![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > s2f1 | Structured version Visualization version GIF version |
Description: Conditions for a length 2 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
Ref | Expression |
---|---|
s2f1.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
s2f1.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
s2f1.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
Ref | Expression |
---|---|
s2f1 | ⊢ (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1→𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12484 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℕ0) |
3 | s2f1.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
4 | 1nn0 12485 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℕ0) |
6 | s2f1.j | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
7 | 0ne1 12280 | . . . . . . 7 ⊢ 0 ≠ 1 | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ≠ 1) |
9 | s2f1.1 | . . . . . 6 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
10 | f1oprg 6868 | . . . . . . 7 ⊢ (((0 ∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧ 𝐽 ∈ 𝐷)) → ((0 ≠ 1 ∧ 𝐼 ≠ 𝐽) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽})) | |
11 | 10 | 3impia 1114 | . . . . . 6 ⊢ (((0 ∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧ 𝐽 ∈ 𝐷) ∧ (0 ≠ 1 ∧ 𝐼 ≠ 𝐽)) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
12 | 2, 3, 5, 6, 8, 9, 11 | syl222anc 1383 | . . . . 5 ⊢ (𝜑 → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
13 | s2prop 14855 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷) → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}) | |
14 | 3, 6, 13 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}) |
15 | 14 | f1oeq1d 6818 | . . . . 5 ⊢ (𝜑 → (⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽} ↔ {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽})) |
16 | 12, 15 | mpbird 257 | . . . 4 ⊢ (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
17 | f1of1 6822 | . . . 4 ⊢ (⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽} → ⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽}) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽}) |
19 | 3, 6 | prssd 4817 | . . 3 ⊢ (𝜑 → {𝐼, 𝐽} ⊆ 𝐷) |
20 | f1ss 6783 | . . 3 ⊢ ((⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽} ∧ {𝐼, 𝐽} ⊆ 𝐷) → ⟨“𝐼𝐽”⟩:{0, 1}–1-1→𝐷) | |
21 | 18, 19, 20 | syl2anc 583 | . 2 ⊢ (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1→𝐷) |
22 | f1dm 6781 | . . . 4 ⊢ (⟨“𝐼𝐽”⟩:{0, 1}–1-1→𝐷 → dom ⟨“𝐼𝐽”⟩ = {0, 1}) | |
23 | 21, 22 | syl 17 | . . 3 ⊢ (𝜑 → dom ⟨“𝐼𝐽”⟩ = {0, 1}) |
24 | f1eq2 6773 | . . 3 ⊢ (dom ⟨“𝐼𝐽”⟩ = {0, 1} → (⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1→𝐷 ↔ ⟨“𝐼𝐽”⟩:{0, 1}–1-1→𝐷)) | |
25 | 23, 24 | syl 17 | . 2 ⊢ (𝜑 → (⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1→𝐷 ↔ ⟨“𝐼𝐽”⟩:{0, 1}–1-1→𝐷)) |
26 | 21, 25 | mpbird 257 | 1 ⊢ (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1→𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ⊆ wss 3940 {cpr 4622 ⟨cop 4626 dom cdm 5666 –1-1→wf1 6530 –1-1-onto→wf1o 6532 0cc0 11106 1c1 11107 ℕ0cn0 12469 ⟨“cs2 14789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 df-fzo 13625 df-hash 14288 df-word 14462 df-concat 14518 df-s1 14543 df-s2 14796 |
This theorem is referenced by: cycpm2tr 32746 cycpm2cl 32747 cyc2fv1 32748 cyc2fv2 32749 cycpmco2 32760 cyc2fvx 32761 cyc3co2 32767 cyc3conja 32784 |
Copyright terms: Public domain | W3C validator |