![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > s2f1 | Structured version Visualization version GIF version |
Description: Conditions for a length 2 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
Ref | Expression |
---|---|
s2f1.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
s2f1.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
s2f1.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
Ref | Expression |
---|---|
s2f1 | ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12525 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℕ0) |
3 | s2f1.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
4 | 1nn0 12526 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℕ0) |
6 | s2f1.j | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
7 | 0ne1 12321 | . . . . . . 7 ⊢ 0 ≠ 1 | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ≠ 1) |
9 | s2f1.1 | . . . . . 6 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
10 | f1oprg 6883 | . . . . . . 7 ⊢ (((0 ∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧ 𝐽 ∈ 𝐷)) → ((0 ≠ 1 ∧ 𝐼 ≠ 𝐽) → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽})) | |
11 | 10 | 3impia 1114 | . . . . . 6 ⊢ (((0 ∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧ 𝐽 ∈ 𝐷) ∧ (0 ≠ 1 ∧ 𝐼 ≠ 𝐽)) → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
12 | 2, 3, 5, 6, 8, 9, 11 | syl222anc 1383 | . . . . 5 ⊢ (𝜑 → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
13 | s2prop 14902 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷) → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) | |
14 | 3, 6, 13 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) |
15 | 14 | f1oeq1d 6833 | . . . . 5 ⊢ (𝜑 → (〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽} ↔ {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽})) |
16 | 12, 15 | mpbird 256 | . . . 4 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
17 | f1of1 6837 | . . . 4 ⊢ (〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽} → 〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽}) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽}) |
19 | 3, 6 | prssd 4827 | . . 3 ⊢ (𝜑 → {𝐼, 𝐽} ⊆ 𝐷) |
20 | f1ss 6798 | . . 3 ⊢ ((〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽} ∧ {𝐼, 𝐽} ⊆ 𝐷) → 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷) | |
21 | 18, 19, 20 | syl2anc 582 | . 2 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷) |
22 | f1dm 6797 | . . . 4 ⊢ (〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷 → dom 〈“𝐼𝐽”〉 = {0, 1}) | |
23 | 21, 22 | syl 17 | . . 3 ⊢ (𝜑 → dom 〈“𝐼𝐽”〉 = {0, 1}) |
24 | f1eq2 6789 | . . 3 ⊢ (dom 〈“𝐼𝐽”〉 = {0, 1} → (〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷 ↔ 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷)) | |
25 | 23, 24 | syl 17 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷 ↔ 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷)) |
26 | 21, 25 | mpbird 256 | 1 ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ⊆ wss 3944 {cpr 4632 〈cop 4636 dom cdm 5678 –1-1→wf1 6546 –1-1-onto→wf1o 6548 0cc0 11145 1c1 11146 ℕ0cn0 12510 〈“cs2 14836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-hash 14334 df-word 14509 df-concat 14565 df-s1 14590 df-s2 14843 |
This theorem is referenced by: cycpm2tr 32953 cycpm2cl 32954 cyc2fv1 32955 cyc2fv2 32956 cycpmco2 32967 cyc2fvx 32968 cyc3co2 32974 cyc3conja 32991 |
Copyright terms: Public domain | W3C validator |