Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  s2f1 Structured version   Visualization version   GIF version

Theorem s2f1 31857
Description: Conditions for a length 2 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
s2f1.i (𝜑𝐼𝐷)
s2f1.j (𝜑𝐽𝐷)
s2f1.1 (𝜑𝐼𝐽)
Assertion
Ref Expression
s2f1 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)

Proof of Theorem s2f1
StepHypRef Expression
1 0nn0 12436 . . . . . . 7 0 ∈ ℕ0
21a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
3 s2f1.i . . . . . 6 (𝜑𝐼𝐷)
4 1nn0 12437 . . . . . . 7 1 ∈ ℕ0
54a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
6 s2f1.j . . . . . 6 (𝜑𝐽𝐷)
7 0ne1 12232 . . . . . . 7 0 ≠ 1
87a1i 11 . . . . . 6 (𝜑 → 0 ≠ 1)
9 s2f1.1 . . . . . 6 (𝜑𝐼𝐽)
10 f1oprg 6833 . . . . . . 7 (((0 ∈ ℕ0𝐼𝐷) ∧ (1 ∈ ℕ0𝐽𝐷)) → ((0 ≠ 1 ∧ 𝐼𝐽) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽}))
11103impia 1118 . . . . . 6 (((0 ∈ ℕ0𝐼𝐷) ∧ (1 ∈ ℕ0𝐽𝐷) ∧ (0 ≠ 1 ∧ 𝐼𝐽)) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽})
122, 3, 5, 6, 8, 9, 11syl222anc 1387 . . . . 5 (𝜑 → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽})
13 s2prop 14805 . . . . . . 7 ((𝐼𝐷𝐽𝐷) → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
143, 6, 13syl2anc 585 . . . . . 6 (𝜑 → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
1514f1oeq1d 6783 . . . . 5 (𝜑 → (⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽} ↔ {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽}))
1612, 15mpbird 257 . . . 4 (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽})
17 f1of1 6787 . . . 4 (⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽} → ⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽})
1816, 17syl 17 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽})
193, 6prssd 4786 . . 3 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
20 f1ss 6748 . . 3 ((⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽} ∧ {𝐼, 𝐽} ⊆ 𝐷) → ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷)
2118, 19, 20syl2anc 585 . 2 (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷)
22 f1dm 6746 . . . 4 (⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷 → dom ⟨“𝐼𝐽”⟩ = {0, 1})
2321, 22syl 17 . . 3 (𝜑 → dom ⟨“𝐼𝐽”⟩ = {0, 1})
24 f1eq2 6738 . . 3 (dom ⟨“𝐼𝐽”⟩ = {0, 1} → (⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷 ↔ ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷))
2523, 24syl 17 . 2 (𝜑 → (⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷 ↔ ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷))
2621, 25mpbird 257 1 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2940  wss 3914  {cpr 4592  cop 4596  dom cdm 5637  1-1wf1 6497  1-1-ontowf1o 6499  0cc0 11059  1c1 11060  0cn0 12421  ⟨“cs2 14739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434  df-fzo 13577  df-hash 14240  df-word 14412  df-concat 14468  df-s1 14493  df-s2 14746
This theorem is referenced by:  cycpm2tr  32024  cycpm2cl  32025  cyc2fv1  32026  cyc2fv2  32027  cycpmco2  32038  cyc2fvx  32039  cyc3co2  32045  cyc3conja  32062
  Copyright terms: Public domain W3C validator