| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > s2f1 | Structured version Visualization version GIF version | ||
| Description: Conditions for a length 2 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
| Ref | Expression |
|---|---|
| s2f1.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| s2f1.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| s2f1.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| Ref | Expression |
|---|---|
| s2f1 | ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12396 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 3 | s2f1.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
| 4 | 1nn0 12397 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℕ0) |
| 6 | s2f1.j | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
| 7 | 0ne1 12196 | . . . . . . 7 ⊢ 0 ≠ 1 | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ≠ 1) |
| 9 | s2f1.1 | . . . . . 6 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
| 10 | f1oprg 6808 | . . . . . . 7 ⊢ (((0 ∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧ 𝐽 ∈ 𝐷)) → ((0 ≠ 1 ∧ 𝐼 ≠ 𝐽) → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽})) | |
| 11 | 10 | 3impia 1117 | . . . . . 6 ⊢ (((0 ∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧ 𝐽 ∈ 𝐷) ∧ (0 ≠ 1 ∧ 𝐼 ≠ 𝐽)) → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
| 12 | 2, 3, 5, 6, 8, 9, 11 | syl222anc 1388 | . . . . 5 ⊢ (𝜑 → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
| 13 | s2prop 14814 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷) → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) | |
| 14 | 3, 6, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) |
| 15 | 14 | f1oeq1d 6758 | . . . . 5 ⊢ (𝜑 → (〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽} ↔ {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽})) |
| 16 | 12, 15 | mpbird 257 | . . . 4 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
| 17 | f1of1 6762 | . . . 4 ⊢ (〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽} → 〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽}) | |
| 18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽}) |
| 19 | 3, 6 | prssd 4774 | . . 3 ⊢ (𝜑 → {𝐼, 𝐽} ⊆ 𝐷) |
| 20 | f1ss 6724 | . . 3 ⊢ ((〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽} ∧ {𝐼, 𝐽} ⊆ 𝐷) → 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷) | |
| 21 | 18, 19, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷) |
| 22 | f1dm 6723 | . . . 4 ⊢ (〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷 → dom 〈“𝐼𝐽”〉 = {0, 1}) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (𝜑 → dom 〈“𝐼𝐽”〉 = {0, 1}) |
| 24 | f1eq2 6715 | . . 3 ⊢ (dom 〈“𝐼𝐽”〉 = {0, 1} → (〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷 ↔ 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷)) | |
| 25 | 23, 24 | syl 17 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷 ↔ 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷)) |
| 26 | 21, 25 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3902 {cpr 4578 〈cop 4582 dom cdm 5616 –1-1→wf1 6478 –1-1-onto→wf1o 6480 0cc0 11006 1c1 11007 ℕ0cn0 12381 〈“cs2 14748 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 |
| This theorem is referenced by: cycpm2tr 33086 cycpm2cl 33087 cyc2fv1 33088 cyc2fv2 33089 cycpmco2 33100 cyc2fvx 33101 cyc3co2 33107 cyc3conja 33124 |
| Copyright terms: Public domain | W3C validator |