  22949  ovoliunnul  25024  sigapildsys  33160  carsgclctunlem3  33319  ovoliunnfl  36530  voliunnfl  36532  volsupnfl  36533  nnfoctb  43734  caragenunicl  45240
  Copyright terms: Public domain W3C validator