Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  s2f1 Structured version   Visualization version   GIF version

Theorem s2f1 32106
Description: Conditions for a length 2 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
s2f1.i (𝜑𝐼𝐷)
s2f1.j (𝜑𝐽𝐷)
s2f1.1 (𝜑𝐼𝐽)
Assertion
Ref Expression
s2f1 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)

Proof of Theorem s2f1
StepHypRef Expression
1 0nn0 12486 . . . . . . 7 0 ∈ ℕ0
21a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
3 s2f1.i . . . . . 6 (𝜑𝐼𝐷)
4 1nn0 12487 . . . . . . 7 1 ∈ ℕ0
54a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
6 s2f1.j . . . . . 6 (𝜑𝐽𝐷)
7 0ne1 12282 . . . . . . 7 0 ≠ 1
87a1i 11 . . . . . 6 (𝜑 → 0 ≠ 1)
9 s2f1.1 . . . . . 6 (𝜑𝐼𝐽)
10 f1oprg 6878 . . . . . . 7 (((0 ∈ ℕ0𝐼𝐷) ∧ (1 ∈ ℕ0𝐽𝐷)) → ((0 ≠ 1 ∧ 𝐼𝐽) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽}))
11103impia 1117 . . . . . 6 (((0 ∈ ℕ0𝐼𝐷) ∧ (1 ∈ ℕ0𝐽𝐷) ∧ (0 ≠ 1 ∧ 𝐼𝐽)) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽})
122, 3, 5, 6, 8, 9, 11syl222anc 1386 . . . . 5 (𝜑 → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽})
13 s2prop 14857 . . . . . . 7 ((𝐼𝐷𝐽𝐷) → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
143, 6, 13syl2anc 584 . . . . . 6 (𝜑 → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
1514f1oeq1d 6828 . . . . 5 (𝜑 → (⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽} ↔ {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽}))
1612, 15mpbird 256 . . . 4 (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽})
17 f1of1 6832 . . . 4 (⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽} → ⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽})
1816, 17syl 17 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽})
193, 6prssd 4825 . . 3 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
20 f1ss 6793 . . 3 ((⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽} ∧ {𝐼, 𝐽} ⊆ 𝐷) → ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷)
2118, 19, 20syl2anc 584 . 2 (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷)
22 f1dm 6791 . . . 4 (⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷 → dom ⟨“𝐼𝐽”⟩ = {0, 1})
2321, 22syl 17 . . 3 (𝜑 → dom ⟨“𝐼𝐽”⟩ = {0, 1})
24 f1eq2 6783 . . 3 (dom ⟨“𝐼𝐽”⟩ = {0, 1} → (⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷 ↔ ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷))
2523, 24syl 17 . 2 (𝜑 → (⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷 ↔ ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷))
2621, 25mpbird 256 1 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wss 3948  {cpr 4630  cop 4634  dom cdm 5676  1-1wf1 6540  1-1-ontowf1o 6542  0cc0 11109  1c1 11110  0cn0 12471  ⟨“cs2 14791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-hash 14290  df-word 14464  df-concat 14520  df-s1 14545  df-s2 14798
This theorem is referenced by:  cycpm2tr  32273  cycpm2cl  32274  cyc2fv1  32275  cyc2fv2  32276  cycpmco2  32287  cyc2fvx  32288  cyc3co2  32294  cyc3conja  32311
  Copyright terms: Public domain W3C validator