| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > s2f1 | Structured version Visualization version GIF version | ||
| Description: Conditions for a length 2 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
| Ref | Expression |
|---|---|
| s2f1.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| s2f1.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| s2f1.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| Ref | Expression |
|---|---|
| s2f1 | ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12543 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 3 | s2f1.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
| 4 | 1nn0 12544 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℕ0) |
| 6 | s2f1.j | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
| 7 | 0ne1 12338 | . . . . . . 7 ⊢ 0 ≠ 1 | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ≠ 1) |
| 9 | s2f1.1 | . . . . . 6 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
| 10 | f1oprg 6892 | . . . . . . 7 ⊢ (((0 ∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧ 𝐽 ∈ 𝐷)) → ((0 ≠ 1 ∧ 𝐼 ≠ 𝐽) → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽})) | |
| 11 | 10 | 3impia 1117 | . . . . . 6 ⊢ (((0 ∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧ 𝐽 ∈ 𝐷) ∧ (0 ≠ 1 ∧ 𝐼 ≠ 𝐽)) → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
| 12 | 2, 3, 5, 6, 8, 9, 11 | syl222anc 1387 | . . . . 5 ⊢ (𝜑 → {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
| 13 | s2prop 14947 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷) → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) | |
| 14 | 3, 6, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) |
| 15 | 14 | f1oeq1d 6842 | . . . . 5 ⊢ (𝜑 → (〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽} ↔ {〈0, 𝐼〉, 〈1, 𝐽〉}:{0, 1}–1-1-onto→{𝐼, 𝐽})) |
| 16 | 12, 15 | mpbird 257 | . . . 4 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽}) |
| 17 | f1of1 6846 | . . . 4 ⊢ (〈“𝐼𝐽”〉:{0, 1}–1-1-onto→{𝐼, 𝐽} → 〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽}) | |
| 18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽}) |
| 19 | 3, 6 | prssd 4821 | . . 3 ⊢ (𝜑 → {𝐼, 𝐽} ⊆ 𝐷) |
| 20 | f1ss 6808 | . . 3 ⊢ ((〈“𝐼𝐽”〉:{0, 1}–1-1→{𝐼, 𝐽} ∧ {𝐼, 𝐽} ⊆ 𝐷) → 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷) | |
| 21 | 18, 19, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷) |
| 22 | f1dm 6807 | . . . 4 ⊢ (〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷 → dom 〈“𝐼𝐽”〉 = {0, 1}) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (𝜑 → dom 〈“𝐼𝐽”〉 = {0, 1}) |
| 24 | f1eq2 6799 | . . 3 ⊢ (dom 〈“𝐼𝐽”〉 = {0, 1} → (〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷 ↔ 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷)) | |
| 25 | 23, 24 | syl 17 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷 ↔ 〈“𝐼𝐽”〉:{0, 1}–1-1→𝐷)) |
| 26 | 21, 25 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ⊆ wss 3950 {cpr 4627 〈cop 4631 dom cdm 5684 –1-1→wf1 6557 –1-1-onto→wf1o 6559 0cc0 11156 1c1 11157 ℕ0cn0 12528 〈“cs2 14881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-hash 14371 df-word 14554 df-concat 14610 df-s1 14635 df-s2 14888 |
| This theorem is referenced by: cycpm2tr 33140 cycpm2cl 33141 cyc2fv1 33142 cyc2fv2 33143 cycpmco2 33154 cyc2fvx 33155 cyc3co2 33161 cyc3conja 33178 |
| Copyright terms: Public domain | W3C validator |