| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > s2f1 | Structured version Visualization version GIF version | ||
| Description: Conditions for a length 2 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
| Ref | Expression |
|---|---|
| s2f1.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| s2f1.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| s2f1.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| Ref | Expression |
|---|---|
| s2f1 | ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12457 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 3 | s2f1.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
| 4 | 1nn0 12458 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℕ0) |
| 6 | s2f1.j | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
| 7 | 0ne1 12257 | . . . . . . 7 ⊢ 0 ≠ 1 | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ≠ 1) |
| 9 | s2f1.1 | . . . . . 6 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
| 10 | f1oprg 6845 | . . . . . . 7 ⊢ (((0 ∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧ 𝐽 ∈ 𝐷)) → ((0 ≠ 1 ∧ 𝐼 ≠ 𝐽) → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽})) | |
| 11 | 10 | 3impia 1117 | . . . . . 6 ⊢ (((0 ∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧ 𝐽 ∈ 𝐷) ∧ (0 ≠ 1 ∧ 𝐼 ≠ 𝐽)) → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
| 12 | 2, 3, 5, 6, 8, 9, 11 | syl222anc 1388 | . . . . 5 ⊢ (𝜑 → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
| 13 | s2prop 14873 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷) → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) | |
| 14 | 3, 6, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) |
| 15 | 14 | f1oeq1d 6795 | . . . . 5 ⊢ (𝜑 → (〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽} ↔ {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽})) |
| 16 | 12, 15 | mpbird 257 | . . . 4 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
| 17 | f1of1 6799 | . . . 4 ⊢ (〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽} → 〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽}) | |
| 18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽}) |
| 19 | 3, 6 | prssd 4786 | . . 3 ⊢ (𝜑 → {𝐼, 𝐽} ⊆ 𝐷) |
| 20 | f1ss 6761 | . . 3 ⊢ ((〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽} ∧ {𝐼, 𝐽} ⊆ 𝐷) → 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷) | |
| 21 | 18, 19, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷) |
| 22 | f1dm 6760 | . . . 4 ⊢ (〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷 → dom 〈“𝐼𝐽”〉 = {0, 1}) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (𝜑 → dom 〈“𝐼𝐽”〉 = {0, 1}) |
| 24 | f1eq2 6752 | . . 3 ⊢ (dom 〈“𝐼𝐽”〉 = {0, 1} → (〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷 ↔ 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷)) | |
| 25 | 23, 24 | syl 17 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷 ↔ 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷)) |
| 26 | 21, 25 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 {cpr 4591 〈cop 4595 dom cdm 5638 –1-1→wf1 6508 –1-1-onto→wf1o 6510 0cc0 11068 1c1 11069 ℕ0cn0 12442 〈“cs2 14807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 |
| This theorem is referenced by: cycpm2tr 33076 cycpm2cl 33077 cyc2fv1 33078 cyc2fv2 33079 cycpmco2 33090 cyc2fvx 33091 cyc3co2 33097 cyc3conja 33114 |
| Copyright terms: Public domain | W3C validator |