![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > s2f1 | Structured version Visualization version GIF version |
Description: Conditions for a length 2 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
Ref | Expression |
---|---|
s2f1.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
s2f1.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
s2f1.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
Ref | Expression |
---|---|
s2f1 | ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12539 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℕ0) |
3 | s2f1.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
4 | 1nn0 12540 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℕ0) |
6 | s2f1.j | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
7 | 0ne1 12335 | . . . . . . 7 ⊢ 0 ≠ 1 | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ≠ 1) |
9 | s2f1.1 | . . . . . 6 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
10 | f1oprg 6894 | . . . . . . 7 ⊢ (((0 ∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧ 𝐽 ∈ 𝐷)) → ((0 ≠ 1 ∧ 𝐼 ≠ 𝐽) → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽})) | |
11 | 10 | 3impia 1116 | . . . . . 6 ⊢ (((0 ∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧ 𝐽 ∈ 𝐷) ∧ (0 ≠ 1 ∧ 𝐼 ≠ 𝐽)) → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
12 | 2, 3, 5, 6, 8, 9, 11 | syl222anc 1385 | . . . . 5 ⊢ (𝜑 → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
13 | s2prop 14943 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷) → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) | |
14 | 3, 6, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) |
15 | 14 | f1oeq1d 6844 | . . . . 5 ⊢ (𝜑 → (〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽} ↔ {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽})) |
16 | 12, 15 | mpbird 257 | . . . 4 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
17 | f1of1 6848 | . . . 4 ⊢ (〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽} → 〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽}) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽}) |
19 | 3, 6 | prssd 4827 | . . 3 ⊢ (𝜑 → {𝐼, 𝐽} ⊆ 𝐷) |
20 | f1ss 6810 | . . 3 ⊢ ((〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽} ∧ {𝐼, 𝐽} ⊆ 𝐷) → 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷) | |
21 | 18, 19, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷) |
22 | f1dm 6809 | . . . 4 ⊢ (〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷 → dom 〈“𝐼𝐽”〉 = {0, 1}) | |
23 | 21, 22 | syl 17 | . . 3 ⊢ (𝜑 → dom 〈“𝐼𝐽”〉 = {0, 1}) |
24 | f1eq2 6801 | . . 3 ⊢ (dom 〈“𝐼𝐽”〉 = {0, 1} → (〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷 ↔ 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷)) | |
25 | 23, 24 | syl 17 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷 ↔ 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷)) |
26 | 21, 25 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ⊆ wss 3963 {cpr 4633 〈cop 4637 dom cdm 5689 –1-1→wf1 6560 –1-1-onto→wf1o 6562 0cc0 11153 1c1 11154 ℕ0cn0 12524 〈“cs2 14877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 df-s2 14884 |
This theorem is referenced by: cycpm2tr 33122 cycpm2cl 33123 cyc2fv1 33124 cyc2fv2 33125 cycpmco2 33136 cyc2fvx 33137 cyc3co2 33143 cyc3conja 33160 |
Copyright terms: Public domain | W3C validator |