Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  s2f1 Structured version   Visualization version   GIF version

Theorem s2f1 30618
 Description: Conditions for a length 2 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
s2f1.i (𝜑𝐼𝐷)
s2f1.j (𝜑𝐽𝐷)
s2f1.1 (𝜑𝐼𝐽)
Assertion
Ref Expression
s2f1 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)

Proof of Theorem s2f1
StepHypRef Expression
1 0nn0 11898 . . . . . . 7 0 ∈ ℕ0
21a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
3 s2f1.i . . . . . 6 (𝜑𝐼𝐷)
4 1nn0 11899 . . . . . . 7 1 ∈ ℕ0
54a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
6 s2f1.j . . . . . 6 (𝜑𝐽𝐷)
7 0ne1 11694 . . . . . . 7 0 ≠ 1
87a1i 11 . . . . . 6 (𝜑 → 0 ≠ 1)
9 s2f1.1 . . . . . 6 (𝜑𝐼𝐽)
10 f1oprg 6640 . . . . . . 7 (((0 ∈ ℕ0𝐼𝐷) ∧ (1 ∈ ℕ0𝐽𝐷)) → ((0 ≠ 1 ∧ 𝐼𝐽) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽}))
11103impia 1114 . . . . . 6 (((0 ∈ ℕ0𝐼𝐷) ∧ (1 ∈ ℕ0𝐽𝐷) ∧ (0 ≠ 1 ∧ 𝐼𝐽)) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽})
122, 3, 5, 6, 8, 9, 11syl222anc 1383 . . . . 5 (𝜑 → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽})
13 s2prop 14258 . . . . . . 7 ((𝐼𝐷𝐽𝐷) → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
143, 6, 13syl2anc 587 . . . . . 6 (𝜑 → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
15 f1oeq1 6585 . . . . . 6 (⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩} → (⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽} ↔ {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽}))
1614, 15syl 17 . . . . 5 (𝜑 → (⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽} ↔ {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽}))
1712, 16mpbird 260 . . . 4 (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽})
18 f1of1 6595 . . . 4 (⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽} → ⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽})
1917, 18syl 17 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽})
203, 6prssd 4736 . . 3 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
21 f1ss 6561 . . 3 ((⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽} ∧ {𝐼, 𝐽} ⊆ 𝐷) → ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷)
2219, 20, 21syl2anc 587 . 2 (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷)
23 f1dm 6560 . . . 4 (⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷 → dom ⟨“𝐼𝐽”⟩ = {0, 1})
2422, 23syl 17 . . 3 (𝜑 → dom ⟨“𝐼𝐽”⟩ = {0, 1})
25 f1eq2 6552 . . 3 (dom ⟨“𝐼𝐽”⟩ = {0, 1} → (⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷 ↔ ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷))
2624, 25syl 17 . 2 (𝜑 → (⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷 ↔ ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷))
2722, 26mpbird 260 1 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ≠ wne 3013   ⊆ wss 3918  {cpr 4550  ⟨cop 4554  dom cdm 5536  –1-1→wf1 6333  –1-1-onto→wf1o 6335  0cc0 10522  1c1 10523  ℕ0cn0 11883  ⟨“cs2 14192 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-n0 11884  df-z 11968  df-uz 12230  df-fz 12884  df-fzo 13027  df-hash 13685  df-word 13856  df-concat 13912  df-s1 13939  df-s2 14199 This theorem is referenced by:  cycpm2tr  30779  cycpm2cl  30780  cyc2fv1  30781  cyc2fv2  30782  cycpmco2  30793  cyc2fvx  30794  cyc3co2  30800  cyc3conja  30817
 Copyright terms: Public domain W3C validator