Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  s2f1 Structured version   Visualization version   GIF version

Theorem s2f1 31228
Description: Conditions for a length 2 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
s2f1.i (𝜑𝐼𝐷)
s2f1.j (𝜑𝐽𝐷)
s2f1.1 (𝜑𝐼𝐽)
Assertion
Ref Expression
s2f1 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)

Proof of Theorem s2f1
StepHypRef Expression
1 0nn0 12259 . . . . . . 7 0 ∈ ℕ0
21a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
3 s2f1.i . . . . . 6 (𝜑𝐼𝐷)
4 1nn0 12260 . . . . . . 7 1 ∈ ℕ0
54a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
6 s2f1.j . . . . . 6 (𝜑𝐽𝐷)
7 0ne1 12055 . . . . . . 7 0 ≠ 1
87a1i 11 . . . . . 6 (𝜑 → 0 ≠ 1)
9 s2f1.1 . . . . . 6 (𝜑𝐼𝐽)
10 f1oprg 6758 . . . . . . 7 (((0 ∈ ℕ0𝐼𝐷) ∧ (1 ∈ ℕ0𝐽𝐷)) → ((0 ≠ 1 ∧ 𝐼𝐽) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽}))
11103impia 1116 . . . . . 6 (((0 ∈ ℕ0𝐼𝐷) ∧ (1 ∈ ℕ0𝐽𝐷) ∧ (0 ≠ 1 ∧ 𝐼𝐽)) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽})
122, 3, 5, 6, 8, 9, 11syl222anc 1385 . . . . 5 (𝜑 → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽})
13 s2prop 14631 . . . . . . 7 ((𝐼𝐷𝐽𝐷) → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
143, 6, 13syl2anc 584 . . . . . 6 (𝜑 → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
1514f1oeq1d 6709 . . . . 5 (𝜑 → (⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽} ↔ {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}:{0, 1}–1-1-onto→{𝐼, 𝐽}))
1612, 15mpbird 256 . . . 4 (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽})
17 f1of1 6713 . . . 4 (⟨“𝐼𝐽”⟩:{0, 1}–1-1-onto→{𝐼, 𝐽} → ⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽})
1816, 17syl 17 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽})
193, 6prssd 4761 . . 3 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
20 f1ss 6674 . . 3 ((⟨“𝐼𝐽”⟩:{0, 1}–1-1→{𝐼, 𝐽} ∧ {𝐼, 𝐽} ⊆ 𝐷) → ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷)
2118, 19, 20syl2anc 584 . 2 (𝜑 → ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷)
22 f1dm 6672 . . . 4 (⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷 → dom ⟨“𝐼𝐽”⟩ = {0, 1})
2321, 22syl 17 . . 3 (𝜑 → dom ⟨“𝐼𝐽”⟩ = {0, 1})
24 f1eq2 6664 . . 3 (dom ⟨“𝐼𝐽”⟩ = {0, 1} → (⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷 ↔ ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷))
2523, 24syl 17 . 2 (𝜑 → (⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷 ↔ ⟨“𝐼𝐽”⟩:{0, 1}–1-1𝐷))
2621, 25mpbird 256 1 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  wss 3892  {cpr 4569  cop 4573  dom cdm 5590  1-1wf1 6429  1-1-ontowf1o 6431  0cc0 10882  1c1 10883  0cn0 12244  ⟨“cs2 14565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-n0 12245  df-z 12331  df-uz 12594  df-fz 13251  df-fzo 13394  df-hash 14056  df-word 14229  df-concat 14285  df-s1 14312  df-s2 14572
This theorem is referenced by:  cycpm2tr  31395  cycpm2cl  31396  cyc2fv1  31397  cyc2fv2  31398  cycpmco2  31409  cyc2fvx  31410  cyc3co2  31416  cyc3conja  31433
  Copyright terms: Public domain W3C validator